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Ankara, Turkey

Received December 1, 2008; accepted October 21, 2010

Abstract. In this paper, we proved a fixed point theorem and a common fixed point
theorem in cone metric spaces for generalized contraction mappings where some of the
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1. Introduction

Cone metric spaces were introduced by Huang and Zhang in [14]. The authors
described there convergence in cone metric spaces and introduced completeness.
Then they proved some fixed point theorems of contractive mappings on cone metric
spaces. Some definitions and topological concepts were generalized by Turkoglu and
Abuloha in [33] and they proved there that every cone metric space is a topological
space. They also generalized the concept of diametrically contractive mappings and
proved some fixed point theorems in cone metric spaces. In [1, 15, 34], some common
fixed point theorems were proved for maps on cone metric spaces. In [24], some
definitions were generalized in cone metric spaces such as c-nonexpansive and (c, λ)
uniformly locally contractive functions f−closure, c− isometric and some fixed point
theorems were proved there. In [2], the authors proved some fixed point theorems in
cone metric spaces which generalized those in [14]. In [16], the authors defined the
quasi-contraction on cone metric spaces and they proved some fixed point theorems.
In [35], the concept of set-valued contractions in cone metric spaces were introduced.
In [27], the author gave some results about characterization of best approximations
in cone metric spaces. For more recent fixed point theorems in cone metric spaces
we refer to (see [5, 6, 13, 18, 23, 29, 30, 36, 37]).

∗Corresponding author. Email addresses: dturkoglu@gazi.edu.tr (D.Turkoglu),
muhib2000@yahoo.com (M.Abuloha), thabet@cankaya.edu.tr (T.Abdeljawad)

http://www.mathos.hr/mc c©2011 Department of Mathematics, University of Osijek



326 D.Turkoglu, M.Abuloha and T.Abdeljawad

Generalized contraction mappings, introduced in [7], are of great importance
in fixed point theory. After that and in the last decade, in [12], J. Gornicki, B.
E. Rhoades used generalized contraction mappings to obtain common fixed point
theorems. Further, this class of generalized contraction mappings was later studied
by many authors (see [3, 4, 9, 19, 20, 21, 22, 25, 26, 29, 31, 32]).

In this paper, we proved a fixed point theorem and a common fixed point theorem
in cone metric spaces for generalized contraction mappings where some of the main
results of Ćirić in [7, 8] are recovered.

2. Preliminaries

Let E be a real Banach space and P a subset of E. Then, P is called a cone if and
only if

P1) P is closed, non-empty and P 6= {0},
P2) a, b ∈ R a, b ≥ 0; x, y ∈ P ⇒ ax + by ∈ P ,

P3) x ∈ P and −x ∈ P ⇒ x = 0.

Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y
if and only if y − x ∈ P , We write x < y to indicate that x ≤ y but x 6= y, while
x << y will stand for y − x ∈ IntP (IntP ∼= interior of P ).

The cone P is called normal if there is a number K, such that for all x, y ∈ E,
0 ≤ x ≤ y ⇒ ‖ x ‖≤ K ‖ y ‖, where K is called the normal constant of P .

The cone P is called regular if every increasing sequence which is bounded from
above is convergent. That is if {xn} is a sequence such that x1 ≤ x2 ≤ ... ≤ xn ≤ y
for some y ∈ E, then there is x ∈ E such that ‖ xn−x ‖→ 0 as n →∞. Equivalently,
the cone P is called regular if every decreasing sequence which is bounded from below
is convergent [14]. P is called a minihedral cone if sup{x, y} exists for all x, y ∈ E,
and strongly minihedral if every subset of E which is bounded from above has a
supremum and hence any subset of E which is bounded from below has an infimum
[11]. Throughout this article we assume that the cone P is normal with constant K
and P is a cone in E with intP 6= ∅ and ≤ is a partial ordering with respect to P .

Definition 1 (See [14]). A cone metric space is an ordered pair (X, d), where X is
any set and d : X ×X → E is a mapping satisfying:

d1) 0 < d(x, y) for all x, y ∈ X, and d(x, y) = 0 if and only if x = y,

d2) d(x, y) = d(y, x) for all x, y ∈ X,

d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Definition 2 (See [14]). Let (X, d) be a cone metric space, {xn} a sequence in X
and x ∈ X. If for any c ∈ E with c À 0, there is N such that for all n > N,
d(xn, x) ¿ c, then {xn} is said to be convergent and {xn} converge to x. (i.e.
lim

n→∞
xn = x or xn → x as n →∞).
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Definition 3 (See [14]). Let (X, d) be a cone metric space, {xn} a sequence in X,
if for any c ∈ E with c À 0, there is N such that for all n, m > N , d(xm, xn) ¿ c
then {xn} is called a Cauchy sequence in X.

Lemma 1 (See [14]). Let (X, d) be a cone metric space, P a normal cone with a
normal constant K. Let {xn} and {yn} be two sequences in X and yn → y, xn → x
as (n →∞), then d(xn, yn) → d(x, y) as n →∞.

Lemma 2 (See [14]). Let (X, d) be a cone metric space, P a normal cone with a
normal constant K. Let {xn} be a sequence in X. Then {xn} converge to x if and
only if d(xn, x) → 0 as n →∞.

Lemma 3 (See [14]). Let (X, d) be a cone metric space, P a normal cone with a
normal constant K. Let {xn} be a sequence in X. Then {xn} is a Cauchy sequence
if and only if d (xn, xm) → 0 as m,n →∞.

If our cone is strongly minihedral, then we can define continuous functions.

Definition 4 (See [33]). A map T : (X, d) → (X, d) is called continuous at x ∈ X, if
for each V ∈ τc containing Tx, there exists U ∈ τc containing x such that T (U) ⊂ V .
If T is continuous at each x ∈ X, then it is called continuous, where the metric
topology τc is

τc = {U ⊂ X : ∀x ∈ U,∃B ∈ β, x ∈ B ⊂ U},
β = {B(x, c) : x ∈ X, c À 0}, B(x, c) = {y ∈ X : d(x, y) ¿ c}.

In [33], it was proved that T is continuous if and only if it is sequentially contin-
uous. That is, the condition xn ∈ (X, d), xn → x ∈ X implies that Txn → Tx in
(X, d).

Lemma 4 (See [28]). There is not normal cone with a normal constant K < 1.

The reader can refer to the proof of this lemma and its related example in [16].

Example 1 (See[29]). Let X = {a1, a2, ...} be a countable set of distinct points,
E = (l2, ‖‖2) and P =

{
{xn}n≥1 ∈ l2 : xn ≥ 0 (∀n ≥ 1)

}
. Put xi =

{
3i

n

}
n≥1

for all

i ≥ 1 and note that xi ∈ l2 (i ≥ 1). Define the map d : X ×X → P by

d (ai, aj) = |xi − xj | =
{∣∣3i − 3j

∣∣
n

}

n≥1

It is easy to see that (X, d) is a cone metric space, the normal constant of P is
M = 1 and there is no Cauchy sequence in (X, d). Hence (X, d) is a complete cone
metric space.

3. Fixed point of generalized contraction mappings

For x1, x2 ∈ X the scalar distant dc (x1, x2) between x1 and x2 is defined by
dc(x1, x2) = ‖d (x1, x2)‖ .
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Theorem 1. Let (X, d) be a complete cone metric space with a normal constant
K ≥ 1 and T : X → X a selfmapping on X such that for each x, y ∈ X :

dc (Tx, Ty) ≤ α (x, y) dc (x, y) + β (x, y) dc (x, Tx) + γ (x, y) dc (y, Ty)
+δ (x, y) [dc (x, Ty) + dc (y, Tx)] , (1)

where α, β, γ, δ are functions from X ×X into [0, 1) such that

λ = sup {α (x, y) + β (x, y) + γ (x, y) + 2Kδ (x, y) : x, y ∈ X} < 1, (2)

then

(i) T has a unique fixed point, say u ∈ X,

(ii) Tnx → u as n →∞, for each x ∈ X,

(iii) dc (Tnx, u) ≤ λn

1−λdc (x, Tx) .

Proof. Fix x ∈ X. Let {xn} be defined by x0 = x, x1 = Tx0, x2 = Tx1, ...
xn+1 = Txn, ... . From (1),

dc (xn, xn+1) = dc (Txn−1, Txn) ≤ αdc (xn−1, xn) + βdc (xn−1, xn)
+γdc (xn, xn+1) + δ [dc (xn−1, xn+1) + dc (xn, xn)] .

Or

dc (xn, xn+1) = dc (Txn−1, Txn) ≤ αdc (xn−1, xn) + βdc (xn−1, xn)
+γdc (xn, xn+1) + δdc (xn−1, xn+1) , (3)

where α, β, γ and δ evaluated at (xn−1, xn) . By the triangle inequality we have

d (xn−1, xn+1) ≤ d (xn−1, xn) + d (xn, xn+1) .

Hence,

dc (xn−1, xn+1) ≤ K ‖d (xn−1, xn) + d (xn, xn+1)‖
≤ K (dc (xn−1, xn) + dc (xn, xn+1))
≤ 2K max {dc (xn−1, xn) , dc (xn, xn+1)} . (4)

By (4) equation (3) turns to be

dc (xn, xn+1) ≤ (α + β + γ)max {dc (xn−1, xn) , dc (xn, xn+1)}
+2Kδ max {dc (xn−1, xn) , dc (xn, xn+1)} .

Then

dc (xn, xn+1) ≤ λ max {dc (xn−1, xn) , dc (xn, xn+1)} .

Since λ < 1, then
dc (xn, xn+1) ≤ λdc (xn−1, xn) . (5)
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By inductivity, we obtain

dc (xn, xn+1) ≤ λdc (xn−1, xn) ≤ λ.λdc (xn−2, xn−1) ≤ ... ≤ λndc (x, Tx) . (6)

By triangle inequality of a cone metric, for m > n we get

d (xn, xm) ≤ d (xn, xn+1) + d (xn+1, xn+2) + ... + d (xm−1, xm) .

By normality of the cone, equation (6) and that ‖.‖ satisfies the triangle inequality
we obtain

dc (xn, xm) ≤ K (dc (xn, xn+1) + dc (xn+1, xn+2) + ... + dc (xm−1, xm))
≤ K

(
λndc (x, Tx) + λn+1dc (x, Tx) + ... + λm−1dc (x, Tx)

)

≤ λn

1− λ
Kdc (x, Tx) ,

or
dc (xn, xm) ≤ λn

1− λ
Kdc (x, Tx) . (7)

Letting m,n → ∞, in (7) Lemma 2 implies that {xn} is a Cauchy sequence. Since
(X, d) is a complete cone metric space, then there exists u ∈ X such that

lim
n→∞

xn = u. (8)

Now, we show that u is a fixed point of T. From (1) and (2),

dc (Tu, Txn) ≤ αdc (u, xn) + βdc (u, Tu) + γdc (xn, Txn)
+δ [dc (u, Txn) + dc (xn, Tu)]

≤ (α + β + γ + 2δ)max
{

dc (u, xn) , dc (u, Tu) ,
dc (xn, xn+1) , dc (u, xn+1) , dc (xn, Tu)

}

≤ λ max {dc (u, xn) , dc (u, Tu) , dc (xn, xn+1) , dc (u, xn+1) , dc (xn, Tu)}.
Take the limit as n →∞, then by (8) and Lemma 1, we obtain

dc (Tu, u) ≤ λdc (u, Tu) (9)

Since λ < 1, then dc (Tu, u) = 0. Hence, ‖d (Tu, u)‖ = 0, then d (Tu, u) = 0 which
implies Tu = u.

For uniqueness, assume x, y ∈ X and x 6= y are two fixed points of T . Then, (1)
leads to

dc(x, y) = dc (Tx, Ty)
≤ αdc (x, y) + βdc (x, Tx) + γdc (y, Ty) + δdc (x, Ty) + δdc (y, Tx)
≤ (α + 2δ) dc (x, y) ≤ λdc (x, y) ,

since λ < 1, then dc (x, y) = 0, which implies x = y. Since x ∈ X was arbitrary,
then from (8) we conclude that (ii) holds.

To show (iii), taking the limit in (7) as m →∞ and making use of Lemma 1, we
get dc (Tnx, u) ≤ λn

1−λdc (x, Tx) for each n. The proof is complete.
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Mappings which satisfy (1) and (2) called generalized contractions. From the
proof of 1, it clear that if T is a generalized contraction, then it satisfies

dc (Tx, Ty) ≤ λmax
{

dc (x, y) , dc (x, Tx) , dc (y, Ty) ,
1
2

[dc (x, Ty) + dc (y, Tx)]
}

,

(10)
where λ ∈ 〈0, 1〉 and x, y ∈ X.

In [17], Kannan introduced the following contractive condition in the metric space
(X, ρ)

ρ (Tx, Ty) ≤ α [ρ (x, Tx) + ρ (y, Ty)] , 0 < α <
1
2

(11)

In [14], Kannan’s contractive condition (11) was carried to cone metric spaces
to prove a fixed point theorem. Clearly, mappings satisfying (11) are a type of
generalized contractive mappings.

We know that Banach contraction mappings are continuous. However, gener-
alized contraction mappings are not continuous in general. The following example
shows that Kannan’s mappings are not necessarily continuous. This example was
given in complete metric spaces which are complete cone metric spaces with a normal
constant K = 1.

Example 2 (See [10]). Let X = [0, 4] be the set of real numbers with the usual
metric ρ(x, y) = |y − x| . Define T : X → X by

T (x) =





x

3
, if x ≤ 3,

x

4
, if 3 < x ≤ 4

. (12)

For x, y ∈ [0, 3] , we have

ρ(Tx, Ty) =
1
3
|x− Tx + Tx− Ty + Ty − y|

≤ 1
3

[ρ (x, Tx) + ρ (Tx, Ty) + ρ (y, Ty)] . (13)

Hence,

ρ (Tx, Ty) ≤ 1
2

[ρ (x, Tx) + ρ (y, Ty)] . (14)

Similarly, we obtain that the same inequality holds for x, y ∈ 〈3, 4] .
Now, let x ∈ [0, 3] and y ∈ 〈3, 4] . Then, we have

ρ (Tx, Ty) =
∣∣∣x
3
− y

4

∣∣∣ ≤ 1 < 1.125 ≤ 1
2
ρ (y, Ty) . (15)

Clearly, the inequality holds for x ∈ 〈3, 4] and y ∈ [0, 3]. Thus, T satisfies (11), but
T is discontinuous.

Proposition 1. A generalized contraction mapping T on a complete cone metric
space (X, d) has a unique fixed point and at this point it is continuous.
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Proof. From Theorem 1 we know that T has a unique fixed point, say z ∈ X. Let
{yn} ⊂ X be such that yn → z as n → ∞. We shall show that Tyn → Tz = z as
n →∞. From (10) and Lemma 1 we have

dc (Tyn, T z) ≤ λ max
{
dc (yn, z) , dc (yn, T yn) , dc (y, Ty) ,

1
2
[dc (yn, z)+dc (z, Tyn)]

}

≤ λdc (yn, z) + λdc (Tz, Tyn) , (16)

or

dc (Tyn, T z)− λdc (Tz, Tyn) ≤ λdc (yn, z)
(1− λ)dc (Tz, Tyn) ≤ λdc (yn, z)

dc (Tz, Tyn) ≤ λ

1− λ
dc (yn, z) (17)

Let n →∞, then (17) and Lemma 1 imply that Tyn → Tz = z in (X, d). Thus,
T is continuous at a fixed point. Then the proof is complete.

4. Common fixed points of generalized contraction mappings

Let S be a non-empty set and let {Tα}α∈J be a family of selfmappings on S and J
an indexing set. A point u ∈ S is called a common fixed point for a family {Tα}α∈J

if and only if u = Tαu for each Tα.

Theorem 2. Let (X, d) be a complete cone metric space with a normal constant
K ≥ 1 and {Tα}α∈J a family of selfmappings of X. If there exists a fixed β ∈ J
such that for each α ∈ J :

dc (Tαx, Tβy) ≤ λ max
{
dc (x, y) , dc (x, Tαx) , dc (y, Tβy) ,

1
2

[dc (x, Tβy)+dc (y, Tαx)]
}

(18)
for some λ = λ (α) ∈ (0, 1) with λK < 1 and all x, y ∈ X, then all Tα have a unique
common fixed point, which is a unique fixed point of each Tα, α ∈ J .

