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ABSTRACT

HAMILTON-JACOBI FORMULATION OF INTERACTING
FIELDS

Giil, Yusuf
M.S., Department of Mathematics and Computer Science

Supervisor: Prof. Yurdahan Giiler

June 2003, 29 pages.

Two singular systems are investigated by the canonical method. The to-
tal differential equations are obtained for the Proca model. Interactions of
quantized fields are investigated and generalized to n-fields. In application to
Electromagnetic interactions, it is verified that interpretation of interactions
by constraints is convenient with the Feynman diagrams and S-Matrix.
Keywords: Constrained systems, Hamiltonian Formulation, Hamilton-Jacobi
partial differential equations, total differential equations, quantized fields, per-

turbation theory , S-matrix.
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ETKILESEN ALANLARIN HAMILTON-JACOBI
FORMULASYONU

Giil, Yusuf
Yiiksek Lisans, Matematik ve Bilgisayar Bilimleri Boliimii

Tez Yoneticisi: Prof.Dr.Yurdahan Giiler

Temmuz 2003, 29 sayfa.

Iki bagil sistem kanonik yontem ile incelendi. Toplam diferansiyel denklemler
Proca Model i¢in elde edildi. Kuantalagtirilmig alanlarin etkilegimleri incelendi
ve n-alana genellegtirildi. Elektromanyetik alan uygulamasinda, etkilegimlerin

bagil ifadesinin Feynman diyagram ve S-Matriks ile uygun oldugu gézlendi.

Anahtar kelimeler: Bagil sistemler, Hamilton yéntemi, Hamilton-Jacobi Kismi

tiirevli denklemleri, Kuantalagtirilmig alanlar, S-Matriks.
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CHAPTER 1
INTRODUCTION

The Euler-Lagrange equations of motion leads us to express the systems
described by a Lagrangian  L(g;,q;) in two ways.
In its explicit form,

oL _ oL . P
dq  0¢:0q; ”  84;04;

G=0 (1)

the Hessian matrix =~ A;; appears as,

o 32
Y 8¢;04;

6,5 = 1,2, e n (1.2)

Firstly, the Lagrangian  L(g;,¢;) is called regular if the rank of the Hessian
matrix is n and secondly, if the Hessian matrix has rank n-r, where r < n,
not invertible, the Lagrangian  L(g;, ;) is called singular. The Hamiltonian
formulation of constrained systems is initiated by Dirac[1,2] which is the fun-
damental tool for the study of classical systems of particles and fields. The
general covariance of Einstein’s theory of gravitation leads Bergman[3] and
his collaborators to work the relationship between invariance and constraints
treating the field theories as singular systems. Further studies on the systems
which have an invariance under a global transformation give prime importance
to constrained systems , especially all gauge theories, Einstein’s theory of grav-

itation and string theories.

1.1 Dirac’s Method

The Hamiltonian formulation of constrained systems was first examined by

Dirac. Starting from the property that the Hessian has rank n-r, the canonical
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momenta p; read as

pi=6—L_, i=1,.n (1.3)
og

and leads to r functionally independent primary constraints of the form

Su(pings) =0, p=1,..,r r<n. (1.4)

Using the canonical momenta (1.3) and primary constraints (1.4) one can

define the canonical Hamiltonian as follows:

Hp = Hy+ v,y (1.5)
Here Hy is the canonical Hamiltonian

Hy = —L + pig;, (1.6)

and v, are the unknown coefficients. The consistency condition in terms of
the vanishing Poisson bracket for arbitrary function which is not depending on
time explicitly

f={fHr}=0 (1.7)
is defined as

(;5“ = {@u, Ho} + vu{¢p, ¢} = 0, (1.8)

for primary constraints (1.4) in the extended phase space T'.

