dc.contributor.author |
Baleanu, Dumitru
|
|
dc.contributor.author |
Agarwal, Ravi P.
|
|
dc.date.accessioned |
2020-04-27T20:13:05Z |
|
dc.date.available |
2020-04-27T20:13:05Z |
|
dc.date.issued |
2014 |
|
dc.identifier.citation |
Baleanu, Dumitru; Agarwal, P., "A Composition Formula of the Pathway Integral Transform Operator", Note di Matematica, Vol. 34, No. 2, pp. 145-155, (2014). |
tr_TR |
dc.identifier.issn |
11232536 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/3433 |
|
dc.description.abstract |
In the present paper, we aim at presenting composition formula of integral transform operator due to Nair, which is expressed in terms of the generalized Wright hypergeometric function, by inserting the generalized Bessel function of the first kind wv(z). Furthermore the special cases for the product of trigonometric functions are also consider. © 2014 Universitá del Salento. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
University of Salento |
tr_TR |
dc.relation.isversionof |
10.1285/i15900932v34n2p145 |
tr_TR |
dc.rights |
info:eu-repo/semantics/openAccess |
tr_TR |
dc.subject |
Generalized (Wright) Hypergeometric Functions |
tr_TR |
dc.subject |
Generalized Bessel Function of the First Kind |
tr_TR |
dc.subject |
Pathway Fractional Integral Operatör |
tr_TR |
dc.subject |
Trigonometric Functions |
tr_TR |
dc.subject |
Mittag-Leffler Function |
tr_TR |
dc.subject |
Fractional Calculus |
tr_TR |
dc.subject |
Fractional Kineti |
tr_TR |
dc.title |
A Composition Formula of the Pathway Integral Transform Operator |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Note di Matematica |
tr_TR |
dc.contributor.authorID |
56389 |
tr_TR |
dc.identifier.volume |
34 |
tr_TR |
dc.identifier.issue |
2 |
tr_TR |
dc.identifier.startpage |
145 |
tr_TR |
dc.identifier.endpage |
155 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |