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ABSTRACT

VARIATIONAL ITERATION METHOD FOR FRACTIONAL
DAVEY-STEWARTSON EQUATIONS

YILMAZ, Tugba
M. S., Department of Mathematics and Computer Science
Supervisor  :Asst. Prof. Dr. Dumitru BALEANU

Co-Supervisor: Asst. Prof. Dr. Fahd JARAD

January 2012, 42 pages

The Variational iteration method is a new and powerful method to solve both

linear and nonlinear differential equations. The Variational iteration method was

applied to the fractional Davey-Stewartson equations within the Caputo sense and

approximate analytical solutions were obtained.

Keywords: Varaitional Iteration Method, Fractional Davey - Stewartson

Equations, Caputo Derivative.
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KESIRLI DAVEY-STEWARTSON DENKLEMLERI ICIN
VARYASYONEL iITERASYON METODU

YILMAZ, Tugba
Yiiksek Lisans Matematik ve Bilgisayar Boliimii
Tez YoOneticisi : Yrd. Dog. Dr. Dumitru BALEANU

Ortak Tez Yoneticisi: Yrd. Dog. Dr. Fahd JARAD

Ocak 2012, 42 sayfa

Varyasyonel iterasyon metodu lineer ve lineer olmayan denklemlerin ¢oziimii
icin yeni ve etkili bir yontemdir. Varyasyonel iterasyon metodu kesirli Davey-
Stewartson denklemlerine uygulanmis ve yaklasik analitik c¢oziimler elde

edilmistir ve kesirli tiirevler Caputo anlamu ile verilmistir.

Anahtar Kelimeler: Varyasyonel Iterasyon Metodu, Kesirli Davey-Stewartson,

Caputo Tiirevi.
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CHAPTER 1

INTRODUCTION

Fractional calculus deals with the integral and derivatives of any order as well
as with their applications [1, 2, 3, 4, 5, 6, 7]. The applications of fractional
calculus successfully concentrated in several areas of science and engineering [1,

2,3,4,5,6,7].

For example, the fractional variational principles are applied successfully to
several systems of physical interest as well as to the control area [8, 9, 10, 11, 12,
13].

The fractional differential geometry and its applications have recently been
investigated intensely [14, 15, 16]. A new application of the fractional calculus in
Nuclear magnetic resonance (NMR) is reported in [17]. Some interesting
applications of the fractional calculus in Physics are presented in [18, 19, 20]. In
addition, the research of fractional calculus involves areas of mathematics as it is
given in the references [21, 22, 23]. Moreover it was shown that fractional-order
calculus arises as an alternative calculus in mathematics [24]. Approximate and
numarical methods are used for most of fractional differential equations because
these equations do not have exact analytic solutions. Also the transform method

was applied to differential equations of fractional order by Erturk, Momani and



Odibat [25]. It is also shown [26, 27] that the Homotopy perturbation method and
Adomian decomposition method have been used for solving many problems.
Variational iteration method is applied to Helmholtz equation by Momani and
Odibat and the results confirmed that this method is compatible with those
obtained by Adomian decomposition method [28, 29, 30, 31]. We would like to
indicate that the variational iteration method was proposed by Ji-Huan He [32]
and it is a powerful analytical method. As it is known the exact solutions for most
fractional differential equations do not exist, therefore, the variational iteration
method is needed in order to find approximate solutions (see [33]).

Variational iteration method has been applied to the classical Davey-
Stewartson equations by Jafari and Alipour [34] and the results show that this
method is suitable for the solutions of the Davey-Stewartson equations. Abdou
and Soliman have applied the variational iteration method for solving three
species nonlinear partial differential equations (Schrodinger-KdV, generalized
KdV and shallow water equations) and the results obtained by variational
iteration method show that this method is a proper for solving nonlinear equations

[35].

In this thesis, the applications of the variational iteration method are
presented in order to provide the approximate solutions for the fractional Davey-

Stewartson equations.

The over view of this thesis is as follows:

Briefly, general information about the variational principles and the



variational iteration method are given in the Chapter 2. Basic definitions of
Caputo fractional derivatives and Riemann-Liouville fractional integrals and
derivatives are presented in Chapter 3. Variational iteration method is applied to
the fractional Davey-Stewartson equationsand the corresponding numerical
solutions and figures are shown in Chapter4. Chapter 5 is devoted to our

conclusion.



CHAPTER 2

VARIATIONAL ITERATION METHOD

2.1 Calculus of Variations

The calculus of variations deals with the changes in functionals [36]. The
variational principles are very importent in many branches of science and
engineering and they have plenty of important applications. “A functional is a
correspondence between a function in some class and the set of real numbers”

[36]. We consider examples
b
o= [ Fyydr @0)=mady) @1

The function f is defined as known function of its arguments and y(x) is

designated for the functional @ . @ is a real number and it can be calculated. The

spaces of applicable functions are continuous and having continous first

derivatives on the interval a to b . This class is denoted by C ! (a, b) [36].

The class of functions ¢ in C'is considered and they satisfy y(a) = ¥, and
y(b)=1y,. “For what functions y(x)in ¢ is the functional ®(x) described in
(2.1.1) stationary?” [36]. The stationary quality is described as similar to

functions and if function is stationary at the point} , then



dg(x)|  _ fim 858 =8(F) 2.1.2)
dx B -0 E

We consider the function y+ &n(x)and here y isin ¢ and ne C "is zero at a
and b . In that case the sum y+ é&n that is also in ¢ for all values of €. We

define the derivative of the functional that is called the variation as follows [36]:

The functions that make (2.1.3) zero are known as extremals. Equation (2.1.3)

can be used for finding the conditions extremals satisfy.

If we consider functional

b
o(e) =-‘- f(x,§+877,?+877,) dx (2.1.4)

here y and 7 are specified, thus ® is a function of £ . The function is

differentiated with respect to £ and evaluated at € =0, namely

a®
de|._

(f‘)’77+f\"77 ) dx ay ’ y ay/

a

=I ) dx. fy:ai F=Y (2.1.5)

The last term is integrated by parts and then following equation is obtained as

in [36];

I I wLf] dx—J.b <L g dx

b

=[nf,] - I 77% f, dx. (2.1.6)

a

Then the first term becomes zero, but nevertheless, on account of the

conditions on 77 the derivative of (2.1.5) is given by



b
CID'(O):I n(x){fv—ifvl dx=0. 2.1.7)
a Todx
Provided that M (x)isin C, n(x) isin C ! and becomes zero at a and b and if

Ibn(x)M(x)dx =0 (2.1.8)

for all possible functions 77, then as in [36]
M(x):O,anSb. (2.1.9)
Given that M is different from zero at some small region of x, 77 could be
constructed so that it is zero everywhere excluding near where M #0, and it has
the same sign as M so the value of integral would be positive, hence the original

assumption would become false, (M #0). Provided that & is stationary for all

possible values of variations 77, in that case [36]

[£], Efy—%fy:o (2.1.10)

which is known as Lagrange- Euler equation.
2.2 Variational Iteration Method

Variational iteration method proposed by Ji-Huan He [37, 38, 34] is used for
many problems in areas of science and engineering. This method is used for
solving nonlinear and linear ordinary differential equations as well as for solving
various engineering problems. “Ji -Huan He was the first to apply the variational
iteration method to fractional differential equations” [39]. The variational
iteration method, restricted variation, correction function and lagrange multiplier

are explained in [40]. There are various applications of this method in the



references [33, 37, 41, 42, 43]. Ji-Huan He has applied this method for solving
autonomous ordinary differential systems [38]. The main speciality of variational

iteration method is its flexibility and ability for solving nonlinear equations [33].

We consider the following general nonlinear equation,

Ly+ Ny =g(1), (2.2.1)
here L is a linear operator, N is a nonlinear operator and g (t) is a known
analytical function. According to the variational iteration method, the correction

functional can be constructed as follows:

)%AO=yﬂﬂ+£?HLn@%HWA®—g@ﬁd¢ 2.2.2)

where A is a general Lagrange multiplier and it can be identified optimally via

the variational theory, y,(x)is an initial approximation with possible unknowns,
and y, is considered as a restricted variation i.e. dy, =0 [37]. This shows that

variational iteration method is simple and influential. As a result this method is

suitable for solving some nonlinear problems [36].

Reference [36] was analyzed and following restricted variation was defined
in view of it. The variational principles can characterize engineering aspects of

many problems.

As in [36], we start with variational principles of nonlinear problem,
Nu)-f=0 (2.2.3)
and we use the “adjoint” equation by making use of the Fréchet differentials. The

variational integral is given by



1(u,v) =J.|:VN(M)—Vf—Mg] dv , (2.2.4)
and its first variational has the form
51=I{5V[N(u)—f]+§u[ivjv—gﬂ dv =0. (2.2.5)
The Euler equataions are
ov:N(u)-f=0,
5u:ﬁjv—gEN*(u,v)—g =0.

Hence an “adjoint variational principle” can be defined for the equation (2.2.3)

and its adjoint becomes

Nw—-g=N*(uv)-g=0. (2.2.6)

The variational equation can be written as follows
57=J.[N(u)—f] ou dv . (2.2.7)

In Equation (2.2.7) & indicates that J might not exist and (2.2.7) is not
necessarily the variational of any functional [36], making (2.2.7) denoting a

“quasi-variational principle.”
There is another approach by writing (2.2.4) as follows:
K(u,uo)=j[N(u0)—f] wdv. (2.2.8)
By keeping u’ fixed variations are made with respect to u as,

5.1 :I[N(uo)—f] S dv . (2.2.9)



The notation ,1 denotes variations depending only in u. After the variation we

substitute u = u°and obtain (2.2.3) as the “Euler equation”. This type of principle
is called a “restricted variational principle” [36]. For in tis case, Euler equation of
the adjoint equation (2.2.6), u = u’is used.

The restricted variational principle is not stationary unless

N*(u,u)—g:O R

that results from setting v =u =u" in (2.2.6) [36].

2.3 Lagrange Multipliers

Lagrange multiplier method is applied intensively in the area of calculus of
variations. The Variations can be discussed by using the Lagrange multipliers that

are useful for variational solutions.

b
Our aim is to make the functional J :j F(x,y,y")dx stationary among all

a

b
functions in @ subject to the condition that the functional sz G(x,y,y")dx

a

has a prescribed value K,[36].

Assume that 5): }(x) is the desired extremal. We consider the family of

curves y=y+&n(x)+&,¢(x) where 7 and ¢ satisfy the homogeneous

boundary conditions so that y is an admissible function [36]. Given,

b — _
cp(el,gz):j F(x,y+en+&¢,y+en +&, )dx, (2.3.1)



this function is a stationary for & =&, =0 and dependent on the constraint such

that
b — _
v(e.g)= j Gx,y+en+&l,y+en +&)dx=K,. (2.3.2)

For small enough values of £, and &, we obtain the following

5—52—0} =0

and (2.3.3)

e‘l—e‘z—()} = 0 :

A,and A are not equal to zero. As a result we obtain the equations given below

{ [4®(&.6)+ Ay (&.€,)]

{ (A0 (ene) + Av(6ne))]

[36]

.h{/%[F]y +A[G], } nax=0, (2.3.4a)

o a

(b

{AlF], +4[G] } {dx=0 . (2.3.4b)

o a

Here [F ]y and [G]y are the same as the Euler equation functionals F and G.
As 7 is an arbitrary function in the first equation but ¢ is not an arbitrary
function in the first equation, the ratio of A,to 4 does not depend on ¢ . But in
the second equation, ¢ is arbitrary and this gives A,[F ]y + /1[G]y =0. If 4, #0

or

[G], =—G -G, #0. (2.3.5)

