Özet:
This model extends the classical epidemic model for cyber consumerism by introducing fuzziness to the model. Fuzziness arises due to insufficient knowledge, experimental errors, operating conditions and parameters that provide inaccurate information. The concepts of confused, escapers and recovered consumers are uncertain due to the different degrees of confusion, escaping and recovery among the individuals of the cyber consumers. The differences can arise, when the cyber consumers under the consideration having distinct habits, customs and different age groups have different degrees of resistance, etc. The chance of transmission of rumors and recovery rates are considered as fuzzy numbers. A rumor-free and two rumor existing-endemic equilibrium points have been derived for the studied model. The model is then solved numerically with fuzzy forward Euler and fuzzy nonstandard finite difference (FNSFD) methods respectively. The numerical and simulation results show that the proposed FNSFD technique is an efficient and reliable tool to deal with such type of dynamical system.