
Procedia Computer Science 00 (2010) 000–000

Procedia
Computer
Science

www.elsevier.com/locate/procedia

WCIT-2010

Parallel wavelet-based clustering algorithm on GPUs using CUDA
Ahmet Artu Y ld m a * , Cem Özdo an a

a Department of Computer Engineering, Çankaya University, Balgat, 06530 Ankara, Turkey

Abstract

There has been a substantial interest in scientific and engineering computing community to speed up the CPU-intensive tasks on
graphical processing units (GPUs) with the development of many-core GPUs as having very large memory bandwidth and
computational power. Cluster analysis is a widely used technique for grouping a set of objects into classes of “similar” objects
and commonly used in many fields such as data mining, bioinformatics and pattern recognition. WaveCluster defines the notion
of cluster as a dense region consisting of connected components in the transformed feature space. In this study, we present the
implementation of WaveCluster algorithm as a novel clustering approach based on wavelet transform to GPU level
parallelization and investigate the parallel performance for very large spatial datasets. The CUDA implementations of two main
sub-algorithms of WaveCluster approach; namely extraction of low-frequency component from the signal using wavelet
transform and connected component labeling are presented. Then, the corresponding performance evaluations are reported for
each sub-algorithm. Divide and conquer approach is followed on the implementation of wavelet transform and multi-pass sliding
window approach on the implementation of connected component labeling. The maximum achieved speedup is found in kernel
as 107x in the computation of extraction of the low-frequency component and 6x in the computation of connected component
labeling with respect to the sequential algorithms running on the CPU.

Keywords: GPU computing; CUDA; cluster analysis; WaveCluster algorithm

1. Introduction

Cluster analysis is one of the most widely used common technique for grouping a set of objects into classes of
“similar” objects or clusters. As stated formally, let dataset X Rm×n be the set of objects xi, 1 i m, for any
dimension of n. The goal of clustering is to map group of more “similar” objects xi into K nonempty clusters {C1,
C2,C3,…,CK}. Cluster analysis is highly used in many fields such as data mining, bioinformatics and pattern
recognition.

WaveCluster is an unsupervised clustering approach with multi-resolution feature based on wavelet transform for
very large spatial datasets which has the ability to discover of clusters with arbitrary shapes and can deal with
outliers (data points that don't belong to any cluster) effectively [1]. WaveCluster defines the notion of cluster as a
dense region consisting of connected components in the transformed feature space. To transform feature space,
wavelet transform is applied which is a contemporary signal processing tool for decomposing signal into high-
frequency and low-frequency components. The low-frequency component represents a lower resolution
approximation of the original feature space on which connected component labeling algorithm is carried out to
detect clusters at different scales from fine to coarse. Hence, WaveCluster gains multi-resolution property by means
of wavelet transform. In the last step, a lookup table is constructed to map the units in the transformed feature space
to original feature space and cluster numbers are assigned to each object.

With the advent of many-core graphical processing units (GPUs), there has been a substantial interest to speed up

Procedia Computer Science 3 (2011) 396–400

www.elsevier.com/locate/procedia

1877-0509 c⃝ 2010 Published by Elsevier Ltd.
doi:10.1016/j.procs.2010.12.066

c⃝ 2010 Published by Elsevier Ltd.
Selection and/or peer-review under responsibility of the Guest Editor.

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

http://www.elsevier.com/locate/procedia
http://dx.doi.org/10.1016/j.procs.2010.12.066
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Ahmet Artu Y ld m / Procedia Computer Science 00 (2010) 000–000

the CPU-intensive tasks on GPUs to utilize its enormous computational performance in scientific and engineering
computing community. One remedy is to adapt the computational task to the graphics APIs such as OpenGL or
DirectX, but they are not convenient for non-graphics applications and impose many hurdles to the general purpose
application programmer [2]. NVIDIA introduced CUDA (Compute Unified Device Architecture) in November 2006
[3] to enable data-parallel general purpose computations on NVIDIA GPUs in an efficient way. In the CUDA
programming model [3], GPU runs the computationally intensive data-parallel parts of the application as a co-
processor in a SPMD (Single-Program Multiple-Data) manner while allowing the CPU to conduct concurrent tasks
and sequential parts of the application. In recent years, several but increasing CUDA studies have been conducted
on the field of data mining to take advantage of the high performance of GPUs [4,5].

Despite effectiveness of WaveCluster algorithm, execution time of the algorithm has become a serious concern
when dataset size is large. In the past, we already introduced our parallel WaveCluster algorithm based on the
message passing model for distributed memory multiprocessors [6]. In this study, we present CUDA
implementations of extraction of low-frequency component by means of wavelet transform and connected
component labeling for shared memory system and present performance analysis respectively. The evaluations are
performed on a synthetic dataset for varying dataset sizes.

2. CUDA Programming Model

From the point of programmer's view, GPU is regarded as a device that runs hundreds of concurrent lightweight
threads with zero scheduling overhead. In this model, all threads execute the same instruction but perform on
different data concurrently. The common function, called kernel, is executed by each thread that can be programmed
by ANSI C language extended with several keywords and constructs. Besides, other languages such as CUDA
Fortran, OpenCL and DirectCompute, are supported by CUDA software environment [3]. When the kernel is
invoked, CUDA runtime creates a grid which is composed of blocks of threads. Each thread and block is
distinguished by the built-in index variables which are automatically assigned by CUDA runtime and each thread
accesses its memory region using these index variables. The runtime values of grid and block sizes are specified at
the kernel invocation time via language extensions.

The CUDA memory model employs three levels of memory sharing to take advantage of high memory
bandwidth of the CUDA device which are local, shared and global memories [7]. Local memory provides very fast
access for threads with very limited size used to store non-array local variables that are private to each thread.
Shared memory is allocated for all threads within the same block which has also fast access time and is used to store
frequently accessed data to save global memory bandwidth. The synchronization mechanism of shared memory is
succeeded by calling __syncthreads() barrier function which blocks until all threads within the same block have
reached this routine. There is no intrinsic synchronization mechanism among the threads in different blocks to allow
thread blocks to be scheduled in any order across any number of cores automatically (automatic scalability) and to
avoid the possibility of deadlock [7]. Finally, global memory is the slowest but has highly large memory size when
compared to local and shared memories and is the only accessible memory from all threads and the host application.
The contents of global memory are retained during the lifetime of the application if not being freed intentionally.

3. Implementations of the CUDA Algorithms

3.1. Extraction of Low-Frequency Component of the Signal

Discrete wavelet transform is the core part of the WaveCluster algorithm which takes advantage of its multi-
resolution feature. As mentioned previously, since WaveCluster tries to find dense regions over low-frequency
component of the signal, we implemented only the extraction phase of the low-frequency component. The algorithm
is designed for 2-dimensional feature space to ease algorithm demonstration, but it can be expanded to many dimen-

Algorithm 1 Decompose2DLFComponentKernel

Require: V j , lastlevel, threshold
Ensure: V 1

Algorithm 2 ConnectedComponentLabelingKernel

A.A. Yıldırım, C. Özdoğan / Procedia Computer Science 3 (2011) 396–400 397

Ahmet Artu Y ld m / Procedia Computer Science 00 (2010) 000–000

1: declare I [dim.y * 2][dim.x * 2] in shared memory
2: declare H [dim.y * 2][dim.x] in shared memory
3: load V j into buffer I
4: apply one-dimensional wavelet transform to each

column of points of 2x2 field and store into buffer H
5: apply one-dimensional wavelet transform to each

row of points over H and store approximation value
in local memory m

6: if lastlevel = true then
7: if val > threshold then
8: m MAXFLOAT
9: else

10: m threadindex
11: end if
12: end if
13: V 1[threadindex] m

1: if direction = RIGHT AND last thread in row then
2: return
3: end if
4: if direction = DOWN AND last thread in column

then
5: return
6: end if
7: declare I [dim.y * 2][dim.x * 2] in shared memory
8: calculate startPositionIndex of the local with respect

to direction
9: load disjoint 2x2 points (window) into buffer I using

startPositionIndex
10: find minimum value among points in the window

stored on buffer I
11: assign minimum value to foreground points
12: if anyvalueofpointsischanged then
13: ischanged true
14: end if

Fig. 1. CUDA Algorithms (a) Extraction of Low Frequency Component; (b) Connected Component Labeling

sional wavelet transform unless the limit of shared memory allocation is exceeded. The algorithm can be regarded as
simple convolution operation as well.

There are many wavelet types exist such as Haar, Daubechies, Morlet and Mexican hat. We used Haar wavelet,
because its initial window width is two which leads us to less waste of shared memory usage. The host function calls
kernel function as much as the value of scale and kernel function returns the lower frequency representation (V 1)
of the feature space (V j) at each iteration where the approximation spaces are nested [8].

We followed divide and conquer approach in the CUDA implementation of this process. Each thread is
responsible to calculate one approximation value extracted from local disjoint 2x2 square-shaped points of feature
space. Before kernel invocation, input feature space is transferred from host memory to global memory of the device
and output buffer is allocated in device memory to store transformed feature space. In the kernel, input feature space
is transferred from global memory into shared memory of buffer I to make data access efficient. Each thread firstly
applies one-dimensional wavelet transform to each column of local feature space and stores “intermediate” values in
the shared memory buffer of H. The final approximation value is eventually calculated by applying second one-
dimensional wavelet transform to each row of points on H. So, buffer H is used to store temporal results. If the aim
is only to calculate approximation representation of the signal, the operation can be halted here. However, our
implementation also makes the data suitable for usage in the connected component labeling algorithm. For that
purpose, it performs thresholding operation at the last iteration (last level of wavelet transformation) to assign
maximum float value to background points and unique thread index value to foreground points with respect to
threshold value. This operation also removes outliers on the transformed feature space.

3.2. Connected Component Labeling (CCL)

Several algorithms have been studied about the implementation of CCL on CUDA machine recently [9]. In this
paper, we present multi-pass CCL algorithm based on sliding window approach which groups the points with
respect to pixel connectivity by sliding many windows over feature space concurrently. Each thread is responsible of
2x2 square-shaped field forming a window where calculates the minimum value of these points and assigns the
minimum value to its foreground points. As a prerequisite, each foreground point is expected to be assigned unique
increasing value in a left-to-right and top-to-bottom manners. Maximum float number are assigned to background
points to ensure consistency in the algorithm. Our algorithm consists of three sub-operations. In the first sub-
operation, the windows stay steady and in the second and third sub-operation, windows move to the right and down
respectively. Thus, the minimum value of connected points can be propagated in all directions. The algorithm
continues to iterate until no point value changes in all three sub-operations. For that reason, additional 3 iterations
are executed to detect this stopping criterion. If any thread changes any value of the points, the variable of ischanged

398 A.A. Yıldırım, C. Özdoğan / Procedia Computer Science 3 (2011) 396–400

Ahmet Artu Y ld m / Procedia Computer Science 00 (2010) 000–000

is assigned true value that kept in the global memory. The host function of the kernel keeps track of the ischanged
variable for each sub-operation and then resets its value to false before kernel invocation. The execution time of our
algorithm is highly dependent to the maximum distance between two points within cluster. Since GPU runs each
operation very fast in a parallel manner, our algorithm finishes the execution in a reasonable amount of computation
time. The algorithm demonstration is depicted in Figure 2 where each window is surrounded with bold line.

Fig. 2. Iteration Demonstration of CCL CUDA Algorithm

4. Performance Experiments

We have investigated the speedups of our CUDA algorithms compared to the sequential ones. The experiments
were conducted on a Linux workstation with 2 GB RAM, Intel Core2Duo (2 Cores, 2.4 GHz, 4MB L2 Cache)
processor and NVIDIA GTX 465 (1 GB memory, 352 computing cores, each core runs at 1.215 GHz) with compute
capability 2.0 and runtime version 3.10. The sequential code of CCL is implemented using union-find data structure
[10] which is highly fast and efficient with respect to linked-list implementation of CCL algorithm. We used two-
dimensional synthetic dataset in the experiments and higher resolutions of this dataset are obtained by copying all
points of the source dataset onto destination surface multiple times. Execution time (in microseconds) and kernel
speedup results are presented in Table 1.

