Özet:
In this paper, we study an initial value problem for the time diffusion equation [Formula presented] on Ω × (0, T), where the time derivative is the conformable derivative. We study the existence and regularity of mild solutions in the following three cases with source term F: • F=F(x,t), i.e., linear source term; • F=F(u) is nonlinear, globally Lipchitz and uniformly bounded. The results in this case play important roles in numerical analysis. • F=F(u) is nonlinear, locally Lipchitz and uniformly bounded. The analysis in this case can be widely applied to many problems such as – Time Ginzburg-Landau equations C∂βu/∂tβ+(−Δ)u=|u|μ−1u; – Time Burgers equations C∂βu/∂tβ−(u·∇)u+(−Δ)u=0; etc.