Abstract:
A novel technique called as Lucas wavelet scheme (LWS) is prepared for the treatment of Bagley–Torvik equations (BTEs). Lucas wavelets for the approximation of unknown functions appearing in BTEs are introduced. Fractional derivatives are evaluated by employing Gauss–Jacobi quadrature formula. Further, well-known least square method (LSM) is adopted to compute the residual function, and the system of algebraic equation is obtained. Convergence criterion is derived and error bounds are obtained for the established technique. The scheme is investigated by choosing some reliable test problems through tables and figures, which ensures the convenience, validity and applicability of LWS.