Abstract:
Vieta-Lucas polynomials (VLPs) belong to the class of weighted orthogonal polynomials, which can be used to effectively handle various natural and engineered problems. The classical fractional derivative due to Caputo is used to write the emerging operational matrices. These matrices are developed and evaluated by using the properties of VLPs. The residuated functions are mapped to zero by the tools of the Tau algorithm. Convergence and error analysis are thoroughly explored. Test examples for a fractional system of differential equations are borrowed from literature. The theoretical and simulated exercise on these examples authenticate the relevance of this scheme. Here, novel inclusion of Vieta-Lucas polynomials has been ensured in combination with the Tau approach. The operational matrix approach which provides extensive information about the fractional derivatives of different terms of Vieta-Lucas polynomial expansion, is ensured to operate to reduce the problem into an algebraic setup. The novelty is further enhanced by comparing the present scheme with the fourth-order Runge–Kutta method.