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Abstract: In this manuscript we introduced the generalized fractional Riemann-Liouville and
Caputo like derivative for functions defined on fractal sets. The Gamma, Mittag-Leffler and Beta
functions were defined on the fractal sets. The non-local Laplace transformation is given and applied
for solving linear and non-linear fractal equations. The advantage of using these new nonlocal
derivatives on the fractals subset of real-line lies in the fact that they are better at modeling processes
with memory effect.
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1. Introduction

The calculus involving arbitrary orders of derivatives and integrals is called fractional
calculus. Recently, fractional calculus has found many applications in several areas of science and
engineering [1–6]. The nonlocal property of the fractional derivatives and integrals is used to
model the processes with memory effect [1,2]. For example, the fractional derivatives are used to
model more appropriately the dynamics of the non-conservative systems in Hamilton, Lagrange
and Nambu mechanics [7–10]. The continuous but non-differentiable functions admit the local
fractional derivatives [11]. The local fractional derivative gives a measurement of fractal sets.
Consequently, recently, the Fα-calculus on the fractal subset of real line and fractal curves is built
as a framework [12,13]. Fractal analysis has been established by many researchers by using different
methods [14–17]. Using Fα-calculus the Newton, Lagrange and Hamilton mechanics were built on
fractal sets [18,19]. Also, Schrödinger’s equation on a fractal curve was derived in [20–22]. Motivated
by the above-mentioned interesting results, in this work, we define the non-local derivative on fractal
sets. These new derivatives can be successfully used to derive new mathematical models on fractal
sets involving processes with memory.

We organize our manuscript as follows:
In Section 2, we give a brief exposition of Fα-calculus and defined fractal Gamma and Beta

functions. In Section 3 we define the non-local derivative on fractals as generalized Riemann-Liouville
and Caputo fractional derivatives. In Section 4, Mittag-Leffler function and non-local Laplace
fractional on fractal sets are introduced. We solve the non-local differential equations on fractal using
the suggested methods. Section 5 is devoted to our conclusion.
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2. A Review of Fractional Local Derivatives

In this section, we review the Fα-calculus [12,13].

Calculus on Fractal Subset of Real-Line

Fractal geometry is the geometry of the real world [1]. Fractal shape is an object with fractional
dimension and the self similarity property [9,10]. In a seminal paper, Parvate and Gangal established
a calculus on fractals which is similar to Riemann integration. The suggested framework became a
mathematical model for many phenomena in fractal media [12,13]. We recall that the triadic Cantor
set is a fractal that can be obtained by an iterative process. In Figure 1 we show the Triadic Cantor
set [14].

Figure 1. The finite iteration for constructing the triadic Cantor set.

The integral staircase function for the triadic Cantor set is defined as [12,13].

Sα
Fpxq “

#

γαpF, a, bq, if x ě a0,
´γαpF, a, bq, othewise.

(1)

where α is the γ-dimension of triadic Cantor set. In Figure 2 we plot the integral staircase function
for a triadic Cantor set.

Figure 2. We plot the integral staircase function for triadic Cantor.
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The definitions of Fα-limit, Fα-continuity and Fα-integration are given in the ref. [12,13]. The
Fα-differentiation is denoted by Dα

F and it is defined as

Dα
F f pxq “

$

&

%

F´ limyÑx
f pyq ´ f pxq

Sα
Fpyq ´ Sα

Fpxq
, if x P F,

0, otherwise,
(2)

if the limit exists [12,13].

Definition 1. The Gamma function with the fractal support is defined as

Γα
Fpxq “

ż Sα
Fp8q

Sα
Fp0q

e´Sα
FptqSα

Fptq
Sα

Fpxq´1dα
Ft, (3)

where

e´Sα
Fptq “ F´ lim

nÑ8
p1´

Sα
Fptq
n
qn. (4)

Figure 3. We sketch the fractal Gamma function which is compared with the standard case.

