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Abstract The absolute field correlations in atmospheric turbulence are evaluated for the off-axis optical
Gaussian beam incidence. Evaluations in the practical range of the source and the turbulent medium
parameters show that an increase in the diagonal length at the receiver plane causes the absolute field
correlations of the off-axis Gaussian beam to decrease. At a fixed receiver diagonal length, the off-axis
Gaussian beams having smaller displacement parameters and larger source sizes exhibit larger absolute
field correlations. Comparing the absolute field correlations of the off-axis Gaussian beams in atmospheric
turbulence with their no turbulence counterparts, it is observed that the behavior of the absolute field
correlation variations remains the same; however, the diminishing of the absolute field correlations in
turbulence occurs at smaller diagonal lengths.

1. Introduction

In the recent years it became important to understand the various properties of different optical beam types
after they propagate through atmosphere turbulence. The propagation in atmospheric turbulence of
different incidences, such as the off-axis, flat-topped, annular, sinusoidal Gaussian, and the others, is
investigated in detail. Research results in this respect cover the second order moments [Fusco and Conan,
2004; Ji et al., 2008; Dou et al., 2012; Li et al., 2012; Baykal and Eyyuboğlu, 2007; Ji et al., 2009; Chen and Ji,
2008; Ghafary and Alavinejad, 2011; Baykal, 2005] and the fourth order moments [Baykal, et al., 2010, 2011;
Eyyuboğlu et al., 2008; Baykal et al., 2009; Arpali et al., 2008; Eyyuboğlu and Baykal, 2007]. The results obtained
in these studies indicate that the incident field profiles can appreciably change the characteristics of the
received beams when they propagate in the turbulent atmosphere. The second order results also play an
important role in modeling of the atmosphere [Moraes et al., 2014] and in remote sensing of layered random
media [Mudaliar, 2013].

In this respect, spatial correlation of other atmospheric entities such as the rainfall [Luini and Capsoni,
2012] is studied. The second order field correlations [Baykal, 2012, 2011a, 2014; Baykal et al., 2012] and
the fourth order intensity correlations [Baykal, 2011b] of some types of optical excitations are scrutinized
in atmospheric turbulence. The fourth order evaluations using the scintillations help to understand
the system performance parameters such as the phase-locked loop error [Forte, 2012] and Global
Positioning System signal [Jiao et al., 2013]. In the current paper, we evaluate the absolute field
correlations when an off-axis optical Gaussian beam propagates through a turbulent medium. In our
earlier work we have examined the average intensity [Baykal and Eyyuboğlu, 2007] and the
scintillation index behavior [Baykal et al., 2010] of the off-axis Gaussian beam in atmospheric
turbulence which reflect results at only one detector point, i.e., from these works it is not possible to
obtain the field correlation values at two detector points. The field correlation formulation presented
in the current work enables us to scrutinize the important field correlation information at two
different detector points.

We face the practical significance of the field correlation formulations in the performance evaluations of
the wireless optical telecommunication systems that have heterodyne detection and multiple-input
multiple-output configurations. The performance characteristics of such systems involve the evaluations
of the entities like the average intensity, scintillation index, and the bit error rate, which require
knowledge about the field correlations. Our future work will involve the employment of these results in
applications like heterodyne optical detection in order to improve the performance of optical wireless
communication systems.
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2. Formulation

The incident field for the off-axis Gaussian beam is defined as [Baykal and Eyyuboğlu, 2007]

u sx ; sy
� � ¼ exp � s2x
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þ iVxsxþ

��
s2y
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þ iVysy

!#
; (1)

where (sx, sy) is the transverse source coordinate, αs is the Gaussian source size, Vx and Vy are the x and y
components of the displacement parameters, and i= (�1)0.5.

Using the extended Huygens Fresnel principle [Feizulin and Kravtsov, 1967], the received field of the
off-axis Gaussian source beam given in equation (1), after it propagates in the turbulent atmosphere
is found as
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where λ is the wavelength, k= 2π/λ is the wave number, (px, py) is the transverse receiver coordinate,
ψ(sx, sy, px, py) is the Rytov solution of the random part of the complex phase of spherical wave, and L is the
horizontal link length.

The field correlations at two different points in the receiver plane is found to be

< u p1x ; p1y
� �

u * p2x ; p2y
� �

> : (3)

Figure 1. Field correlations for the off-axis Gaussian beam in atmospheric turbulence at various Vx in turbulence.

Figure 2. Field correlations for the off-axis Gaussian beam in the absence of atmospheric turbulence at various Vx.
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Here < > is the ensemble average, (p1x, p1y) and (p2x, p2y) are the coordinates of the first and the second
receiver points, and * denotes the complex conjugate. The turbulence term derived by using equation (2) is
given by [Wang et al., 1983]
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0
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where ρ0 ¼ 0:546C2
nk

2L
� ��3=5

is the coherence length and C2
n is the structure constant.