The weak equality = denotes equality up to terms vanishing on I" constructed
by the surface of all constraints of the theory and described by 2n canonical
variables 2y = (qu,pu), # =1,...n. Due to the weak equality ~, the consis-
tency condition (1.8) for primary constraints leads to new relations called the
secondary constraints when qﬁu does not vanish identically. Primary and sec-
ondary constraints are classified as first class constraints which have vanishing

Poisson brackets with all other constraints and second class constraints which



have non-vanishing Poisson brackets. When there is an even number of second
class constraints , one can use them to eliminate a conjugate pairs of the p's
and ¢'s from the theory by expressing them as functions of the remaining p's

and ¢’s. Then the total Hamiltonian is defined as

Hr = HO(qa)pa) + va¢aa a=1, ""aﬂa :8 <m (19)

where ¢, are all the independent remaining first class constraints.

1.2 The Canonical Method

Instead of usual variational principle, singular systems are examined by
equivalent Lagrangians method [4,5,6]. Using this method [7,8,9], one can
obtain the set of Hamilton-Jacobi partial differential equations[HJPDE] as

as oS

H(,x(tﬂa Gas 5(]—7 %)

=0, o,f=0n—-r+1,..m a=1,...,n—7r (1.10)

where

H; = Ha(tﬁa Qa,Pa) + Do (111)

and Hj is defined as
HO = _L(t: qi, q'w q'a, = wa) +pawa + 4ppu§ V= 07 n—r+ 1a ceeey T (1'12)

The equations of motion are obtained as total differential equations in many

variables as follows:

O0H], oOH! O0H,
= as o = ———0la, = ———"dt,, =1,.., 1.1
dg, e dt dp 5% dt dpy o, 7 r (1.13)
Vel
dz = (~Hy + paaa—p"‘)dta (1.14)



where, 2 = S(ta,q,) is the Hamilton-Jacobi function. For this set of total
differential equations , integrability conditions are obtained defining linear op-
erators X, as

_0foH, Of9H, Of
08¢y Op,  Op, 8g, Oty

Xaf(tﬁ’ QayPa) = [fa Htlx] (1-15)

and using these operators one can obtain a complete set of partial differential

equations in terms of the bracket relations
(Xay Xp) = XoXp — XpXo (1.16)
Those relations which cannot be expressible in the form
(Xor, Xg) = ChgXsf (1.17)

may be added as new equations. Thus , one can obtain either a complete
system or a trivial solution

f = constant (1.18)

This treatment leads us to the conclusion that a set of equations(1.13) is

integrable iff the following equations
[H,, Hgl =0 Vo, (1.19)

hold. Some applications of this formulation are given in the references [9], [13].
Equations of motion reveal the fact that Hamiltonians H,are considered as the
infinitesimal generators of canonical transformations given by parameters ¢,.
In other words , variation of a function F(t4, ¢4, p,)defined in the phase space
is given by

dF = [F, H,|dt, (1.20)

So, the integrability conditions (1.19) can be interpreted as
dH,, =0, Vo (1.21)
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Quantization of classical systems can be achieved by the canonical quan-
tization method [1]. If we ignore the ordering problems, it consists in replacing
the classical Poisson bracket, by quantum commutators when classically all the
states on the phase space are accessible. This is no longer correct in the pres-
ence of constraints. An approach due to Dirac[2] is widely used for quantizing

the constrained Hamiltonian systems [10,11,12,13]

Recently [14], another appraoach is proposed that Lagrangians

L(¢;, 37"5;), i=1,..,n (1.22)

can be treated as a singular system with constraints

0
H, = p,+ iz = constant (1.24)

where pg, p, and m; are generalized momenta corresponding to T, =z,

and ¢;, and p = 0,1,2,3 respectively. The canonical equations are pro-

posed as,
dp, = — gif dr — Z—fi’dx” (1.25)
dr, = E;IZ;IZ) dr + 331;,5 dz” (1.26)
do; = 86];:6 dr + %%,”—dm” (1.27)
dm; = —%Zf T -~ 88[;'1’ ¥ = gg/[;idv' (1.28)
dpy = —8£6d7‘ - %g—’,’dx" =0 (1.29)



The canonical equations are integrable iff all variations of constraints (1.23)

and (1.24) vanish. Variation of constraints can be expressed as

dH,, = dp, + % + ”id(%) ' (1.30)
dH, = —gffdr - gil’d + g;’i gfidf +ni%d:g, (1.31)
dH), = gﬁz dr — 7t aajg’ dz, + gi g¢;d +7 8552% dz, (1.32)
ot — (2L oL g(i gqﬁ;)d
= FﬂdT =0 (1.33)
where
dH!, = F, = % (1.34)

When dH: ; does not vanish identically F,, is treated as a new constraint
and its variation should be considered.

At first glance it seems that constraints (1.24) and eq. (1.25)are irrelevant.
Starting from eq.(1.25) and using the additional constraint(1.33), we get [14],

AL O¢; y ; 0%

dp, = ~ 34, Bar T—7 B2r0a, dz, (1.35)
8¢z i 2¢z 8¢z
dpu = —wdﬂ' 8 ”’3 d:c = d( oz “) (136)

which is equivalent to the usual Lagrangian formalism . Besides, for classical

fields,
oL

9¢

completes the equivalence to Euler-Lagrange equations.

dn; = —dt (1.37)

These quantization schemes have the properties that by using them one

can easily control important properties of quantum theory such as unitarity



and positive definiteness of the metric. Besides relativistically covariant for-
mulation of quantum theory is obtained by these quantization schemes , it

enables us to examine the interactions of quantized fields.

S-Matrix method is another approach carrying the properties above to
examine the interactions. So, we would like to make a brief review of the

interaction representation and S-Matrix now.

1.3 The Interaction Representation and S-Matrix

Let us once more draw attention to the differences between the various rep-
resentations in quantum mechanics. In the Schrodinger representation the
states are time dependent. In the Heisenberg representation the state vector
is time independent, whereas the operators are time dependent and satisfy the
Heisenberg’s equations of motion. In the interaction representation the time
dependence is shared between operators and the states. Thus , in the interac-
tion representation , the field operators of an interacting nonlinear field theory

satisfy the free field equations.

The relation between Schriodinger and Heisenberg operators in the inter-
acting field theory is
Yr(z, t) = eflp(x)e L. (1.38)

In the interaction representation one obtains
Pr(z) = eHotyp(x)etHot (1.39)

by dividing the Lagrangian density and the Hamiltonian into a free and an

interaction part, where Hy is time independent:
L=Lo+ L; (1.40)

7



Then, the definition of the interaction representation reads:

%, t)1 = e[y, 8) (1.42)

for state vector and

Ar(t) = etlot Ag=tHot (1.43)

for an arbitrary operator. In the interaction representation , the states and

the operators satisfy the equation of motion

i1, 1)1 = B}, 0 (144

4 41(6) = ifHo, Ar(0)] + 2 Ar(t) (1.45)

Since the interaction representation arises from the Schrédinger repre-
sentation ,and also from the Heisenberg representation , through a unitary
transformation , the interacting fields obey the same commutation relations
as the free fields. Since the equations of motion in the interaction picture are
identical to the free equations of motion , the operators have the same simple

form, the same time dependence , and the same representation in terms of

creation and annihilation operators as free operators.

One finds the time-evolution operator in the interaction picture by start-

ing from the formal solution of the Schrédinger equation, as
[, 8) = e g, 1) (1.46)

This leads , in the interaction picture, to

(1)) = eiHote=iHEt0) | 40 (1.47)
|’lﬁ(t)) — 6z’Hote—iH(t—to)e—iHot|,¢’t0> (1.48)

8



The equation of motion for this time-evolution operator can be written as

0 _ 1

The solution for the time evolution operator can be obtained using the initial

condition

U'(to, to) = 1 (1.51)

4
U'(t,to) = 1 — /t dty Hy(8)U' (£1, t0) (1.52)
0

and by the iteration of (1.52)

] t i1
U'(t, to) = 1 + (i) /t dt Hy (8)U (b1, t) + (82) /t dty [ dtaHy(t) Hilts)
0 0 0

t £1 17
(—)3 /t dt, /t dt /t dts Hy(t) Hr(t2) Hi(ts) + ... (1.53)

Making use of the time -ordering operator T, this infinite series can be written

in the form

Ut tg) =3 (“‘;)n /t:dtl " dh X /tt At T(H (62 Hy (£2) o iy (£2))

n=0 to
which is in compact form
¢
U'(t, to) = Texp(—i) / ¢ Hy(t') (1.55)
to

where the times fulfil either the inequality sequence & >t > ... > &, ,or

a permutation of this inequality sequence.