Table 1. Performance results of CUDA and CPU versions of algorithms for varying number of points and scale = 1 (times in microseconds)

Extraction of Low-Frequency
Component

Connected Component Labeling (CCL)

Dataset

Size

Number of
Points

PCI-E

Transfer

Time

Execution

Time

(CPU)

Execution

 Time

(GPU)

Kernel

Speedup

Execution

Time

(CPU)

Execution

Time

(GPU)

Kernel

Speedup

Aggregate

Speedup

256 65536 54522 496 35 14.17 1082 1242 0.87 0.02

512 262144 55306 1987 53 37.49 4133 1503 2.74 0.10

1024 1048576 57904 7868 113 69.62 15555 3891 3.99 0.37

2048 4194304 67182 31045 319 97.31 57608 9689 5.94 1.14

4096 16777216 103664 123279 1151 107.10 174586 31357 5.56 2.18

We achieved about 107x speedup in the kernel of low-frequency component extraction and 6x in the kernel of
connected component labeling with respect to the Intel Core2Duo processor, at most. The results show that data
transfer time occupies the biggest proportion of total CUDA execution time. Hence, we achieved about 2x aggregate
speedup which is calculated via this formula;

Aggregate Speedup = Exec. Time of Sequential Algorithm / (Transfer Time + Exec. Time of Kernel) (1)

5. Conclusions and Future Research

In this study, the CUDA implementations of extraction of low-frequency component and connected component
labeling algorithms are presented which are essential sub-algorithms in WaveCluster algorithm. Together with these

A.A. Yıldırım, C. Özdoğan / Procedia Computer Science 3 (2011) 396–400 399

Ahmet Artu Y ld m / Procedia Computer Science 00 (2010) 000–000

sub-algorithms, the lookup phase can be easily implemented using constant memory which is fast and cached on the
device.

The reported results demonstrate that kernel algorithms expose good speedup values as dataset size increase
(107x speedup in the kernel of low-frequency component extraction and 6x in the kernel of connected component
labeling). Besides, as a time complexity of our algorithms, the execution times of both CUDA algorithms scales
nearly linear with the number of points in the used dataset, as shown in the figure below. It is also observed that the
data transfer time between CPU and GPU may introduce a considerable latency delay which is known as the main
bottleneck on GPU computation.

Fig. 3. Execution times of the kernel (in microseconds) for varying number of points in the dataset (a) Extraction of Low Frequency Component;
(b) Connected Component Labeling

Further investigation studies on the behavior of our CUDA algorithms under different cluster shape complexities
for varying scale values with detailed comparisons is planned as future study. Other algorithmic approaches to
achieve better speed-up values for our developed WaveCluster algorithm on CUDA device will be another concern.
Spectacular increasing amount of data and high demand to process this data in a fast and efficient way makes the
GPU computation as a good promised solution due to its tremendous computational power.

References

1. G. Sheikholeslami, S. Chatterjee and A. Zhang, WaveCluster: A multi-resolution clustering approach for very large spatial
databases, Proceedings of the 24rd International Conference on Very Large Data Bases, 1998, 428-439.

2. S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer and K. Skadron, A performance study of general-purpose applications
on graphics processors using cuda, J. Parallel Distrib. Comput. 68 (10) (2008) 1370-1380.

 3. Nvidia, Cuda Programming Guide 3.0, 2010,
http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/NVIDIA_CUDA_ProgrammingGuide.pdf.

 4. S. H. Adil and S. Qamar, Implementation of association rule mining using CUDA, International Conference on Emerging
Technologies, 2009.

 5. N.S.L. Phani Kumar, S. Satoor and I. Buck, Fast parallel expectation maximazation for gaussian mixture models on gpu
using cuda, 11th IEEE International Conference on High Performance Computing and Communications, 2009.

 6. A. A. Y ld m and C. Özdo an, Parallel WaveCluster: A linear scaling parallel clustering algorithm implementation with
application to very large datasets, Submitted to Journal of Parallel and Distributed Computing, Elsevier, (2010).

 7. J. Nickolls, I. Buck, M. Garland and K. Skadron, Scalable parallel programming with cuda, Queue 6 (2) (2008) 40-53.
 8. E. J. Stollnitz, T. D. DeRose and D. H. Salesin, Wavelets for Computer Graphics: A Primer, Part 1, IEEE Comput. Graph.

Appl. 15 (3) (1995) 76-84.
 9. K. A. Hawick, A. Leist and D. P. Playne, Parallel graph component labelling with gpus and cuda, Massey University,

Tech. Rep. CSTN-089, 2009.
 10. L. Shapiro, G. Stockman, Computer Vision, Prentice Hall, 2001.

400 A.A. Yıldırım, C. Özdoğan / Procedia Computer Science 3 (2011) 396–400

