dc.contributor.author |
Karapınar, Erdal
|
|
dc.contributor.author |
Fulga, Andreea
|
|
dc.contributor.author |
Aydi, Hassen
|
|
dc.date.accessioned |
2023-01-16T07:55:08Z |
|
dc.date.available |
2023-01-16T07:55:08Z |
|
dc.date.issued |
2020-12-01 |
|
dc.identifier.citation |
Karapınar, Erdal; Fulga, Andreea; Aydi, Hassen (2020). "Study on Pata E-contractions", Advances in Difference Equations, Vol. 2020, No. 1. |
tr_TR |
dc.identifier.issn |
1687-1839 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/6076 |
|
dc.description.abstract |
In this paper, we introduce the notion of an α–ζ̃–[InlineEquation not available: see fulltext.]–Pata contraction that combines well-known concepts, such as the Pata contraction, the E-contraction and the simulation function. Existence and uniqueness of a fixed point of such mappings are investigated in the setting of a complete metric space. An example is stated to indicate the validity of the observed result. At the end, we give an application on the solution of nonlinear fractional differential equations. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.relation.isversionof |
10.1186/s13662-020-02992-4 |
tr_TR |
dc.rights |
info:eu-repo/semantics/openAccess |
tr_TR |
dc.subject |
E-Contraction |
tr_TR |
dc.subject |
Fixed Point |
tr_TR |
dc.subject |
Fractional Integral Equation |
tr_TR |
dc.subject |
Orbital Admissible Mapping |
tr_TR |
dc.subject |
Pata Type Contraction |
tr_TR |
dc.title |
Study on Pata E-contractions |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Advances in Difference Equations |
tr_TR |
dc.contributor.authorID |
19184 |
tr_TR |
dc.identifier.volume |
2020 |
tr_TR |
dc.identifier.issue |
1 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |