DSpace@Çankaya

Spectrum of the q-Schrödinger equation by means of the variational method based on the discrete q-Hermite I polynomials

Basit öğe kaydını göster

dc.contributor.author Çalışır, Ayşe D.
dc.contributor.author Turan, Mehmet
dc.contributor.author Adıgüzel, Rezan Sevinik
dc.date.accessioned 2024-04-25T07:32:14Z
dc.date.available 2024-04-25T07:32:14Z
dc.date.issued 2021-01-30
dc.identifier.citation Çalışır, Ayşe D.; Turan, Mehmet; Adıgüzel, Rezan S. (2021). "Spectrum of the q-Schrödinger equation by means of the variational method based on the discrete q-Hermite I polynomials", International Journal of Modern Physics A, Vol.36, No.3. tr_TR
dc.identifier.issn 0217751X
dc.identifier.uri http://hdl.handle.net/20.500.12416/7930
dc.description.abstract In this work, the q-Schrödinger equations with symmetric polynomial potentials are considered. The spectrum of the model is obtained for several values of q, and the limiting case as q → 1 is considered. The Rayleigh-Ritz variational method is adopted to the system. The discrete q-Hermite I polynomials are handled as basis in this method. Furthermore, the following potentials with numerous results are presented as applications: q-harmonic, purely q-quartic and q-quartic oscillators. It is also shown that the obtained results confirm the ones that exist in the literature for the continuous case. tr_TR
dc.language.iso eng tr_TR
dc.relation.isversionof 10.1142/S0217751X21500202 tr_TR
dc.rights info:eu-repo/semantics/closedAccess tr_TR
dc.subject Discrete Q-Hermite I Polynomials tr_TR
dc.subject Discrete Schrödinger Equation tr_TR
dc.subject Q-Harmonic Oscillator tr_TR
dc.subject Rayleigh-Ritz Variational Method tr_TR
dc.title Spectrum of the q-Schrödinger equation by means of the variational method based on the discrete q-Hermite I polynomials tr_TR
dc.type article tr_TR
dc.relation.journal International Journal of Modern Physics A tr_TR
dc.identifier.volume 36 tr_TR
dc.identifier.issue 3 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü tr_TR


Bu öğenin dosyaları:

Dosyalar Boyut Biçim Göster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster