dc.contributor.author |
Rahmat, MRS
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.contributor.author |
Yang, XJ
|
|
dc.date.accessioned |
2020-05-15T08:57:19Z |
|
dc.date.available |
2020-05-15T08:57:19Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
Rahmat, MRS.; Baleanu, Dumitru; Yang, XJ., "Cantor-type spherical-coordinate method for differential equationswithin local fractional derivatives" Fractional Dynamics, pp.231-242, (2015) |
tr_TR |
dc.identifier.isbn |
978-3-11-047209-7 |
|
dc.identifier.isbn |
978-3-11-047208-0 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/3838 |
|
dc.description.abstract |
In this article, we utilize the Cantor-type spherical coordinate method to investigate a family of local fractional differential operators on Cantor sets. Some examples are discussed to show the capability of this method for the damped wave, Helmholtz and heat conduction equations defined on Cantor sets. We show that it is a powerful tool to convert differential equations on Cantor sets from Cantorian-coordinate systems to Cantor-type spherical-coordinate systems. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
De Gruyter Open LTD |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
tr_TR |
dc.subject |
Cantor Sets |
tr_TR |
dc.subject |
Local Fractional Derivatives |
tr_TR |
dc.subject |
Local Fractional Dynamic Equation |
tr_TR |
dc.subject |
Cantor-Type Spherical-Coordinate |
tr_TR |
dc.title |
Cantor-type spherical-coordinate method for differential equationswithin local fractional derivatives |
tr_TR |
dc.type |
bookPart |
tr_TR |
dc.relation.journal |
Fractional Dynamics |
tr_TR |
dc.contributor.authorID |
56389 |
tr_TR |
dc.identifier.startpage |
231 |
tr_TR |
dc.identifier.endpage |
242 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |