ON THE CHRISTENSEN-WANG BOUNDS FOR THE GHOST NUMBER OF A p-GROUP ALGEBRA

FATMA ALTUNBULAK AKSU AND DAVID J. GREEN

Abstract

Christensen and Wang give conjectural upper and lower bounds for the ghost number of the group algebra of a p-group. We apply results of Koshitani and Motose on the nilpotency index of the Jacobson radical to prove the upper bound and most cases of the lower bound.

1. Introduction

Let G be a group and k a field of characteristic p. A map $f: M \rightarrow N$ in the stable category $\operatorname{stmod}(k G)$ of finitely generated $k G$-modules is called a ghost if it vanishes under Tate cohomology, that is if $f_{*}: \hat{H}^{*}(G, M) \rightarrow \hat{H}^{*}(G, N)$ is zero. The ghost maps then form an ideal in the stable category; Chebolu, Christensen and Mináč 4] define the ghost number of $k G$ to be the nilpotency degree of this ideal.

If G is a p-group, then by [3] the ghost ideal is nontrivial - that is, the ghost number exceeds one - unless G is C_{2} or C_{3}. But the exact value of the ghost number is only known in a few cases; for example, it is not yet known for the quaternion group Q_{8}.

In [5], Christensen and Wang give conjectural upper and lower bounds for the ghost number of a p-group. Our main result establishes most cases of this conjecture:
Theorem 1.1. Let G be a p-group of order p^{n}, and k a field of characteristic p. Then
(1) ghost number $(k G) \leq$ ghost number $\left(k C_{p^{n}}\right)$.
(2) If G is neither extraspecial of exponent p for odd p, nor extraspecial of order p^{3} and exponent p^{2} for $p \in\{3,5\}$, then ghost number $\left(k\left(C_{p}\right)^{n}\right) \leq$ ghost number $(k G)$.
We do not know whether the lower bound holds in the excluded cases. The upper bound is only rarely attained:
Proposition 1.2. Let G be a group of order p^{n}, and k a field of characteristic p. If G is non-cyclic but has the same ghost number as $C_{p^{n}}$, then $p=2$; and G is one of the groups $C_{2} \times C_{2^{n-1}}, Q_{2^{n}}, S D_{2^{n}}$ or $\operatorname{Mod}_{2^{n}}$.
Remark 1.3. By work of Chebolu, Christensen and Mináč - specifically, Theorem 5.4 and Corollary 5.12 of [4] - it follows that

$$
\text { ghost number }\left(k\left(C_{2} \times C_{2^{n-1}}\right)\right)=2^{n-1}=\text { ghost number }\left(k C_{2^{n}}\right) .
$$

[^0]We do not know whether the other groups in Proposition 1.2 attain the upper bound. The nilpotency index of the radical $J(k G)$ is the smallest positive integer s such that $J(k G)^{s}=0$. Following Wallace [9], we denote the nilpotency index of the radical by $t(G)$. We shall prove Theorem 1.1 using known properties of $t(G)$. The first link between ghost number and nilpotency index is given by the following result:
Theorem 1.4 ([4], Theorem 4.7). Let k be a field of characteristic p and let G be a finite p-group. Then

$$
\text { ghost number }(k G)<t(G) \leq|G|
$$

For most p-groups we can use $t(G)$ to strengthen the lower bound in Theorem 1.1(2):
Proposition 1.5. Let k be a field of characteristic p. If G is a p-group of order p^{n} which is not elementary abelian, and moreover

- G is neither an extraspecial 2-group nor an almost extraspecial 2-group;
- G is not extraspecial of exponent p for p odd;
- G is not p_{-}^{1+2} for $p \in\{3,5\}$;
- G is neither C_{4} nor C_{9},
then ghost number $(k G) \geq t\left(\left(C_{p}\right)^{n}\right)$.

2. The upper bound

Let us recall the ghost number of a cyclic group.
Theorem 2.1 ([4], Theorem 5.4.).

$$
\text { ghost number }\left(k C_{p^{n}}\right)=\left\lceil\frac{p^{n}-1}{2}\right\rceil=\left\{\begin{array}{ll}
2^{n-1} & p=2 \\
\frac{p^{n}-1}{2} & p \text { odd }
\end{array} .\right.
$$

Proof of Theorem 1.1 (1). Let G be any p-group of order p^{n}. Theorem 1.4 tells us that

$$
\text { ghost number }(k G) \leq t(G)-1
$$

Motose and Ninomiya [8, Thm 1] demonstrated that if $t(G)=|G|$ then G is cyclic; and Koshitani [6, Thm 1.6] showed that if $n \geq 2$ then the following three statements are equivalent:
(1) $t(G)=p^{n-1}+p-1$
(2) $p^{n-1}<t(G)<p^{n}$
(3) G is not cyclic, but it does have a cyclic subgroup of index p.

If $p=2$ and G is not cyclic then by Koshitani's result and Theorem 2.1

$$
t(G)-1 \leq 2^{n-1}=\text { ghost number }\left(k C_{p^{n}}\right) .
$$

If p is odd and G not cyclic, then $t(G)-1 \leq p^{n-1}+p-2$. This is strictly smaller than ghost number $\left(k C_{p^{n}}\right)=\frac{p^{n}-1}{2}$, except for the one case $p^{n}=3^{2}$. But the cyclic group of order 9 has ghost number 4, whereas $C_{3} \times C_{3}$ has ghost number 3 by [5, Thm 1.1].
Proof of Proposition 1.2. Inspecting the proof of Theorem 1.1(1) we see that $p=2$, and that G has a cyclic subgroup of index p. By the classification of such groups (see e.g. [1, 23.4]) it follows that G is either $D_{2^{n}}$ or one of the stated groups. But $D_{2^{n}}$ has ghost number $2^{n-2}+1$ by [5, Cor 1.1].

3. Nilpotency index and a lower bound

The following result is a special case of [5, Thm 4.3]:
Theorem 3.1 (Christensen-Wang). Let G be a finite p-group and k a field of characteristic p. Suppose that $C \leq Z(G)$ is cyclic of order p. Then

$$
\text { ghost number }(k G) \geq t(G / C)
$$

Proof. In [5, Thm 4.3], take M_{n} to be the trivial $k C$-module. Then the induced $k G$ module $k(G / C)$ has ghost length equal to its radical length. But its radical length is $t(G / C)$, and by definition the ghost number is the largest ghost length.

One immediate corollary generalizes [4, Corollary 5.12]:
Corollary 3.2. Let H be a 2-group and $G=H \times\left(C_{2}\right)^{r}$ for $r \geq 1$. Then

$$
\text { ghost number }(k G)=t(G)-1=t(H)+r-1 .
$$

Proof. The Jennings series of G is given by

$$
\Gamma_{s}(G)= \begin{cases}\Gamma_{1}(H) \times C_{2}^{r} & s=1 \\ \Gamma_{s}(H) & \text { otherwise }\end{cases}
$$

By Jennings' Theorem (Theorem 3.14.6 in [2]) it follows that $t(G)=t(H)+r$. For the first inequality it suffices to consider the case $r=1$; so $G=H \times C$ with $C \cong C_{2}$. Theorem 3.1 tells us that

$$
\text { ghost number }(k G) \geq t(G / C)=t(H)=t(G)-1
$$

Now apply Theorem 1.4 .

4. Proposition 1.5: the (almost) Extraspecial case

Recall that a p-group G is extraspecial if $\Phi(G),[G, G]$ and $Z(G)$ coincide and have order p; and almost extraspecial if $\Phi(G)=[G, G]$ has order p, but $Z(G)$ is cyclic of order p^{2}. That is, an almost extraspecial group is a central product of the form $H * C_{p^{2}}$, with H extraspecial. The following lemma is presumably well known.

