Geleneksel gayrimenkul değerleme süreci, bir değerleme uzmanının gayrimenkulü görmesi ve evin sahip olduğu değerlere göre içerisinde ev fiyatının da bulunduğu bir rapor oluşturması üzerine kuruludur. Ancak, bu yöntem zaman alıcı ve yüksek maliyetli olarak nitelendirilebilir. Makine öğrenmesi, bu süreci hızlandırmaya ve maliyetleri azaltmaya yardımcı olabilecek bir araçtır. Bu nedenle, bu tezde amacımız, makine öğrenimi tahminlerinin ev fiyatı değerlemesi sürecinde gerçekçi ve yeterli olup olmadığını araştırmaktır. Bu amaçla, çalışmada biri gayrimenkul web sitesinden toplanmış, diğeri ise değerleme raporlarından oluşturulmuş iki veri seti çeşitli makine öğrenimi yöntemleri kullanılarak karşılaştırılmaktadır. İnşa edilen tüm modellerin hiper parametreleri dikkatli bir şekilde seçilmiş, modellerin başarısı ise kök ortalama kare hatası ve netlik skoru kullanılarak değerlendirilmiştir. Bulgular, yaklaşımın varolan değerleme sürecini iyileştirme potansiyeline sahip olduğunu, ancak uygulanabilirliğini göstermek için daha öteye araştırma gerektiğini öneriyor.
The focus of this thesis is to investigate whether machine learning predictions are accurate and viable enough to replace traditional real estate appraisal reports. To do this, we compare two datasets, one scraped from a real estate website and the other created from appraisal reports, and use various machine learning and neural network methods to find the best performing one and to determine the practicality of the study. Bagging and boosting ensemble methods are compared with the implementation of Extreme Gradient Boosting and Random Forest Models. Also, an Artificial Neural Network with five layers and Relu activation function is built as well as ensemble learning models. Hyperparameters of all models built throughout the study are chosen diligently for a comprehensive comparison. We evaluate the success of the models using root mean square error and accuracy score. Findings suggest that this approach has potential for improving the real estate valuation process, but further research is needed to determine its viability in the real world.