10



Then, we might substitute 4,=1 and (2.3.4a) leads to for arbitrary 7 [36],

d J
E[Fy, T le,]—g[F +G]=0. (23.6)

The integrant F* = F + AG is derived for the Euler equation. The solution to
(2.3.6) that has two undetermined constants plus the unknown parameter of
A and these are determined via the two boundary conditions and K = K, [36].
Provided that the integrand is of the type F (x, y, y', Z, z') and the constraint is
given by
G (x,y,2)=0, (2.3.7)
then Euler equation can be obtained by using the Lagrange multipliers in the
same manner. Thus A is a function of x rather than a constant [36]. For
example the type of constraint used in fluid mechanics problems is usually a

differential equation of the form:
G(x,y.¥.,2,2)=0. (2.3.8)
If this equation is not solvable with respect to z = f(y), then we use of

Lagrange multipliers technique to solve it taking F~ = F + AG, with A= A(x)

[36].

11



CHAPTER 3

BASIC DEFINITIONS OF FRACTIONAL CALCULUS

3.1 Riemann-Liouville Fractional Integrals and Fractional Derivatives

Let Q =[a,b] (— < a < b < )be a finite interval on the real axis of R . The
Riemann-Liouville fractional integrals /7, f and I,” f of ordera (9{(0() > 0) are

defined by (see [5]):

(Ijgf)(x)=F(la)"‘x(itt))‘f_ta, x>a; R(a)>0, (3.1.1)
and
(12 f)(x)= F(la)_‘:h (f_(:))fl_ta : x<b; R(a)>0, (3.1.2)

where « is a Complex number (C), R(«) is the real part and I'(@) is the

Gamma function [5]:
F(a):J. 1*edr, R(a)>0, (3.1.3)
0

these integrals are known as the left-sided and the right-sided fractional integrals
respectively.
When o =ne N where N is the set of all positive integers and the

definitions (3.1.1) and (3.1.2) transform to the nth integrals of the

12



following forms [5]: (I;’+f)(x) =J.N dtlj' ldtz...J' : f(z,)dr,

=(nil)'J.x(x—t)”_lf(t)dt, ne N (3.1.4)
and
(Ilj'_f)(x)=J.)dtlj)dtz...jb f(z,)dt,
:(nil)‘j (x=1)" f(t)dr, neN. (3.1.5)

The Riemann-Liouville fractional derivatives DS,y and D,"y of order

ae C (R(a))=0 are defined as follows [5]:

(DZ,”J)(X)Z(%j”(l;’;”’y)(x) (3.1.6)
_ 1 (dY' |y . oy
] 2 et

and
(Db“-y)(X)=(—%jn(lg’_‘“y)(x) (3.1.7)

_ 1 dY bL)dt . Mt ee
. ( )J‘ (1—x)"" (n=[R(a)]+1 x<b),

F(n-a)\ dx
respectively. Here the meaning of [R(a)] is the integral part of R(x) .

Especially, when ¢ =ne N, then

(DL, y)(x)=(Dy_y)(x) = y(x); (DLy)(x) = y" (),

13



and (D} y)(x)=(-1)"y" (x), (neN). (3.1.8)
Here, y(")(x) denotes the wusual derivative of y(x) of order n.

Provided that 0 < R(e) <1,

(D;;y)(x)z;djx(yﬂ (0<%(a)<lx>a). (.19

F(l _ 0{) dx N _t)a—m(m]
« 1 df’ t)dt
(Db_y)(x)=_r(1_a)aj‘ (t_y)f)z_[w] (0<R(a)<1; x<b). (3.1.10)

Property 3.1.1: In the case of ®(&)>0 and fe C (R(B)>0),

(1 =0/ )= o ama) ™ (3e)>0) G.L1D)
(2 -0 )W) e (@20 G
and

O O AN C G U NI

(0 (=)= s 0= ()20 e

Especially, Riemann-Liouville fractional derivatives of a constant are not

equal to zero, provided that f=1 and R() 20,

(D&1)(x) = lx-a) " (DE1)(x) = (b-x) (0<R(a)<1).  (3.115)

14



Conversely for j=1,2,---, [9((0{)] +1,
(D% (1=a))(x)=0. (D (b-1)"")(x)=0. (3.1.16)
Lemma 3.1.1: Let R(a)>0, n=[R(@)]+1 and let
fra(x)=(11,7f ) (x) is the fractional integral (3.1.1) of order n— ¢ (see [5]).
L, (a,b) {(1<p<e)}is denoted the Lebesgue space of comlex-valued
measurable functions f .
a) Provided that 1< p <oo and f(x)e I7, (Lp), then
(1502 f)(x) = f (x). (3.1.17)
b) Provided that f(x)€ L,(a,b) and f,_,(x)e AC"[a,b], the equality

(120 )= £ (3)- S (e B.118)

is true nearly everywhere on [a,b]. In [5] AC"[a,b] was denoted to the space of

complex- valued functions f(x) that have continuous derivatives up to order

n—1 on [a,b] such that f" ™" (x)e AC [a,b] forne N={1,2,3...},
AC"[a,b]={f :[a,b] > Cand (D" f)(x)e AC [a,b] (D =di)}. C is the set
X

of complex numbers. Especially, AC "[a,b]= AC [a,b].

Especially, on the condition that 0 <R (&) <1, then

(x=a)"", (3.1.19)

(15D5F) (%)= (x)-
here f_, (x)=(15"f)(x) and for a=ne N, the following form is valid:

15



n—1

(k)
(1222 ) ()= £ (-5 e 3120

Property 3.1.2: Let ¢ >0 and S>0 be such that n—1<a<n,
m—-1<f<m (nmeN) and a+pf<n, let felL(a,b) and

fm—a € AC’" ([ay b])- Then

3

(D28 £)(0)= (D257 ) ()= 5302 ) ) L=

> i a) (3.1.21)

Proof. Since n>a+ [, using (3.1.6) and the semigroup property as in

reference [5]
(1222 ) (x) = (L7 £ ) (x)  and (521 F) (x) = (4,77 ) () (3.1.22)
and

(02.02.7) )= | (L)) =[] [ (1202 ) (o). G129

As fe€ L(a,b) and f, ,€ AC"([a,b]) through the following explanation
(3.1.25) is obtained where « is replaced by S in (3.1.24).
Aslong as R(er) >0 and f(x)e L,(a,b) (1< p<e), then
(DELLf)(x)=f(x)  and  (DILIf)(x)=f(x) (R(a)>0)

(3.1.24) Hence nearly everywhere on [a,b],

m m—p p\"= at
(1208 1)) =5 (-3 U ) ()

j=1 F(:B_j+l)

(x—a)’™. (3.1.25)

16



Lemma3.1.2: Let R(@)>0 and n=[R(a)]+1. In addition let
g, . (x)= (I l’f_“”g)(x) be the fractional integral (3.1.2) of order n—a (see [5]).
a) If 1< p<ooand g(x)e I;’_(Lp),then
(72D g)(x)=g(%). (3.1.26)

b) If g(x)e L(a,b) and g,_,(x)€ AC"[a,b],then

(17 Df g)(x)= g(X)—iM(b—x)“‘j (3.1.27)

j=1 F(a —Jj+ 1)
exist nearly everywhere on [a,b].

If (0<%R(a)<1) then, the form is obtained
a -
(Ilf’_DIf’_g)(x)=g(x)—&"—()(b—x) ' (3.1.28)
the following equality holds for g, , (x)= (I;:“g)(x) and ¢ =ne N;

n— 1 (k)
(1D ¢)(x) (1) 8 () - ®) (s (3.1.29)

k=0

3.2 Caputo Fractional Derivative

Let [a,b] be closed interval inR [5]. Let DY [y ] E(Da+y)( ) and
Dy [ y(t)](x)=(D; y)(x) be the Riemann-Liouville fractional derivatives of
order ¢e C (R(«) 20) where these are defined through (3.1.6) and (3.1.7).

The fractional derivatives are (CDd”’+ y)(x) and (CD”’ y)(x) of order e C

(R(x)>0)on [a,b] and these are  defined as follows:

17



(“Dey) (x) {D:{y(r)— 5 @) (r—arﬂu) G21)

and

(D2 y)(x) :{Db”’_ (y(t)—ni: " fb)(b—;)kJ}(x), (3.2.2)

respectively, here 7 is defined by [5]:

n=[R(a)]+1 for g N, n=a forae N,. (3.2.3)

In that case these derivatives are called the left-sided and the right-sided

Caputo fractional derivatives of order « .

When 0<R(e) <1, holds (3.2.1) and (3.2.2) are formed

(°DLy)(x) = (DL [y - y(@])(x), (3.2.4)

(°Diy)(x) = (D [y - y®)])(x). (3.2.5)
Riemann-Liouville fractional derivatives (D7, y)(x) and (D,  y)(x) and the

Caputo derivatives are connected

() (1) = (D) ()~ 2 (e (nmmare)  G26)

and

(CD,f’_y)(x)=(D“_y)(x)—:%(b—x)"‘“, (n=[R@1+1). (32.7)

Especially, when 0 <R (&) <1 the forms are given by;

(CDfiy)(X)=(Df+y)(X)—%(x—a)'” (3.2.8)

18



and

(°DEy)(x)=(Dfy)(x)- v (5) (b-x)". (3.2.9)

In the case of a¢ N, [5], the Caputo fractional derivatives (3.2.1) and (3.2.2)

become the Riemann-Liouville fractional derivatives (3.1.6) and (3.1.7),

(°DLy)(x)=(DLy)(x) (3.2.10)
when y(a)=y(a)=...=y" () =0,(n=[R(@)]+1), and

(“Diy)(x)=(Dyy) (%), 3B.2.11)
if y(b)=y'®b)=...=y" " (b)=0, (n=[R(@)]+1)

Especially, when 0 < R() <1 the equalities are obtained,

(CDiy)(x):(D::y)(x), when y(a)=0 (3.2.12)
and
(CDIf’_y)(x)z(D”’_y)(x),when y(b)=0. (3.2.13)

Provide that & =ne Nand the common derivative y(") (x) of order n exists,
in that case ((C)Dj+y)(x) become y”’(x), meanwhile (CDl’f_y)(x) becoming
y™ (x) with exactness to the fixed multiplier (=1)" (see [5]):

(D2 y)(x)=y" (x)and (“Dyy)(x)=(-1)" y" (x) (neN). (3.2.14)

Theorem 3.2.1: Let R(a) >0 and let n be given by (3.2.3). Provided
that y(x)€ AC"[a,b],in that case the Caputo fractional derivatives (CDiy)(x)

and (CDb”’_ y)(x) hold nearly everywhere on [a,b].
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If e Ny, (D% y)(x) and (“Dfy)(x) are denoted by

(“Diy)(x)= F(nl_a) j X (i (_)t()t)dt =(1°D"y)(x) (3.2.15)
and
(“Diy)(x) = (nl_ 2 J‘b (Iy (_)x()tzdtl =(-1)"(1;“D"y) (3.2.16)

respectively, where D = di and n =[R(a)]+1.
X

Especially, when 0 < R(a) <1 and y(x)e ACla,b],

(“Dey)(x)= F(ll_a)jx(y;(_t)t;lj =(1'Dy)(x) (3.2.17)
and
(“Diy)(x) =~ F(ll_a) j | (ytf:)c;h =-(1,Dy) () (3.2.18)

Proof: Let ¢ N,. When equations (3.2.1) and (3.1.6) which integrate by

parts the inner integral and differentiating. (It is possible via the conditions of the

theorem), (see [5]):

(Cle:y)(x): ! d {_M{y(;)—iy(k)(.a)(t—a)k}

F(n_a) dxn I’l—a k=0 k‘ =
x _ n-o r el 00
a I’l—a dt_ k=0 k!
1 d’ [ n—a-1| nd y® (a) k-1
= — —t t)- t— dt
o |, 0 £ -
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1

:“.:—i‘.‘x(x_t)n—a—lI:y(n—l)(t)_y(n—l)(a)i' dr .

F(n—a) dx

If the above argument is used again,

(“Dey)(x) =;_“x(’c—f)"_a_l y" (1) de

[(n-a)
the result of (3.2.15) is obtained.

Theorem 3.2.2: Let R ()20 and let n be given by (3.2.3). Moreover let
y(x)e C" [a,b].

In that case the Caputo fractional derivatives are (“DZy)(x) and
(CDIf’_y)(x) and these are continuous on [a,b]: (CDjiy)(x)e Cla.b] and
(“Dy)(x)e Cla.b].

a) If a¢ N, then( D% y)(x) and (D y)(x)are represented by (3.2.15)
and (3.2.16), respectively. Furthermore,
(°DZy)(a)=(°Dfy)()=0. (3.2.19)
Especially, they have the forms (3.2.17) and (3.2.18) for 0< R (&) <1.
b) Ifa=neN,, in that case the fractional derivatives (“DZy)(x) and
(CDIf’_ y)(x) have representations given by (3.2.14).
Property 3.2.1: Let R(@)>0 and let n be given via (3.2.3) and let

R(L)>0. Then [5]:
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(‘D (1-a)")(x) = L(A) (x—a)”" (R(B)>n) (3.2.20)

" r(f-a)
(‘D (b-1)")(x)= F(F[)(f )a) (b—x)"" (R(B)>n) (3.2.21)
and

(D (1-a)')(x)=0 and (“Df (1-a)")(x)=0. k=0.L....n-1. (3.2.22)
Especially, the equalities are given
(°DZ1)(x)=0 and (“D1)(x)=0. (3.2.23)
Lemma 3.2.1: Let R (@) >0 and let y(x)e L_(a,b) or y(x)e C[a,b].
Provided that R (a)& Nor ae N, in that case,
(CDiI:+y)(x) =y(x) and (CD,,”’_I,f’_y)(x) =y(x). (3.2.24)
Proof: Let y(x)eL_ (ab) (y(x)eClab]), and let R(a)eN
n=[R(a)]+1 or neN and k=0,1,---,n—1.
(125)" (%) = (1Y) (%), k=01--n-1. (3.2.25)
Seeing that y(x)e L_(a.b), (y(x)e C[a,b]), in that case for any x€ [a,b],

K
I'(a—k)|[R(e)-k]

ol (s (K=t ~(l)). G226
forany k=0,1---,n—1=[R()], such that

(12y) (a+)=0  (k=01,---,n—1). (3.2.27)

Consequently, (3.2.10) is used for R(a)e N,
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d” n=1 ,(k) B
(CDSJ)(X):dx,, yn=32 k('a)(x—a)} (3.2.28)
k=0 .

for (ne N)and y(x)is replaced by (17 y)(x).
(‘DI y)(x)=(DLILy) (%) = ¥ (x). (3.2.29)
and so the formula (3.2.24) is obtained.

Lemma 3.2.2: In the case of >0, ae R and Ae C, Ea(z) is the Mittag-

Leffler function [5].
[CDgEa(z(t-a)“)](x) = AE,| A(x-a)"] (3.2.30)

and

(‘D E, (A7) (x) = L (Ax7). (3.2.31)
X
Especially, for a=ne N,
D'E,[ A(x-a)' |=E,| A(x-a) | (3.2.32)
and
w[ 1 A
D' [rE, (A )](X)Z;Eml_n(lx ):x"“ E,(Ax™). (3.2.33)

Lemma 3.23: let >0, n—-1l<a<n meN) be such that
y(x)e C"(R") y(")(x)e L, (0,b) for any b >0, the estimate is the following
form;

[y(x)| < Be®™  (x>b>0) (3.2.34)

the estimate holds for y"(x), the Laplace transforms (Zy)(p) and I[D” y(t)]
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exist and limx_)m(Dky)(x):O for k=0,1,---,n—1. Consequently the

following correlation holds [5]:

(Z°Dgy)(s) =" (Iy)(s)—is“_k_l (D*y)(0). (3.2.35)

k=0

Especially, in the case of 0 < ¢ <1,

(D5, y)(s) =5 (Zy)(s)—s“"y(0). (3.2.36)
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CHAPTER 4

CLASSICAL AND FRACTIONAL

DAVEY-STEWARTSON EQUATIONS

In this chapter, we introduce the Davey-Stewartson equations. Davey-
Stewartson (DS) equations were used for various applications. Davey-Stewartson
equations were proposed initially for the evolution of weakly nonlinear pockets
of water waves in the finite depth by Davey and Stewartson [44]. Jafari and
Alipour applied the Homotopy analysis method for solving Davey-Stewartson
equations [45]. Wang and Huang used the variable separation approach for
solving general (2+1) dimensional DS equations and some important results were
obtained by variable separation approach [46]. Babaoglu, Eden and Erbay used
generalized Davey-Stewartson equations in reference [47]. Variational iteration
method is used for solving Davey-Stewartson equations by Jafari and Alipour
[34]. Li used system of the degenerate Davey-Stewartson equations and the
global existence of weak solutions and blow up solutions for initial condition are

proved [48].

Davey-Stewartson equations are reduced to the (1+1) dimensional nonlinear

Schrodinger equation. These equations are
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. 2
i, +cou,, +u, = cl|u| u+c,uQ “4.1)

0.+, =(uf’)

Davey and Stewartson initially, derived the above equations (4.1) in the context

of water waves [44].

A complex field u =u(x, y,t) and real field ¢ = @(x, y,t) are involved in
the Davey-Stewartson equations in two dimensions. c¢,,c,c, and ¢, are real
parameters [49]. For c¢; >0 the field @is based elliptically on u and so initial

data is not specified for ¢, but usually initial data is specified only for u .

0 d’u 9’ d
za—z+coﬁ+a—)fz:cl|u|2u+c2ua—f, 4.2)
2 2 d qz
a¢+ca¢: (||)=0

dx oy’ ox
These equations are completely integrable for following conditions. In this
case of ¢,=-1, ¢, =1, ¢,=-2 and ¢, =1, Davey-Stewartson equations are
known as DS-I. For this case ¢, =1, ¢, =—1, ¢, =2 and ¢; =—1, these equations
are known as DS-II. ¢,and c, are physical parameters that play a determining

role in the classification of these equations.

These equations are categorized as elliptic-elliptic, elliptic-hyperbolic,
hyperbolic-elliptic, hyperbolic-hyperbolic according to (c¢,,c;) signs. The signs

are respectively (+, +), (+ -), (-, +) and (-, -) [50].
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In this thesis we use the variational iteration method to obtain approximate
solutions for Davey-Stewartson equations and their approximate solutions are
provided. We use fractional Davey-Stewartson equations in the following form
[39]:
1 4,0% 1 ,9% .0 0

594,120 .dq ¢

2
27 9” EO' y“g"‘fucﬂq—aq:(h l<a<?2

2 o 2
%9 _ 23" 5,0 _
ox® ay” ox

a

Here, is Caputo fractional derivative.

@

In case of =2 ando =1, this condition is especial and it is known as
classical Davey-Stewartson-I equation. In this case of &=2 and o =i, this
condition is known as classical Davey-Stewartson-1I equation. The parameter
A features the focusing or defocusing state [34]. The most known cases of
integrable equations of two examples arise as higher dimensional generalizations
of the nonlinear Schrodinger Equation for the classical Davey-Stewartson-I and 11

[44].

We apply the variational iteration method to approximete solutions of the
fractional Davey-Stewartson equations. Moreover we obtain numerical results
and these results show the nature of the surfaces/curves as the fractional

derivative parameters changed.
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4.1 Variational Iteration Method Applied to the Fractional
Davey- Stewartson Equations

In this section the variational iteration method is applied to fractional Davey-

Stewartson equations.

o 2
10-4M+lo-za_q+i%+ﬂlq|2q_%q:()

27 2 e xd ™ 11

2

2 a a q
2o )
ox dy ox
Initially we separate the amplitude of surface wave packet ¢ in real and

imaginary parts, namely, g = u +iv . Using the above DS equations become [39]

% 1 9%u 20 21, 2 (a¢ )
44— —+ _ — :0, 412
" o'’ o'at o (s +77) ot lax (412

ﬂ 1 azv 2 du 2(‘)34_“2\}) 2 (%VJZO

» oFa o' o o'\ ox

3% 1 9% 249(u’+v*)

Wy* oo’ o’ ox

Using the variational iteration method, the correction functional can be taken

as [39]:

Al (0%, (x,y.0) 1 Ou,(x,y.1) 2 v, (x,y.1)

+2—/}(un (x,y, t)3 +v,(x,y, t)zun (x,y, t)) —% (M u,(x,y, t))ﬂ
o} o ox

y

:un(x,y’t).kL (y_é/)(ﬁ—l)ﬁ‘(g){aaun(x,g,t)+iazun(x’é/’t)

RS

B Jo

28



S 2D 2h g (6 60, (6 00)
o’ ot o'

(4.1.3)
_%(Mun()(:, ;,t))}’
c ox

0™, (%, y.0) 1 0™, (x, y,1) L2 9u,(x3.0)
ay“ o’ ox* o' ot

B
V,,+1(X,y,t)=v,1(x,y,t)+ly |:/22(

2 0
+ l(vn(x ) +u, (x, 3,070, (x, y.1)) - ( AG2 )v,l(x,y,t))ﬂ
loa loa o0x

_ [ e 6, 1 P (6)
_vn (x’ y’l)+ F(ﬂ) . (y é/) ﬂ'z(é’)|: a;a 0_2 ax2

2 W (v x, &0 +u, (x, 0%, (x, ¢, t))

O- t o 4.1.4)

20000, (g )

o o0x

%9, (x,y,0) 1 9°¢,(x,y,0)

2

ay“ c ox’

s
(X, 3.0 =@, (x, v, 00+ 1| {23 (

+2—(V (x, y,0)* +u,(x, y,1) )ﬂ

1| (B-D) a“¢n(x,§’,;) 1 9°¢,(x.¢.1)
=9, (x Ys t)"'Tﬁ)'[) ( _g) ﬂs(;){ G 0_2 o2

+——(vn(x $.0) +u, (x,{.0) )} (4.1.5)

Here [ f is the Riemann-Liouville fractional integral operator of order

S =a—floor(r) whichis f=a—1 (see[31] ) with respect to the variable y
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and A , i=1273 the general Lagrange multipliers and I'(«) is the Gamma

function [39]. Some approximation must be made for determining approximately
Lagrange multipliers.
We can write the correction functional (4.1.3), (4.1.4) and (4.1.5) that can be

approximately denotes

' ’u,(x,¢,t) 1 9%, (x¢,1)
Uy (X,.1) =u (X,y,t)+j0 /?1(;){ g +? o (4.1.6)
2 av (x é, t) ( n(x é, t) +vn(x é/ t) un(x é, t))
o ot
4(a¢(x§t)~( é’t))}
o ox
' 0™, (x,{,1) Lazﬁn(x,é’,t)
Vo (%,3,0) =V (x,y,t)+j0 %(?)[ T A 4.1.7)
2 au ()C é, t) 21( ”(x é, l) i (x é/ t) v”(x é’ t))
G ot o’
2 bl gir))}
o ox
B y aqun(x,é’,t)_La@(x’é’J)
¢iz+l(x,y,t)_¢iz(x,y,t)+j0 ﬂg(g)|: aé,z 0_2 axz (4.1.8)