The time- evolution operator U’(t,t) , in the interaction picture, gives

the state |1(t)) from a specified state |¢(t)). If the system is in the state [3),



then the probability of finding the system at a later time ¢ in the state |f) is
given by
IV (5 t0) )] (1.56)

Thus, one obtains the transition rate, i.e., the probability per unit time of a
transition from an initial state |z), to a final state | f) differing from the initial
state ((i|f) = 0) as,

wie = T WAV I (1.57)

A wavepacket representing some desired state |¢) can be expressed as

Bk 1

l¢) = @Ty,mfﬁ(’“wf) (1.58)

where ¢(k) is the Fourier transform of the spatial wavefunction, and |k) is a
one-particle state of momentum ¥ in the interacting theory.In the free theory,
we would have |k) = v/2EgaL|0). The factor v/2Ej converts our relativistic
normalization of |k) to the conventional normalization in which the sum of all

probabilities adds up to 1:

d3k
6oy =1 if [ Gplot) =1 (1.59)
The probability we wish to find is
P=|{¢1¢g.....| padbB) ° (1.60)
future past

where |¢pa¢p) is a state of two wavepackets constructed in the far past and
(P1¢9.....] is a state of several wavepackets constructed in the far future.

We can write the initial state as

a3k / d*k pa(ka)pn(ks)
(

I¢A¢B)in=/(2ﬂ_)3 N oy T |kakg) (1.61)

10



and the out states can be written as

¢1¢2 l_ H/ dpf \/Z—E,—f')outwlp2 [ (1.62)

The overlap of in states with out states are related by time translation:

out(plpz-ulkAkB%n = Zlim (plpg.. | k‘AkB> (163)
00 e N e’
T -T
= :lem (plpz...le_iH@T)lkAkB). (164)

The in and out states are related by the limit of a sequence of unitary operators.

This limiting unitary operator is called S-matrix:

out<p1p2-~|kAkB)in = (plpg...lS]kAk‘B). (165)

If there is no interaction, S is simply the identity operator.For the interactions

we define T-matrix by

S=1+iT. (1.66)

The matrix elements of S should reflect 4-momentum conservation. Thus, S

or T should always contain a factor

6*(ka+ks—Y_ py) (1.67)

Extracting this factor, we define the invariant matrix element M, by
(plpz...lileAk’B = (271')454(]6,4 + k‘B — pr).iM(kA, kB — pf) (1.68)

where all 4momenta are on mass shell: p° = E,, k® = Ej.

From (1.64), S matrix is simply the time evaluation operator , e™*#%. To
compute this quantity we can replace the external plane-wave states in (1.64),
which are eigenstates of H, with their counterparts in the unperturbed theory,

which are eigenstates of Hy.

11



For the vacuum state, interactions in the form of the single-particle states is

written as

lim  (prpapal Tl [ " a0 lpaps)
(1.69)

: ~iH(2T)
T_)gr(rll_ie)(plpz...le [paps) T—

The formula for the nontrivial part of the S-matrix can be written in the form:

(Pr---PuliTlpaps) = | lim  ({prpa-..palT (e[~ /_ :; dtH;(t)])|paps)) (1.70)

which is restricted on the class of possible Feynman diagrams.

This thesis is arranged as follows: In chapter two, first, the Proca Model
is investigated by the canonical method. The integrability conditions are ob-
tained considering the variation of constraints. Second, the interactions of
fermions with electromagnetic field is investigated in terms of interactions dia-
grams and integrability conditions is generalized for n-field interaction by using
the canonical method. In chapter three, following the results obtained from

previous chapters, S-Matrix formulation of constrained systems are discussed.

Throughout this thesis, Einstein summation rule is used and metric g,

has signature —1.

12



CHAPTER 2

MASSIVE AND INTERACTING FIELDS

2.1 The Proca Model

A complete theory of the weak interactions includes the equations of mo-
tion of the boson fields due to the exchange of very heavy vector bosons, the
analogue of Maxwell’s equations. Finding the correct form of these equations
of motion was not straightforward, because Maxwell’s equations prohibit the
generation of mass for the vector particle.

Now, we examine these interactions using the Canonical method.

Massive spin-1 particles (e.g.the intermediate bosons W* of weak in-

teractions) are described by the Proca equations
8, F* +m*A” =0 (2.1)

(08, + m*)AF =0 2.2
(7

which generalise Maxwell’s equations. The Lagrangian for the Proca model is
given by,

2
L= —%FWF’“’ + %AMA“ (2.3)

where the antisymmetric matrix F},, is defined as

0A, O0A,
B = dz*  BzH (24)
We determine the fields as
Au(zy) = af (k)e™™ + a7 (k)e ™", (2.5)
= A,',"(a;“) + A, (xu)

13



with the conditions

k. k= —m? (2.6)
Here,
[ai]* =a; (2.7)

since the fields should be real quantities. This choice of the field expansion
(2.5) enables us to examine the singular treatment of the massive vector field by

obtaining the generalized momenta po, p, and m;. Expressing the Lagrangian
(2.3) as
L= -%(8#A,,)(8”A” _ AN + %m2AﬂA’“‘ (2.8)
and inserting the field expansion (2.5) into it, we obtain
1,. _. P v P
po — L = po — 5 (k) (A7 — A;)(#k*)(A"F — A7)

SR (AT — A7)R") (AT — A7) + %Z(A;j A4+ AR
= o — 5 (b +mA) (AT AT + A7 A7)
(0,44 (@A)
+%(—k“k“ +m?) (AT A" + A AVY)
=0 (2.9)

Using the condition (2.6) and Lorentz condition

B, AP = ik, (A — AP) =0 (2.10)
we get
po = L = —m*(af "™ + a; ") = constant (2.11)

We can check the consistency condition dH) =0 considering the variation
of Lagrangian. Explicitly,

dL ik,

E.C;; = T(kp'k# + mz) (A:- + A;)(A’H- b Av_)

14



B2 ) (AT — A 4 A7) (2.12)
and using the condition (2.6)it becomes

dL

Since the higher order variations of Lagrangian
"L dv!
dzr  dznt (dxﬂ) (2.14)

contains the condition (2.6), it vanishes for all variations. For the same choice
of the field expansion (2.5) , the constraints

O

5o =0 (2.15)

H =put+ T

should be checked first obtaining m; and p, from the equations of mo-

tion. Indeed,using the conjugate momentum of the field given by eq(1.28) we

get
oL
dm, = a—dt = m?A,dt. (2.16)
Integrating with respect to t
P = —%(A"Jr A7) (2.17)
0

Since the Lagrangian does not contain the parameter 7 explicitly one may
identify
T=ct (2.18)

In this case the constraints read as

9¢s

Ao T KL =0 (2.19)

H =pu+ T

where K, are constants.
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Canonical momentum of the field can be obtained by (1.36)

dp, = —ik,m?(APT AT — AP~ AT)dE — zk’;k

m2(APT A — AP AS)dx, (2.20)

0
Identifying dzy = dt we get

dp, = —2ik,m?(APT At — APTA)dE — zk i A"+A+ AP AT Yz, (2.21
[ (24 14 kO P e

where p=1,2,3 correspond to spatial components in spacetime. Partial

differential equation corresponding to time component is

9p _—
at“ —2ik,m* (AT AT — AP A7) (2.22)

Integration of (2.22) gives

—~k —];.O—(A‘"“LA"' AP AD) + Fu(z,y, 2) (2.23)

Partial differential equation corresponding to x component is

aFll»(x: y) Z)

oy - o+ A+ A
k= ik, — = (4 Af — A A7)+ =52 (2.24)
e e A
= —’Lk'#k' -]{_:;(A Ap - A Ap) (225)

Here (2.25) is obtained from (2.21) by taking ¢ = 1 as x-component, and

Fﬂ(x7 Y, Z) kﬂl%(AlH-A-l- AP_A;) + Gll'(ya Z). (226)

Substituting (2.26) into (2.23) one gets

D= —kﬂz—kO(A""'AJ“ APTAT) + Gy, 2). (2.27)

Partial differential equation corresponding to y-component is

9G,u(y, 2)

2
Py _ —ikzkaZ—(AP"LA; —AA)+ 5
0

5 (2.28)

16



m2

= —ik,J-cz—];(]—(A”"‘AI;,|r — A AY) (2.29)
Then one can get
Gu(y, 2) = Constant (2.30)
and
Dy = —k“%(A‘”'A: + AP~ A7) + Constant (2.31)
Thus , we get
H,= kﬂrg—j(a’”a;) + Constant (2.32)

2.2 Electromagnetic Interactions

Unlike the Lagrangian of free fields, the fields ¢; appears nonlinear
in interacting terms up to n-th order. As an example, for the interactions of

fermions with electromagnetic field, the Lagrangian density
- . 1 . -
L = y(in*0, — m)p — 5(81114#) (0"A”) — epy* Ay

= Lo+ Ly (2.33)

leads the equation of motions of the field operators in the Heisenberg picture
as:

(i7" — Ou)Y = eAuv"y (2.34)

8,0" AP = elhryHap. (2.35)

These are nonlinear field equations which, in general , cannot be solved exactly.

An expansion occurs for simplified case of one space and one time dimension:

17



a few, such (1 + 1) -dimensional field theories, can be solved exactly. An

interesting example is Thirring model [15]. Equations of motion

("0 — m)th = grupy*vyp (2.36)
can be also obtained as a limiting case of (2.35) with a massive radiation field
ie.,

(8,0" + M)A = eyt (2.37)

in the limit of infinite mass M [15].

Investigation of interaction Lagrangian becomes possible when there is
an association of field expansions in terms of the creation and annihilation op-
erators corresponding to the particle antiparticle interpretation which seemed
basically in the so called ¢*theory. This choice of field expansions enables
us to examine the singular treatment of the fields in canonical method and in

perturbation theory or more generally S-matrix formulation.

The bilinear form of field expansion in terms of creation and annihilation
operators enables us to explain the physical processes of Electromagnetic in-
teractions using singular field theory approach.

The Lagrangian for this well known model is given as,
- 1 e -
L =9Y(iy*0, — m)y — 5(8,,/1“)(6 AY) — e " A
=Lo+ Ly (2.38)

The first term
- 1
LO = 'l,b('l/’)"uau, — m)z/z - Q(GVA“) (8”A”) (239)

denotes free spinor and electromagnetic fields. They are investigated in [14].

The interaction Lagrangian
Ly = —eby At (2.40)

18



describes the interaction of charged spin % particles with electromagnetic field

where A* and i appear as the lowest nonlinear term. The determination of

the fields ¢ and ¢ as

P(z) = Y (b (k)u,(K)e ™' + df (k)w, (k)™ (241)

=¢"(z) + ¢ (z)

Pz) = 3 (bl (k)a-(K2)e**? + d,(k)d, (k?)e~ " (2.42)
r=1,2

=97 (z) +47(2)

is the starting point to apply the H-J formulation. Here, r=1,2 and 9 = 10
is the adjoint spinor, and k!,k®> shows the 4-momentum of particles and

antiparticles in the processes respectively

In the same way electromagnetic field is expressed as
AMz) = Y bay(k)e*® + ehal (k)e**® (2.43)
)

= AP (z) + AP ()

where € isthe 4-polarisation vector which takes the values A =0,1,2,3
and k%® denotes the 4-momentum of photons.
These forms of fields  A¥(z,) , ¥(zu) ,¥(z,) lead us to 8-following terms in

the interaction Lagrangian
L= "e"Z'Y“A;ﬂ/)

In fact
Ly = —e[($™ + 9" )(Af + AL (@™ +97)] (2.44)

= —e[ AT + AT P ALY ALY
+pt Al YT + T ATYT 4P ALYT H T ALY (2.45)

19



Besides the consistency condition dHj =0 and Hj = constant requires
@ = 0 on the vertices, In fact, the choice of field expansion (2.41), (2.42),
(2.43) lead us to interpret the physical processes of Electromagnetic interac-
tions in accordance with its Feynman diagram explanation.