Definition 2. The fractal Beta function on the fractal set is defined as follows

Bα
Fpr, wq “

ż 1

0
Sα

Fpζq
r´1p1´ Sα

Fpζqq
w´1dα

Fζ, (5)

which is called two-parameter pr, wq fractal integral, where <prq ą 0 and <pwq ą 0.
In the following we present some properties of fractal Beta function.
(1) The fractal Beta function has a symmetry Bα

Fpw, rq “ Bα
Fpr, wq. Since, we have

Bα
Fpr, wq “

ż Sα
Fp1q

Sα
Fp0q

pSα
Fpxqq

r´1p1´ Sα
Fpxqq

w´1dα
Fx, (6)

using the transformation Sα
Fpxq “ 1´ Sα

Fpyq, we conclude that
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Bα
Fpr, wq “

ż Sα
Fp1q

Sα
Fp0q

p1´ Sα
Fpyqq

r´1pSα
Fpyqq

w´1dα
Fy “ Bα

Fpw, rq. (7)

(2) Using the transformation Sα
Fpxq “ sin2pSα

Fpθqq, we get following form for the fractal the
Beta function

Bα
Fpr, wq “

ż Sα
Fpπ{2q

Sα
Fp0q

sin2pSα
Fpθqq

r´1 cos2pSα
Fpθqq

w´1p2 sinpSα
Fpθqq cospSα

Fpθqqqd
α
Fx, (8)

“ 2
ż Sα

Fpπ{2q

Sα
Fp0q

sin2r´1pSα
Fpθqq cos2w´1pSα

Fpθqqd
α
Fx. (9)

(3) The Beta fractal function is related to the fractal Gamma function as

Bα
Fpr, wq “

Γα
FprqΓ

α
Fpwq

Γα
Fpr`wq

. (10)

Proof. We have

Γα
FprqΓ

α
Fpwq “ 4

ż Sα
Fp8q

Sα
Fp0q

pSα
Fpxqq

2r´1pSα
Fpyqq

2w´1eSα
Fpxq

2`Sα
Fpyq

2
dα

Fxdα
Fy. (11)

Transforming to the polar coordinates Sα
Fpxq “ Sα

Fpρq cospSα
Fpφqq, Sα

Fpxq “ Sα
Fpρq sinpSα

Fpφqq

we obtain

Γα
FprqΓ

α
Fpwq “ 4

ż Sα
Fp8q

Sα
Fp0q

pSα
Fpρqq

2pr`wq´1e´Sα
Fpρq

2
dα

Fρ

ż Sα
Fpπ{2q

Sα
Fp0q

cos2r´1pSα
Fpφqq sin2w´1pSα

Fpφqqd
α
Fφ,

“ Bα
Fpr, wqΓα

Fpr`wq. (12)

Thus, the proof is completed.

3. Non-Local Fractal Derivative and Integral

In this section, we define the non-local derivative for the functions with fractal support.
Definition 3. If f pxq P Cα

Fra, bs (α-order differentiable function on ra, bs) and β ą 0 then we have

aIβ
x f pxq :“

1
Γα

Fpβq

ż Sα
Fpxq

Sα
Fpaq

f ptq
pSα

Fpxq ´ Sα
Fptqq

α´β
dα

Ft, Sα
Fpxq ą Sα

Fpaq, (13)

where if β “ α then we have fractal integral whose order is equal the dimension of the fractal, and

xIβ
b f pxq :“

1
Γα

Fpβq

ż Sα
Fpbq

Sα
Fpxq

f ptq
pSα

Fpxq ´ Sα
Fptqq

α´β
dα

Ft, Sα
Fpxq ă Sα

Fpbq, (14)

are called the analogous left sided and the right sided Riemann-Liouville fractal integral of order β.
Definition 4. Let n ´ α ď β ă n, then the analogous left and right Riemann-Liouville fractal

derivative are defined as follows:

aDβ
x f pxq :“

1
Γα

Fpn´ βq
pDα

Fq
n
ż Sα

Fpxq

Sα
Fpaq

f ptq
pSα

Fpxq ´ Sα
Fptqq

´n`β`α
dα

Ft, (15)

xDβ
b f pxq :“

1
Γα

Fpn´ βq
p´Dα

Fq
n
ż Sα

Fpbq

Sα
Fpxq

f ptq
pSα

Fptq ´ Sα
Fpxqq

´n`β`α
dα

Ft. (16)
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Definition 5. Let f pxq P Cαnra, bs, then the analogous left sided Caputo fractal derivative is
defined by

C
a D

β
x f pxq :“

1
Γα

Fpn´ βq

ż Sα
Fpxq

Sα
Fpaq

pSα
Fpxq ´ Sα

Fptqq
n´β´αpDα

Fq
n f ptqdα

Ft, n “ maxp0,´r´βsq. (17)

Also, the analogous right sided Caputo fractal derivative has the form

C
x D

β
b f pxq :“

1
Γα

Fpn´ βq

ż Sα
Fpbq

Sα
Fpxq

pSα
Fptq ´ Sα

Fpxqq
n´β´αp´Dα

Fq
n f ptqdα

Ft. (18)

Now, we give some important relations, namely

aIβ
x pSα

Fpxq ´ Sα
Fpaqq

η “
Γα

Fpη ` 1q
Γα

Fpη ` β` 1q
pSα

Fpxq ´ Sα
Fpaqq

η`β, η ą ´1. (19)

Proof. Using the Equation (13) we conclude

aIβ
x pSα

Fpxq ´ Sα
Fpaqq

η “
1

Γα
Fpβq

ż Sα
Fpxq

Sα
Fpaq

pSα
Fpxq ´ Sα

Fptqq
β´1pSα

Fptq ´ Sα
Fpaqq

ηdα
Ft. (20)

Let us consider

Sα
Fpξq “

Sα
Fptq ´ Sα

Fpaq
Sα

Fpxq ´ Sα
Fpaq

, dα
Ft “ pSα

Fpxq ´ Sα
Fpaqqd

α
Fξ. (21)

Therefore, we have Sα
Fpξq : Sα

Fp0q Ñ Sα
Fp1qwhile Sα

Fptq : Sα
Fpaq Ñ Sα

Fpxq. As a result we obtain

Sα
Fpxq ´ Sα

Fptq “
Sα

Fp1q ´ Sα
Fpξq

Sα
Fpξq

pSα
Fptq ´ Sα

Fp0qq. (22)

Substituting Equations ( 21) and ( 22) in Equation (20) we conclude that

aIβ
x pSα

Fpxq ´ Sα
Fpaqq

η “
1

Γα
Fpβq

ż Sα
Fp1q

Sα
Fp0q

p1´ Sα
Fpξqq

β´1Sα
Fpξq

1´βpSα
Fptq ´ Sα

Fpaqq
β`η´1pSα

Fpxq ´ Sα
Fpaqqd

α
Fξ,

“
1

Γα
Fpβq

ż Sα
Fp1q

Sα
Fp0q

p1´ Sα
Fpξqq

β´1
ˆ

Sα
Fptq ´ Sα

Fpaq
Sα

Fpxq ´ Sα
Fpaq

˙1´β

pSα
Fptq ´ Sα

Fpaqq
β`η´1pSα

Fpxq ´ Sα
Fpaqqd

α
Fξ. (23)

Then, we have

aIβ
x pSα

Fpxq ´ Sα
Fpaqq

η “
pSα

Fpxq ´ Sα
Fpaqq

β`η

Γα
Fpβq

ż Sα
Fp1q

Sα
Fp0q

p1´ Sα
Fpξqq

β´1pSα
Fpξqq

ηdα
Fξ. (24)

In view of Equation (5) we derive

aIβ
x pSα

Fpxq ´ Sα
Fpaqq

η “
pSα

Fpxq ´ Sα
Fpaqq

β`η

Γα
Fpβq

Bα
Fpβ, η ` 1q. (25)