+2—};i(\7n(x, &0+t (x, {,1)2)]
o’ ox

Then u#,, v, and ¢ are considered as restricted variations, where

n n

i, = 87, = 8¢, =0in these functions.
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Both sides of the equations (4.1.6), (4.1.7) and (4.1.8) are multiplied by

restricted variations then these equations are equalized to zero. For finding the
optimal 4,, 4, and 4, we continue [39]:
u,(x,¢,t) 1 9%, (x,1)

y
d
o Jy.t)=0u (x,y,t)+3 A ML ALE AN
un+l('x y ) un('xy ) jo ﬂl(;)|: aéfz 0_2 axz

-2 IR L2 6 4, (0, 5 60)
o’ ot

2 (L0, m)}

0' ox

Y v (x,,t) 1 9%, (x, {0t
5vn+l(x,y,t):5vn (x,y,t)+5j0 12(;){ a(é’z )+? éxz )

b ZILD DA i 5, d0)

0' ot
_jﬂﬂﬁﬁéﬁﬁwggﬂ:
ol ox

9’¢,(x.{.0) 1 9°¢,(x.L.1)
0{? o’ ox’

09,..(x,y,1) =09, (x, y,t)+5J‘~ /%(é“){

2/11(\/”()6 Co) +ii (x, L) )]

We obtain the stationary conditions for i =1, 2, 3 as:
(&) =y =0,
1= 4/({) ¢y =0,

4($) g2y =0 e A=~y
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Instead of inserting A4,({)=¢ -y, (i=1, 2, 3) into the functional of

equations (4.1.3), (4.1.4) and (4.1.5), the iteration formulas are obtained [39]:

0u, (6 ,0) , 1 0%, (63,0 2 v, (63.0)
o o o ot o

+i_—ﬂ:(un (X, Y1 +v, (%, , 17 u,(x,y, t)) —é (w

0 (6 y,0) =10, (x5, y, 1) (@~ : {

u, (%, y,t))} 4.1.9)

| 9* H 19 fH 20 t
Vo (5 3, = v, (x5, 3 ) (@ =D | { ey, 1o,y 2 ou,(xy.0)

ay” o’ ox o ot
24 2 00 (x,y,t
+—4(vn (x,y,1)° +u, (x, y,t)zvn (x,y, t)) n ( ACH) v.(x,y, t))},
c o ox
(4.1.10)

* aa >/ 1 az s )
¢n+1(x,y,t)=¢n(x,y,t)—(a'—1)ly Ql(xay t) - ¢n(x2y t)
dy o ox
+2—fi(vn<x,y,f)2+un(x,y,t)2)]- @.1.11)
o’ ox

These are the necessary equations for numerical results. In addition, we freely

chose for n =0 the initial approximations u,(x,y,t) , Vv,(x,y,t) and

@, (x,y,t). We approximate the solutions u(x,y,t)=limu,(x,y,t) |,
n—oo
v(x,y,t)=limv, (x,y,t) and @(x,y,t)=limg, (x,y,t) through N" terms
n—o0 n—oo

xN (-x9 y9t) s yN (-x’ y’t) and ¢N (-x’ y’t) [39]'
4.2 Numerical Results

We produce the numerical results to support our study in this part and the

following initial conditions are considered [39]:
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u(x,0,t) =rsech| s(x—ct)]cos| (kx+ky)],
v(x,0,7)= rsech[s(x—ct)]sin [(k1x+k3t)], 4.2.1)

#(x,0,1)= f tanh[ s(x—ct)],

Here we use these parematers,

c=ky +0°Kk,, r =+ Qk, +k}0> +k2)/ A, s=/(2ky +k}G* +k2)] 07

f=QRov-A4)/(1- %) and k; (i=1; 2;3) are arbitrary constants.

The exact solutions, for the special case & =2 is given (see [45]):
u(x,y,t)=rsech[s(x+y—ct)lcos[(k,x+k,y+k;t)],
v(x,y,t)=rsech[s(x+y—ct)lsin[(kx +k,y+k;t)], (4.2.2)

o(x,y,t)= ftanh[s(x+ y—ct)].

They are initial equations,
uy(x,y,t)=rsechls(x—ct)]cos[(kx+k;t)],
Vo(x,y,t) =rsech[s(x—ct)]sin[(k,x + k;t)],

@, (x,y,t)= f tanh[s(x—ct)].

According to variational iteration method (4.1.9), (4.1.10), (4.1.11), we use

initial equations to obtain the first approximations for u, v and ¢ as follows:
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2 frsy” sech[s(—ct + x)]3 cos [xk, +1k, ]
o'T(a)

u, = rcos|xk, + 1k, |sech[s(—ct +x)|+

_ 2frsy” sec h[s(—ct+ x)]3 cos|xk, +1k,| N rs’y® cos[kx+k;t|sech[s(—ct +x)]3
o‘T(a+1) o’T(@)

rs”y® cos| xk, +tk, | sech[ s(—ct +x)]3 _ 2r’y* Acos| xk, +tk3]3 sech[s(—ct +x)]3
o T(a+1) o'T(a)

2 frsy® sec h[[s(=ct +x)] sin[ xk, +k, ]

v, =rsin[xk, +1k, |sech[s(—ct +x)]+ o T(@)

_ 2frsy” sech[s(—ct+ 0] sin[xk, +1k,] . rs®y® sin [k, x+ kyt]sech[ s(—ct + )]
o'T(a+1) oT(a)

rs*y sin[ xk, +tk, |sech[s(—ct +x)] _ 2r'y“Asin[xk, +tk, I’ sech[s(—ct+0)]
oT(a+]) o'T(@)

and

2fs*y" sech[s(—ct + x)]2 tanh [s(—ct +x)]

@ = f tanh[s(=ct +x)] - o’T(a)

. 2fs*y” tanh [s(—ct + x)|sec h [ s(—ct + x)]2
ocT(a+1)

. 4r’sy” Asech[s(—ct + x)]2 tanh [s(—ct +x)] .
oT(a)

Similarly, we may apply this iteration procedure to obtain the sequences

{u”(x,y,t)}:zo , {vn(x,y,t)}:;0 , {Ql(x,y,t)}:zo which are convergent to
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u(x,y,t), v(x,y,r) and ¢(x, y,r) respectively.