One can assign for each determination of fields a particle-antiparticle interpre-

tation to explain these processes as;

U7 : annihilation of et with k®
Y~ :creation of e with k*
T : annikilation of e with k'
Y~ :creation of et with k'
AT : annihilation of v with kK
A” :creation of v with k°

These 8-terms correspond to the one of the processes of particle-antiparticle

interaction with photons. We consider below 3 of them as an illustration

1. e™- Scattered by photon emission is described by the interaction
Lagrangian,
Ly=¢ A y*
= (B} (k)i (k) (Sefal (k) (Sby (k)ur () **++ -K0= (2.46)
with its physical interpretation
e —e +y (2.47)
and conservation of 4-momentum corresponding to (2.47)on the vertices
k'=k*+ K3 (2.48)
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leads to
po = Ly = S, (k) 5, (k) (Zehal (k) (Tb, (k)ur (k') = constant.  (2.49)

2. e7- Scattered by a photon absorbtion is described by the interaction La-

grangian
Ly =~ Aty
= (b} (k) (K2)) (Sekian (k) (S (b (k)un (k") )& ® -+ =KD (2.50)
with its physical interpretation
e +vy—e. (2.51)

On the vertices, corresponding 4-momentum conservation is written as
K+ kP = k2 (2.52)
And the constraint pg can be obtained as
po = Ly = (bl (k)@ (k) (Bekar (k) (Z (b, (k)u. (k') = constant  (2.53)

3. Pair annihilation by a photon absorption is described by the interaction
Lagrangian

Ly = gT ATyt
= 5(dp (k) (k) (Se 0 (B))(S(Br (k) (K1)eXF 770 (254
where its physical correspondence is given as
e +vy—e’ (2.55)
and conservation of 4-momentum on the vertices
E+E+kE =0 (2.56)
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leads us to express
po = Ly = X(d- (k)@ (k) (Zelar (k) (Z(br(k)ur (k') = constant.  (2.57)

One can express other 5-processes in the same way.

Investigation of new constraints in the vicinity of vertexes is examined

by the variation of L as,
dL = —e[dP, Ay + Yud A, + DuAudi,). (2.58)

Introducing the bilinear forms,

dipy, = ik (Y~ — *)dz” (2.59)
dipy, = ik (=1, + ¢ )dz” (2.60)
dA, =ik (—Af + A;)dz” (2.61)

it becomes,
dL = —e[p" AT (K2 — K2 — k') + P At (K® — k% + kY
+p AP TR+ K — kY T AT (KR4 KR+ k)
+’§Z+A+'(/J+(—k2 5 k’l) + 'IZ+A+¢_(—I€2 — k3 + kl)
Yt AP (R + S — B + ot AT (=K + KB+ kY)]de” (2.62)
—-—)
since in each vertex ki, =0 then

am, = 2& _

=g =0 (2.63)

Besides , one can show that singular treatment of the interacting fields is valid

not only pointwise in vertexes but also around vertexes by using

il &L
o, = dmdn, = =0 (2.64)
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Based on this description of the singular treatment of the interacting
fields, one can modify it to the many particle systems by interpreting the
each particle in bilinear field form where it appears as ¢™ nonlinear term

corresponding to n-particles in the interaction term of the Lagrangian.
The constraint py = Ly can be generalized to ¢" by the conser-

vation of momentum in the vertices as

Zot _ 31 13 2
b =k ks +k (2.65)

where each momentum takes its 4-component form making the exponential
terms constant.

Since the interaction term ¢" decompose into the 27 term due to the
bilinear form of the field d%% = ik, (¢T — ¢~) the variation of Lagrangian

can be expressed as

dL i d¢? & 4 '

= Z¢1¢2...ﬁ ...... =1y ¢1....¢71’2...¢"k_;3 =0 (2.66)
=1

dzt o

where d¢; = ik, (¢ — ¢'7) = ik, (¢ — ¢7)dz* corresponds to the variation
of j-th field for j; # 4s.
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CHAPTER 3

S-MATRIX FORMULATION OF CONSTRAINED SYSTEMS

The invariant matrix element M appears in S-matrix formulation as

(p1pa-..|iT|kakp) = 2m)*6*(ka + kg — > ps).iM(ka, kg — py) (3.1)

where
0*(ka+kp— Y py) (3.2)

implies the conservation of 4-momentum in vertices and A,B denotes the inci-

dent fields.

Expressing the field expansion

9= [ s 0 33
as
I¢>[ = / (37:;3 \/21Ek (O/(k)e_ikiv + aT(k)eik:z;) (34)

in terms of the creation and annihilation operators for interaction de-

scription, the invariant matrix element M appears as operators in (3.1).

In constrained systems, the invariant matrix element M can be inter-
preted by the constraint
pO = L] (3.5)

with the choice of the field expansion
|6)r = a(k)e™ ™2 4 af (k)e™® (3.6)
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For n-field interaction, the conservation of 4-momentum
k, =0 (3.7)

leads to (0|po|0) = M

Then S-matrix formulation can be written as

(p1pa...|iT|kaks) = (271')4(54(.16,4 + kg — pr).ipg(kA, kg — ps) (3.8)

for constrained systems.

As an example let us consider the emission of a photon v . The initial

state in terms of the annihilation operator is

|1) = br(k[0)) (3.9)

and the final state in terms of the creation operators of electron and photon is

|f) = bi(k)al (k) 0). (3.10)

Introducing the field expansions as

)= () e (@)
)= T R b @a @ @)
A(z) = ZGA(Vlk])mA() 2+ efal (k)ee (3.13)

S-matrix element can be written as

(F1S) = e [ d'al(g7m)ba (e x () Beru(R)e™)
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(3.14)

(o), (KL e™*2]

VE,
— —1 m % m 3 m % 4 2_ 1
ze(VW]) Gyvg) (gt x MEm*6(k — k). (3.15)
where
(3.16)

M = 4. (k*)y ex,u (k)
is the spinor matrix element.

To examine this process as constrained system the fields are introduced

as
Y@) = Y Gr(R)ur(k")e™ + df (k)w, (k") (3.17)
e
P(x) = Y (BH(k)a (k)™ + d, (k)i (k2)e = (3.18)
T e
for fermionic particles and
(3.19)

AMz) =) ax(k)e ** 1 eial (k)&
x

= A" () + A* ()
for electromagnetic field [16]. Then the interaction field is written as

Ly = ¢* ()¢~ (2)4" () (3.20)

and using pg = Lj, we get

Po=Y (br(k)ur (k) (BL(R)G, (R) i~ 4402
r=1,2
and using the descriptions of initial and final states (3.14),(3.15), and conser-

(3.21)

vation of 4-momentum on the vertices

M = (0]po|0) = @n(k?)¥*exuur (k) (3.22)
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CHAPTER 4

CONCLUSIONS

Recently the canonical method [7,8,9], based on variational principle, is in-
troduced for singular systems. In this formalism equations of motion appear
total differential equations in many variables. The momentum pg is consid-
ered as the interaction term. To have an integrable system the variation of

constraints which may lead to a set of constraints should be considered.

In the first section of chapter 2, the Proca model is investigated. The con-
straints are obtained using the Proca equations and field expansions. Since
the integrability conditions are not satisfied identically the condition (2.18)
is used. In the second section, Electromagnetic interactions are investigated
with the field expansions carrying creation and annihilation operators corre-
sponding to particles and antiparticles. Interpreting the interaction in terms of
the constraints (2.49),(2.53), (2.57) and satisfying the integrability conditions,
we reach the Feynman rules. Using the bilinear form of the field expansions
we confirm the validity of canonical method to express the n-field interactions

corresponding to the n-particle interactions.

In chapter four, since S-Matrix carries basic properties of quantum mechan-
ics, we examine the emission of a phpton and show that the constraint (3.5)

corresponds to the scattering amplitude M.

The advantages of our approach are twofold: First, we don’t need to express
the field expansions in terms of the normalized Fourier transforms. Second,
only the conservation of momentum and integrability condition (1.34) is suffi-

cient to express the interaction up to n-fields.
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