Özet:
In this article, we develop a novel framework to study for a new class of preinvex functions depending on arbitrary nonnegative function, which is called n-polynomial preinvex functions. We use the n-polynomial preinvex functions to develop q1q2-analogues of the Ostrowski-type integral inequalities on coordinates. Different features and properties of excitement for quantum calculus have been examined through a systematic way. We are discussing about the suggestions and different results of the quantum inequalities of the Ostrowski-type by inferring a new identity for q1q2-differentiable function. However, the problem has been proven to utilize the obtained identity, we give q1q2-analogues of the Ostrowski-type integrals inequalities which are connected with the n-polynomial preinvex functions on coordinates. Our results are the generalizations of the results in earlier papers.