Lemma 4.1. Suppose that G is a p-group of order p^{n} whose Frattini subgroup has order p. Then

$$
t(G)=\left\{\begin{array}{ll}
(n+1)(p-1)+1 & \text { if } G \text { has exponent } p \\
(p+n-1)(p-1)+1 & \text { if } G \text { has exponent } p^{2}
\end{array} .\right.
$$

In particular, if $p=2$ then $t(G)=n+2$.
Proof. Consider the Jennings series $\Gamma_{r}(G)$. We certainly have $\Gamma_{1}(G)=G$ and $\Gamma_{2}(G)=$ $\Phi(G)$. If the exponent is p then $\Gamma_{3}(G)=1$, whereas if the exponent is p^{2} then $\Gamma_{p}(G)=$ $\Gamma_{2}(G)$ and $\Gamma_{p+1}(G)=1$. The result follows by Jennings' Theorem (Theorem 3.14.6 in [2]).

Recall from [8, Thm 1] that $t\left(C_{p}^{n}\right)=n(p-1)+1$.

Proposition 4.2. Let G be a 2-group of order 2^{n} whose Frattini subgroup has order 2. If G is neither C_{4} nor extraspecial nor almost extraspecial then

$$
\operatorname{ghost} \operatorname{number}(k G)=n+1=t\left(C_{2}^{n}\right) .
$$

Proof. By assumption, G has the form $G=H \times C$ with $C \cong C_{2}$, and $\Phi(H)$ cyclic of order 2. So ghost number $(k G)=t(H)$ by Corollary 3.2, and $t(H)=n+1$ by Lemma 4.1.
Proposition 4.3. Let p be an odd prime and G be a p-group of order p^{n} whose Frattini subgroup has order p. Then

$$
\operatorname{ghost} \operatorname{number}(k G) \geq n(p-1)+1=t\left(C_{p}^{n}\right)
$$

except possibly in the following cases:

- G is extraspecial of exponent p, for any odd p;
- G is extraspecial of order p^{3} and exponent p^{2} for $p \in\{3,5\}$.
- $G=C_{9}$, with ghost number 4 and $t\left(C_{3} \times C_{3}\right)=5$.

Remark 4.4. In the proof we use the Proposition 4.9 from [4]: If H is a subgroup of a finite p-group G, then

$$
\text { ghost number }(k H) \leq \text { ghost number }(k G)
$$

Proof. By assumption we have $\Phi(G) \leq \Omega_{1}(Z(G))$. Since $\Phi(G) \neq 1$ we have $n \geq 2$.
Step 1: Reduction to the case $\Phi(G)=[G, G]=\Omega_{1}(Z(G))$.
If $\Phi(G) \leq \Omega_{1}(Z(G))$ then there is $C \leq Z(G)$ with $|C|=p$ and $C \cap \Phi(G)=1$, hence $|\Phi(G / C)|=p$ and so by Theorem 3.1 and Lemma 4.1

$$
\operatorname{ghost} \operatorname{number}(G) \geq t(G / C) \geq n(p-1)+1
$$

So we may assume that $\Phi(G)=\Omega_{1}(Z(G))$. If $[G, G] \neq \Phi(G)$ then G is abelian; and therefore cyclic of order p^{2}, since $\Omega_{1}(G)=\Phi(G)$. By Theorem 2.1] the ghost number is $\frac{p^{2}-1}{2}$; for $p>3$ this is at least $2 p-1$.
Step 2: Reduction to the case G extraspecial.
Extraspecial means that $\Phi(G)=Z(G)=[G, G]$. So if G is not extraspecial then $\Phi(G) \lesseqgtr Z(G)$, so $Z(G) \cong C_{p^{2}}$ and there is a maximal subgroup $E<G$ with $G=$ $E Z(G)$ and $E \cap Z(G)=\Phi(G)$. It follows that E is extraspecial, with $\Phi(E)=\Phi(G)$. As E is extraspecial it has a maximal subgroup of the form $H \times C_{p}$, with $\Phi(G) \leq H$. Then $L:=H Z(G) \times C_{p}$ is maximal in G, and by Theorem 3.1 and Remark 4.4

$$
\text { ghost number }(k G) \geq \text { ghost number }(L) \geq t(H Z(G)) .
$$

As $H Z(G)$ has order p^{n-2} and exponent p^{2}, Lemma 4.1 says that $t(H Z(G))=(p+$ $n-3)(p-1)+1$.
Step 3: Reduction to the case $G \cong p_{-}^{1+2}$
We may asume that G has exponent p^{2}, so $G \cong p_{+}^{1+2 r}$. If $r \geq 2$ then G has a maximal subgroup of the form $H \times C_{p}$, where H has order p^{n-2} and exponent p^{2}. The result now follows by the argument of the previous step.
Step 4: The case $G \cong p_{-}^{1+2}$
G has a subgroup of the form $C_{p^{2}}$, so ghost number $(k G) \geq$ ghost number $\left(C_{p^{2}}\right)$ by Remark 4.4. But $C_{p^{2}}$ has ghost number $\frac{p^{2}-1}{2}$, which exceeds $3 p-2$ for $p \geq 7$.