Proof. Let α ∈ J and x ∈ X be arbitrary. Consider a sequence defined by x0 = x,
x2n+1 = Tαx2n, x2n+2 = Tβx2n+1, n ≥ 0. From (18) we get

dc (x2n+1, x2n+2) = dc (Tαx2n, Tβx2n+1)

≤ λ max
{

dc (x2n, x2n+1) , dc (x2n, x2n+1) , dc (x2n+1, x2n+2) ,
1
2 [dc (x2n, x2n+2) + dc (x2n+1, x2n+1)]

}
.

Since

d(x2n, x2n+2) ≤ d (x2n, x2n+1) + d (x2n+1, x2n+2)
‖d(x2n, x2n+2)‖ ≤ K [‖d (x2n, x2n+1)‖+ ‖d (x2n+1, x2n+2)‖]
dc (x2n, x2n+2) ≤ K [dc (x2n, x2n+1) + dc (x2n+1, x2n+2)] (19)
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So,

1
2
dc (x2n, x2n+2) ≤ 1

2
K [dc (x2n, x2n+1) + dc (x2n+1, x2n+2)]

≤ K max {dc (x2n, x2n+1) , dc (x2n+1, x2n+2)} ,

we have

dc (x2n+1, x2n+2) ≤ λK max {dc (x2n, x2n+1) , dc (x2n+1, x2n+2)} .

Hence, as λK < 1,

dc (x2n+1, x2n+2) ≤ λKdc (x2n, x2n+1) .

Similarly, we get that dc (x2n, x2n+1) ≤ λKdc (x2n−1, x2n) . Thus, for any n ≥ 1
we have

dc (xn, xn+1) ≤ λKdc (xn−1, xn) ≤ (λK)2dc (xn−2, xn−1) ≤ ... ≤ (λK)ndc (x0, x1) .
(20)

From (20) and by the triangle inequality of the cone metric and ‖.‖ , for m > n
we get

dc (xn, xm) ≤ K (dc (xn, xn+1) + dc (xn+1, xn+2) + ... + dc (xm−1, xm))
≤ K

(
(λK)ndc (x0, x1) + (λK)n+1dc (x0, x1) + ... + (λK)m−1dc (x0, x1)

)

≤ K
[
(λK)n + (λK)n+1 + ... + (λK)m−1

]
dc (x0, x1)

≤ K
(λK)n

1− (λK)
dc (x0, x1) (21)

If in (21) we let m,n →∞, then by Lemma 2, we conclude that {xn} is a Cauchy
sequence. Since X is complete, there is a z ∈ X such that

lim
n→∞

xn = z. (22)

From (18) we have

dc (Tβz, x2n+1) = dc (Tβz, Tαx2n)

≤ λ max
{

dc (z, x2n) , dc (z, Tβz) , dc (x2n, x2n+1) ,
1
2 [dc (z, x2n+1) + dc (x2n, Tβz)]

}
.

Taking the limit as n → ∞, then by (22) and Lemma 1 we get dc (Tβz, z) ≤
λdc (z, Tβz). Therefore, dc (Tβz, z) = 0 and so Tβz = z. To show that z is a fixed
point of all {Tα}α∈J , let α ∈ J be arbitrary. Then from (18) with x = y = z = Tβz
we have

dc (z, Tαz) = dc (Tβz, Tαz) ≤ λ (α)max
{

dc (z, Tαz) ,
1
2
dc (z, Tαz)

}

and hence Tαz = z. Thus, all Tα have a common fixed point. Suppose that w is
another fixed point of Tβ . Then it follows as above, that w is a common fixed point
of all {Tα}α∈J . Thus, from (18) we have dc (z, w) = dc (Tβz, Tαw) ≤ λdc (z, w) and
so z = w. Thus, z is a unique common fixed point of all {Tα}α∈J . The proof is
complete.
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[19] B.G.Pachpatte, Extension of Ćirić’s Maps and Fixed Point Theorem, Chung Yuan
J. 8(1979), 13-16. .

[20] T.K.Pal, M.Maiti, J. Achari, Extension of Ćirić’s Generalized Contractions, Mat.
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[25] B.K.Ray, On Ćirić’s Fixed Point Theorem, Fund. Math. 94(1977), 221-229.
[26] B.K.Ray, On Some Theorems of Ćirić, Mat. Vesnik 30(1978), 215–218.
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