(p2x, p2y) = (p1x+ rx, p1y+ ry) is taken, and the diagonal length is defined as r2x þ r2y
� �0:5

. Using equations (1),

(2), and (4) in equation (3) and performing the integrations, we obtain
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Figure 3. Field correlations for the off-axis Gaussian beam in atmospheric turbulence at various (px , py).

Figure 4. Field correlations for the off-axis Gaussian beam in the absence of atmospheric turbulence at various (px , py).
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3. Results

In this section, all the figures are plotted to show the variations of the absolute field correlations versus the
diagonal length from the receiver point (p1x, p1y). Thus, | . | appearing in the vertical axes of the figures
represents the absolute value. It is seen from Figure 1 that at a fixed diagonal length, smaller beam
displacement parameter yields larger field correlations in the presence of turbulence. We note that the
Gaussian beam in Figure 1 has Vx= 0. Figure 2 is plotted in the absence of atmospheric turbulence but
keeping the other parameters the same as in Figure 1. The variation of the field correlation in the absence
of turbulence is the same as in turbulence except that the vanishing of the field correlation versus the
diagonal length occurs at larger diagonal lengths when there is no turbulence.

Figure 3 is plotted at various (px, py). It is seen that the field correlation of an off-axis beam in turbulence
can show varying behavior depending not only on the diagonal length but also on the location of the
two fields at the receiver plane. Figure 4 presents the no turbulence counterpart of Figure 3. When Figures 3
and 4 are compared, it is concluded that in the absence of atmospheric turbulence, the behavior of the
field correlations is the same as in the presence of turbulence. However, in the absence of turbulence, much
longer diagonal distance is required at the receiver plane in order to reach the same field correlation value of
the equivalent turbulence case.

Figure 5 reveals that in a turbulent atmosphere, when the diagonal length at the receiver plane is kept
constant, as the size of the optical off-axis Gaussian beam increases, the field correlations increase. Figure 6
reflects the no turbulence counterpart of Figure 5. As observed in Figures 2 and 4, in Figure 6, it is also
observed that the variation of the field correlation in the absence of turbulence remains similar as in the
case where there is turbulence. The difference is that the field correlation approaches zero at much
larger diagonal lengths when there is no turbulence. As a common conclusion, we comment that in all the
figures provided in this section, as the diagonal length increases, the field correlation of the off-axis beam
decreases and approaches zero at a sufficiently large diagonal length.

Figure 5. Field correlations for the off-axis Gaussian beam in weak atmospheric turbulence at various αs.

Figure 6. Field correlations for the off-axis Gaussian beam in the absence of atmospheric turbulence at various αs.
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Figures 1, 3, and 5 are for weak turbulence, i.e., the chosen medium parameters fulfill the condition that the

plane wave scintillation index, 1:23C2
nk

7=6L11=6 is appreciably smaller than unity. Since the second order
solutions are also applicable in moderate and strong turbulence, using the same formula given by

equation (5), Figures 7 and 8 are introduced to cover the ranges of moderate (1:23C2
nk

7=6L11=6 is around unity)

and strong turbulence (1:23C2
nk

7=6L11=6 is appreciably larger than unity) regimes, respectively. In Figures 7
and 8, in order to make a fair comparison, the same parameters as in Figure 5 are chosen, except that
the structure constants are changed to be 1.5 × 10� 14 m� 2/3 for the moderate and 1.5 × 10� 13 m� 2/3 for the
strong turbulence. Comparison of Figures 5, 7, and 8 shows that the behavior of the field correlations
versus the diagonal length at the receiver plane do not change; however, at the same diagonal length value,
as expected, the field correlations decrease as the turbulence strength increases. In other words, to reach the
same field correlation value, the required diagonal length at the receiver plane becomes smaller as the
turbulence becomes stronger.

4. Conclusion

The field correlation for the off-axis Gaussian beams is formulated and evaluated at the receiver plane
after these beams propagate through the turbulent atmosphere. At the fixed diagonal length at the receiver
plane, off-axis Gaussian beam field correlations become larger at smaller source displacement parameters
and at larger off-axis source sizes. In turbulence, the variation of the off-axis Gaussian field correlations
is found to vary depending on the location of the two field points at the receiver plane. Comparison of the
field correlations in the presence and the absence of turbulence reveals that the trend of the field correlations
in both cases is almost the same, except that in no turbulence, the field correlations along the diagonal
length at the receiver plane diminish at a smaller rate. For all the cases of interest, an increase in the diagonal
length at the receiver plane is found to reduce the field correlations.

Figure 7. Field correlations for the off-axis Gaussian beam in moderate atmospheric turbulence at various αs.

Figure 8. Field correlations for the off-axis Gaussian beam in strong atmospheric turbulence at various αs.
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