Özet:
Simultaneous analyses and dissolution tests of levodopa-benserazide tablets were carried out by continuous wavelet transform (CWT) and classic derivative spectrophotometry (DS) without using any chemical separation step. The developed two spectrophotometric resolutions are based on the transformation of the original UV spectra. The original absorption spectra of levodopa and benserazide in the concentration range of 1-80 mu g/mL and 5-240 mu g/mL in USP simulated gastric juice were registered in the spectral range of 250-310 nm, respectively. Various wavelet families and different spectrophotometric derivative orders were tested to find the optimal signal processing for obtaining desirable calibration graphs and reliable determinations of the investigated drugs. Under the optimized conditions of the methods, symlets wavelet family using a = 128 with sixth order (SYM6-CWT) and the first derivative transform with Delta lambda = 10 nm were identified as optimal signal processing methods for the determinations and dissolution tests. The calibration functions for each drug were obtained by measuring the values of the CWT and derivative amplitudes. The validation of the developed methods was confirmed by analyzing various synthetic mixtures of the investigated drugs. Mean recovery values were found between 99.1% and 104.7% for DS and 100% and 102.9% for CWT, respectively for determination of BEN and LEV in synthetic mixtures. Each developed approaches were successfully applied to the simultaneous determination and dissolution test of levodopa and benserazide in their commercial tablets and a good agreement was observed. (c) 2007 Elsevier B.V. All rights reserved.