In addition we obtained the absolute errors between the approximate solutions
for value of @ =1.98 using the variational iteration method and the exact

solutions and Tables 1-3 show these absolute errors.

Then we obtained Figures 1-3 and these Figures show the approximate
solutions (4.1.2) obtained for values of & =1.98 and « =1.8 via the variational
iteration method and exact solutions. Figures 1-3 show that the solutions obtained

via the existing method is almost identical with the exact solutions.

Finally, here it should be indicated that only the two-order term of the

variational iteration solution for the especial condition y =0.2, k, =0.1,
k,=0.03, k;=-03, o=I, A=1 used in evaluating the approximate

solutions and the results are presented on Tables 1-3 and Figures. 1-3 (see[39]).
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|u (x, y,8)—u,(x, y,t)| for values of 0.1<7<0.5 and 7<x<20.

Table 1: Absolute Errors of u(x, y,t) Equation

{u (x,y,t) is exact solution and u, (x, y,t) is approximate solution}

x/1]0.1 0.2 0.3 0.4 0.5

20 1.28402x10™° | 1.17181x10™ | 1.05973x10™° | 9.47895x10™° | 8.36397x10”°

17 -8 -9 -9 -8 -8
1.97597x10 8.07466x10™° | 3.49088x10 1.49275x10™° | 2.6226x10

14 -7 -6 -6 -6 -6
9.95054 10 1.10588 %10 1.21449x10 1.32079x10 1.42471x10

L 1218989%107° | 2.28375x107° | 2.37448x10 | 2.46202x107 | 2.54634x10™

7

7.73714x107"

7.8569%x107

7.96811x107"

8.07073x10™"*

8.16478x10™*

|v(x,y,t)—vn(x,y,t)| for values of 0.1<7<0.5 and 7<x<20.

Table 2: Absolute Errors of v(x, y,t) Equation

{v(x,y.t) is exact solution and v, (x, y,#) is approximate solution

x /t

0.1

0.2

0.3

0.4

0.5

20

4.73679x10°°

4.75531x10°

4.76923x10°°

4.77859x10°°

4.78342x10°°

17

5.18236x107"

5.15453x107"

5.12222x107"

5.08554x107"

5.04455%107"

14

5.17454x10°°

5.09924x10°°

5.02004x10°°

4.93706x10°°

4.85041x107°

11

4.67751x107°

4.55803x107

4.43562x107°

431045x107°

4.18265%107

7.05161x107~*

6.69475x10~"

6.33556x10"

5.97442x107"

5.61168x107*
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|¢(x, y.t)=@, (x, y,t)| for value of 0.1<7<0.5 and 7<x<20.

Table 3: Absolute Errors of @(x, y,t) Equation

{¢)(x, y,t) is exact solution and ¢, (x, y,#) is approximate solution}

x/t 0.1 0.2 0.3 0.4 0.5

200 19.992x107" | 1.1102x107" | 1.1102x107 | 9.992x107'° | 9.992x107'°

17 1.169x1072 | 1.157x107™ | 1.1457x107™ | 1.1324x107" | 1.1224x107"

14 1.2696x10™" | 1.256x107"! 1.2439%x107" | 1.231x107" 1219x107"!

11 1.3837x107° | 1.370x10™° 1.3565x107° | 1.3431x10° | 1.3299x10™°

7 -7 —4 -7 -7 -7
7.2190x10 6.6947 x10 7.07465x107 | 7.0031x10 6.9321x10
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Figure 1: The Surface Shows the Solution u(x, y,¢) for Equation (4.1.2)

Here A shows approximate solution when & =1.98 ; B is an exact solution;

C is an approximate solution for & =1.8.
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Figure 2: The Surface Shows the Solution v(x, y,t) for Equation (4.1.2)

Here A is an approximate solution for & =1.98 ; B is an exact solution;

C shows an approximate solution when & =1.8.
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Figure 3: The Surface Shows the Solution @(x, y,t) for Equation (4.1.2)

Here A represents an approximate solution for & =1.98 ; B is an exact

solution; C shows an approximate solution when & =1.8.
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CHAPTER 5

CONCLUSIONS

The use of the fractional differential equations in several areas of science and
engineering requires new methods and techniques in order to solve these types of
equations. Among several methods proposed during the last decades to solve this
issue we have chosen the Variational iteration method which has been used
previously in different areas and which represents a powerful method suitable for
handling both linear and nonlinear fractional differential equations.

In this study we have concentrated on the numerical study of the fractional
Davey-Stewartson differential equations within Caputo’s derivative by applying
the variational iteration method. We have fractionalized the classical Davey-
Stewartson equations within Caputo derivative and we solve the obtained
equations numerically. We have obtained the approximate solution and the exact
solution for u(x,y,t) , y(x,y,t) and @(x,y,t) respectively. The obtained
figures show the approximate solution for & =1.98 and & =1.8 and the exact
solution. It was observed that these figures are close to each other.

When the results obtained via the variational iteration method have been

compared with exact solutions, these results show that the proposed approach is a
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promising tool for solving many nonlinear and linear fractional differential

equations.
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