Applying Equation (10) we get

aIβ
x pSα

Fpxq ´ Sα
Fpaqq

η “
pSα

Fpxq ´ Sα
Fpaqq

β`η

Γα
Fpβq

Γα
FpβqΓ

α
Fpη ` 1q

Γα
Fpβ` η ` 1q

,

“
Γα

Fpη ` 1q
Γα

Fpβ` η ` 1q
pSα

Fpxq ´ Sα
Fpaqq

β`η . (26)
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Now, we consider following formula

aDβ
x pSα

Fpxq ´ Sα
Fpaqq

η “
Γα

Fpη ` 1q
Γα

Fpη ` 1´ βq
pSα

Fpxq ´ Sα
Fpaqq

η´β. (27)

Proof. By rewriting the Equation (27) we get

aDβ
x pSα

Fpxq ´ Sα
Fpaqq

η “ pDα
Fq

n
aIn´β

x pSα
Fpxq ´ Sα

Fpaqq
η . (28)

Utilizing the Equation (19) we conclude

aDβ
x pSα

Fpxq ´ Sα
Fpaqq

η “
Γα

Fpη ` 1q
Γα

Fpη ` n´ β` 1q
pDα

Fq
npSα

Fpxq ´ Sα
Fpaqq

η`n´β, (29)

“
Γα

Fpη ` 1q
Γα

Fpη ´ β` 1q
pDα

Fq
npSα

Fpxq ´ Sα
Fpaqq

η´β, η ą ´1. (30)

Now, we write some important composition relations, namely

aIβ
x aDβ

x f pxq “ f pxq ´
n
ÿ

j“1

paDβ´j
x f pxqq|pSα

Fpaqq

Γα
Fpβ` 1´ jq

pSα
Fpxq ´ Sα

Fpaqq
β´j. (31)

Proof. Using the definitions we get

aIβ
x aDβ

x f pxq “
1

Γα
Fpβq

ż Sα
Fpxq

Sα
Fpaq

pSα
Fpxq ´ Sα

Fptqq
β´1Dβ

x f ptqdα
Ft (32)

“
1

Γα
Fpβ` 1q

Dα
F

ż Sα
Fpxq

Sα
Fpaq

pSα
Fpxq ´ Sα

Fptqq
βpDα

Fq
n

aIn´β
x f ptqdα

Ft f ptqdα
Ft. (33)

Applying, n-times integration by part it leads to

aIβ
x aDβ

x f pxq “ Dα
F aIβ`1´n

x paIn´β
x f pxqq ´

n
ÿ

k“1

pDα
Fq

n´k
aDβ´n

x f pxq|Sα
Fpaq

Γα
Fpβ´ k` 1q

pSα
Fpxq ´ Sα

Fpaqq
β´k,

“ f pxq ´
n
ÿ

k“1

aDβ´k
x f pxq|Sα

Fpaq

Γα
Fpβ´ k` 1q

pSα
Fpxq ´ Sα

Fpaqq
β´k. (34)

The similar proof works for the following formulas

xIβ
b xDβ

b f pxq “ f pxq ´
n
ÿ

j“1

pxDβ´j
b f pxqq|pSα

Fpbqq

Γα
Fpβ` 1´ jq

pSα
Fpbq ´ Sα

Fpxqq
β´j, (35)

aIβ
x

C
a D

β
x f pxq “ f pxq ´

n
ÿ

j“1

ppDα
Fq

j f pxqq|pSα
Fpaqq

Γα
Fpj` 1q

pSα
Fpxq ´ Sα

Fpaqq
j, (36)

xIβ
b

C
x D

β
b f pxq “ f pxq ´

n
ÿ

j“1

ppDα
Fq

j f pxqq|pSα
Fpbqq

Γα
Fpj` 1q

pSα
Fpbq ´ Sα

Fpxqq
j. (37)

In Figures 4 and 5 we compared the non-local standard derivative versus non-local fractal
derivative and the generalized fractal integral.
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Figure 4. We plot ypxq “ x2 and f pxq “ Sα
Fpxq

2 and their non-local derivative 0D0.5
x ypxq and 0D0.5

x f pxq,
respectively.

Figure 5. We show the graph of gpxq “ x2 and f pxq “ Sα
Fpxq

2 and their non-local integral 0 I0.5
x gpxq

and 0I0.5
x f pxq, respectively.

4. Generalized Functions in the Non-Local Calculus on the Fractal Subset of Real-Line

In this section, we suggest the mathematical tools for solving the non-local fractal
differential equations.

4.1. Gamma Function on Fractal Subset of Real Line

Now, we define the Gamma function for the fractal calculus that will be used in non-local
calculus on fractals.

4.2. Mittag-Leffler Function on Fractal Subset of Real-Line

It is well known that the exponential function has an important role in the theory of standard
differential equation. The generalized exponential function is called the Mittag-Leffer function and
plays an important role in fractional differential equations [1].
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Definition 6. The generalized two parameter η, ν Mittag-Liffler function on fractal F with
α-dimension is defined as

Eα
F,η,νpxq “

8
ÿ

k“0

Sα
Fpxq

k

Γα
Fpηk` νq

, η ą 0, ν P <. (38)

In some special cases we have the following results, namely

Eα
F,1,1pxq “ eSα

Fpxq, (39)

Eα
F,1,2pxq “

eSα
Fpxq´1

Sα
Fpxq

, (40)

Eα
F,2,1pxq “ coshpSα

Fpxqq, (41)

Eα
F,2,2pxq “

sinhpSα
Fpxqq

Sα
Fpxq

. (42)

4.3. Non-Local Laplace Transformation on Fractal Subset of Real-Line

The Laplace transformation is a very useful tool for solving a standard linear differential
equation with constant coefficients. The generalized Laplace transformation is applied to solve the
fractional differential equations. Thus, in this section, we generalized the Laplace transformation for
the function with fractal support which is utilized to solve the non-local differential equation on the
fractal set [1].

Definition 7. Laplace transformation for the function f pxq is denoted by Fpsq and it is defined as

F α
F pS

α
Fpsqq “ Lα

Fr f pxqs “
ż Sα

Fp8q

Sα
Fp0q

f pxqe´Sα
FpsqS

α
Fpxqdα

Fx. (43)

Now, we give the fractal Laplace transformation of some functions. If we define the fractal
convolution of two function f pxq and gpxq as follows:

f pxqgpxq “
ż Sα

Fpxq

Sα
Fp0q

f pSα
Fpxq ´ Sα

FpτqqgpS
α
Fpτqqd

α
Fτ, (44)

the fractal Laplace transformation of power function of Sα
Fpxq is

Lα
FrS

α
Fpxqs

ż Sα
Fp8q

Sα
Fp0q

Sα
Fpxq

βe´Sα
FpsqS

α
Fpxqdα

Fx “
Γα

Fp1` βq

sβ`1 . (45)

Lemma 1. The Laplace transformation of the non-local fractal Riemann-Liouville integral is given by

Lα
Fr0I

β
x f pxqs “

F α
F pS

α
Fpsqq

Sα
Fpsq

β
. (46)

Proof. The Laplace transform of the fractal Riemann-Liouville integral is

Lα
Fr0I

β
x f pxqs “ Lα

F

«

1
Γα

Fpβq

ż Sα
Fpxq

Sα
Fp0q

f ptq
pSα

Fpxq ´ Sα
Fptqq

α´β
dα

Ft

ff

. (47)
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Using the Equations (44) and (45) we arrive at

Lα
Fr0I

β
x f pxqs “

1
Γα

Fpβq
F α

F pS
α
FpsqqLα

FrS
α
Fpxq

β´1s,

“
1

Γα
Fpβq

F α
F pS

α
Fpsqq

Γα
Fpβq

Sα
Fpsq

β
,

“
F α

F pS
α
Fpsqq

Sα
Fpsq

β
. (48)

The fractal Laplace transform of the non-local fractal Riemann-Liouville derivative of order β P

r0, 1q is given by

Lα
Ft0D

β
x f pxq, x, su “ Sα

Fpsq
βF α

F psq ´
n
ÿ

k“1

Sα
Fpsq

n´k
0D

β´n`k´1
x f pxq|Sα

Fp0q
, (49)

where n “ rβs ` 1. The fractal Laplace transform of the non-local fractal Caputo derivative of order
β P r0, 1q is given by

Lα
Ft

C
0 D

β
x f pxq, x, su “ pSα

Fpsqq
βF α

F psq ´
n
ÿ

k“1

Sα
Fpsq

β´k
0Dk´1

x f pxq|Sα
Fp0q

. (50)

where n “ maxp0,´r´βsq.

