dc.contributor.author |
Jafari, H.
|
|
dc.contributor.author |
Kadkhoda, N.
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.date.accessioned |
2023-02-16T12:49:42Z |
|
dc.date.available |
2023-02-16T12:49:42Z |
|
dc.date.issued |
2022 |
|
dc.identifier.citation |
Jafari, H.; Kadkhoda, N.; Baleanu, Dumitru (2022). "Lie Group Theory for Nonlinear Fractional K(m, n) Type Equation with Variable Coefficients", Studies in Systems, Decision and Control, Vol. 373, pp. 207-227. |
tr_TR |
dc.identifier.issn |
2198-4182 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/6261 |
|
dc.description.abstract |
We investigated the analytical solution of fractional order K(m, n) type equation with variable coefficient which is an extended type of KdV equations into a genuinely nonlinear dispersion regime. By using the Lie symmetry analysis, we obtain the Lie point symmetries for this type of time-fractional partial differential equations (PDE). Also we present the corresponding reduced fractional differential equations (FDEs) corresponding to the time-fractional K(m, n) type equation. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.relation.isversionof |
10.1007/978-3-030-77169-0_8 |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
tr_TR |
dc.subject |
Fractional Differential Equation |
tr_TR |
dc.subject |
Fractional Order K(M |
tr_TR |
dc.subject |
Lie Symmetry Analysis Method |
tr_TR |
dc.subject |
N) Type Equation |
tr_TR |
dc.subject |
Reduced Equation |
tr_TR |
dc.title |
Lie Group Theory for Nonlinear Fractional K(m, n) Type Equation with Variable Coefficients |
tr_TR |
dc.type |
bookPart |
tr_TR |
dc.relation.journal |
Studies in Systems, Decision and Control |
tr_TR |
dc.contributor.authorID |
56389 |
tr_TR |
dc.identifier.volume |
373 |
tr_TR |
dc.identifier.startpage |
207 |
tr_TR |
dc.identifier.endpage |
227 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |