Özet:
This paper describes the exceptionally precise results of 6th-order and 8th-order nonlinear boundary-value problems(BVPs). Cubic-Nonpolynomial spline(CNPS) and Cubic-polynomial spline(CNPS) are utilized to solve such types of BVPs. We develop the class of numerical techniques for a particular selection of the factors that are associated with nonpolynomial and polynomial splines. Using the developed class of numerical techniques, the problem is reduced to a new system that consists of 2nd-order BVPs only. The end conditions associated with the BVPs are determined. For each problem, the results obtained by CNPS and CPS is compared with the exact solution. The absolute error(AE) for every iteration is calculated. To show that the suitable responses established by using CNPS and CPS have a higher level of preciseness, the absolute errors of the CNPS and CPS have been compared with different techniques such as DTM, ADM, Parametric septic splines, Variational-iteration method(VIM), Daftardar Jafari strategy, MDM, Cubic B-Spline, Homotopy method(HM), Quintic and Sextic B-spline and observed to be more accurate. Graphs that describe the graphical comparison of CNPS and CPS at n=10 are also included in this paper.