5. Non-Local Fractal Differential Equations

In this section, we solve some illustrative examples.

Example 1. Consider the following linear fractal equation

C
0 D

1
2
x ypxq “ 2, (51)

with the initial condition
Dα

Fypxq|Sα
Fp0q“0 “ 1, (52)

where α “ 0.6309 is Cantor set dimension. By applying 0I
1
2
x on the both sides of the Equation (52)

we obtain

ypxq “
1

Γα
Fp1`

1
2
q

Sα
Fpxq `

2

Γα
Fp1´

1
2
q

Sα
Fpxq

´
1
2 . (53)

Example 2. Consider a linear fractal differential equation

C
0 D

1
2
x ypxq “ 1´ Sα

Fpxq, Sα
Fpxq ě 1, (54)

with initial condition as
Dα

Fypxq|Sα
Fp1q

“ 0. (55)

By applying 0I
1
2
x on the both sides of the Equation (55) we arrive at
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ypxq “ ´
Γα

Fp2q

Γα
Fp2`

1
2
q

pSα
Fpxq ´ 1q

1`
1
2 , Sα

Fpxq ě 1. (56)

In Figures 6 and 7, we plot the solutions of Equations (51) and (54) , respectively.

Figure 6. We present the solution of Equation (51) on the real-line and Cantor set.

Figure 7. We give the graph of the solution of Equation (54) on the real-line and Cantor set.

Example 3. Consider a linear differential equation

0D
1
2
x ypxq “ ypxq, (57)

with the following initial condition, namely

0D
´

1
2

x ypxq|Sα
Fp0q

“ 1. (58)
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By inspection, the solution for the Equation (57) becomes

ypxq “ Sα
Fpxq

´
1
2 Eα

F,1{2,1{2p´
b

Sα
Fpxqq. (59)

In Figure 8 we sketched the solution of Equation (57) on the Cantor set and real-line.

Figure 8. We plot the solution of Equation (57) on the real-line and Cantor set.

Example 4. We examine the following non-local differential equation on a fractal subset of
real-line, namely with the following initial condition

0D
4
3
F ypxq ´ λypxq “ pSα

Fpxqq
2, (60)

0D
1
3
F ypxq|Sα

Fp0q
“ 1, 0D

´1
6

F ypxq|Sα
Fp0q

“ 2. (61)

For solving Equation (60) we apply the fractal Laplace transformation on both side of it and we get

Sα
Fpsq

4
3F α

F psq ´ 1´ 2pSα
Fpsqq

1
2 ´ λF α

F psq “
2

Sα
Fpsq

3 . (62)

After some calculations we obtain

F α
F psq “

1

Sα
Fpsq

4
3 ´ λ

`
2Sα

Fpsq
1
2

Sα
Fpsq

4
3 ´ λ

`
2Sα

Fpsq
´3

Sα
Fpsq

4
3 ´ λ

. (63)
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By computing the inverse fractal Laplace transform we conclude

ypxq “ Sα
Fpxq

4
3 Eα

F,4{3,4{3pλSα
Fpxq

4
3 q ` 2Sα

Fpxq
´1
6 Eα

F,4{3,5{6pλSα
Fpxq

4
3 q

` 2Sα
Fpxq

10
3 Eα

F,4{3,13{3pλSα
Fpxqq

4
3 . (64)

Remark 1. The Figures 6–8 show that the solution of Equations (51), (54) and (57) leads to the standard
non-local fractional cases when α “ 1, respectively.

6. Conclusions

In this work, we defined new non-local derivatives on fractal sets. These new types of non-local
derivatives can describe better the dynamics of complex systems which possess memory effect on
a fractal set. Four illustrative examples were solved in detail. Finally, one can recover the standard
non-local fractional cases when assigning α “ 1.
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