5. The Lower bound

Lemma 5.1. Let G be a p-group of order p^{n}. If $|\Phi(G)|>p$, then

$$
\operatorname{ghost} \text { number }(k G)>n(p-1)+1=t\left(C_{p}^{n}\right) .
$$

Proof. Let $C \leq \Phi(G) \cap Z(G)$ be cyclic of order p. Then ghost number $(k G) \geq t(G / C)$ by Theorem 3.1. Since G / C has order p^{n-1} and is not elementary abelian, we have $t(G / C) \geq n(p-1)+1$ by [7, Thm 6]. But $t\left(C_{p}^{n}\right)=n(p-1)+1$ by [8, Thm 1].

Proof of Proposition 1.5. Follows from Propositions 4.2 and 4.3, and Lemma 5.1.

Proof of Theorem 1.1(2). Let G have order p^{n}.
First suppose that $p=2$. Let $C \leq Z(G)$ have order 2 , then ghost number $(k G) \geq$ $t(G / C)$ by Theorem 3.1. Since G / C has order 2^{n-1} we have $t(G / C) \geq(n-1)+1=$ $n=t\left(C_{2}^{n}\right)-1$. The result follows since ghost number $(k H) \leq t(H)-1$ by Theorem 1.4.

Now suppose that p is odd. By Proposition 1.5 we only need consider the case $G=C_{9}$, with ghost number 4. But $C_{3} \times C_{3}$ has ghost number 3 by [5, Thm 1.1].

References

[1] M. Aschbacher. Finite group theory, volume 10 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1986.
[2] D. J. Benson. Representations and Cohomology. I. Cambridge Studies in Advanced Math., vol. 30. Cambridge University Press, Cambridge, second edition, 1998.
[3] D. J. Benson, S. K. Chebolu, J. D. Christensen, and J. Mináč. The generating hypothesis for the stable module category of a p-group. J. Algebra, 310(1):428-433, 2007.
[4] S. K. Chebolu, J. D. Christensen, and J. Mináč. Ghosts in modular representation theory. Adv. Math., 217(6):2782-2799, 2008.
[5] J. D. Christensen and G. Wang. Ghost numbers of group algebras. Algebras and Representation Theory, pages 1-33, 2014.
[6] S. Koshitani. On the nilpotency indices of the radicals of group algebras of P-groups which have cyclic subgroups of index P. Tsukuba J. Math., 1:137-148, 1977.
[7] K. Motose. On a theorem of S. Koshitani. Math. J. Okayama Univ., 20(1):59-65, 1978.
[8] K. Motose and Y. Ninomiya. On the nilpotency index of the radical of a group algebra. Hokkaido Math. J., 4(2):261-264, 1975.
[9] D. A. R. Wallace. Lower bounds for the radical of the group algebra of a finite p-soluble group. Proc. Edinburgh Math. Soc. (2), 16:127-134, 1968/1969.

Dept of Mathematics and Computer Science, Çankaya University, 06790 Ankara, Turkey

E-mail address: altunbulak@cankaya.edu.tr
Dept of Mathematics, Friedrich-Schiller-Universität Jena, 07737 Jena, Germany
E-mail address: david.green@uni-jena.de

[^0]: Date: 19 February 2015.
 2000 Mathematics Subject Classification. Primary 20C20, Secondary 20D15, 16N20,16N40.
 Key words and phrases. p-group, ghost map, ghost number, nilpotency index .
 The first author was supported by the Scientific and Technical Research Council of Turkey (TÜBİTAK-BIDEP-2219).

