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Performance evaluation of matched asymptotic expansions

for fractional differential equations with multi-order
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Abstract

An extension of the concept of the asymptotic expansions method is pre-
sented in this paper. The multi-order differential equations of fractional or-
der are investigated and the convergence of the proposed method is proven.
The reported results show that the present approach is very effective and
accurate and also are in good agreement with the ones in the literature.
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1 Introduction

Fractional calculus is a field of mathematics that deals with theory of integrals and
derivatives of any arbitrary real or complex orders. The number of applications of
fractional calculus rapidly grows and many researchers have utilized it to describe
the dynamics of various phenomena encountered in electrochemistry, mechanics,
acoustic, thermal engineering, finance, hydrology and many other areas. For more
applications and an extensive literature of fractional differential equation see for
example [1] and the references therein.

We recall that finding the general solution of the fractional differential equa-
tions is an important issue. However, the exact solution of the fractional differ-
ential equations are often difficult to obtain and therefore we utilize the approx-
imate solutions. Thus, there have been many attempts to develop new methods
for obtaining solutions which reasonably approximate the exact ones. In recent
years, several techniques have drawn special attention, e.g. the (G′/G)-expansion
method [2], the Adomian’s decomposition method [3], the homotopy perturbation
method [4], the homotopy analysis method [5], and many others.
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In this study, the fractional differential equations with multi-order are inves-
tigated by means of the systematic methods of perturbations (asymptotic expan-
sions) in terms of a small or a large parameter or coordinates [6]. We discuss
about the approximate solutions of this family of equations by these asymptotic
expansions within Caputo derivative [1]. The fractional differential operator in
the sense of Caputo, defined by

Dα
∗τ ξ(τ) = Im−α

τ ξ(m)(τ), m− 1 < α < m, m ∈ N, (1)

and Iατ is the Riemann-Liouville integral operator of order α, defined by

Iατ ξ(τ) =
1

Γ(α)

∫ s

0

ξ(τ)

(s− τ)1−α
dτ, α > 0, s > 0, (2)

and also, a multi-order fractional differential equations can be presented in the
following form

Dαn
∗τ ξ(τ) = ̥(τ, ξ(τ), Dα1

∗τ ξ(τ), D
α2

∗τ ξ(τ), · · · , D
αn−1

∗τ ξ(τ)), (3)

ξ(j)(0) = γj , n ∈ N, j = 0, 1, 2, · · · ,

where αi ∈ N, are in ascending order ( 0 ≤ α1 < α2 < · · · < αn). Daftardar
and Jafari [7], proved that Eq. (3) is equivalent to the system of equations in the
following form





Dαi
∗τ ξi(τ) = ξi+1(τ), i = 1, 2, · · · , n− 1,

Dαn
∗τ ξi(τ) = ̥(τ, ξ1(τ), ξ2(τ), · · · , ξn(τ)),

ξki (0) = γi
k, k = 0, 1, 2, · · · , αi, i = 1, 2, · · · , n.

(4)

2 Analysis of the expanding method

Below, we propose a formal construction with the expanding asymptotic
method [6]. Our aim is to motivate the definitions of our scheme in order to
establish the idea of the suggested method. Let us assume that

ξi(τ) =

∞∑

m=0

ξi,mταm, (5)

such that ξi,m, α ∈ R. If we introduce this formula in the first part of the system
(4), we obtain

∞∑

m=0

ξi,m
Γ(αm+ 1)

Γ(αm+ 1− αi)
ταm−αi =

∞∑

m=0

ξi+1,mταm, (6)

and after that we get

ξi,ki+m
Γ(αm+ αi + 1)

Γ(mα+ 1)
= ξi+1,m, m = 0, 1, 2, · · · , ki =

αi

α
. (7)
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In Eq. (4), let us set

̥(τ, ξ1(τ), · · · , ξn(τ)) = g(τ) +

n∑

j=1

φj(τ)ξj(τ) +N(τ, ξ1(τ) · · · , ξn(τ)), (8)

where g(τ) and φj(τ) are arbitrary functions. As a result we obtain the following
equation

g(τ) =

∞∑

m=0

gmταm, φj(τ) =

∞∑

m=0

φj,mταm. (9)

The next step is to assume that

N(τ, ξ1(τ), · · · , ξn(τ)) = N(τ,

∞∑

m=0

ξ1,mταm, · · · ,
∞∑

m=0

ξn,mταm) =

∞∑

m=0

Nmταm,

(10)
where

N0 = N0(τ, ξ1,0, ξ2,0, · · · , ξn,0),
N1 = N1(τ, ξ1,0, ξ2,0, · · · , ξn,0, ξ1,1, ξ2,1, · · · , ξn,1),
N2 = N2(τ, ξ1,0, ξ2,0, · · · , ξn,0, ξ1,1, ξ2,1, · · · , ξn,1, ξ1,2, ξ2,2, · · · , ξn,2),

....

According to the expanding method, we obtain

∞∑

m=0

ξn,m
Γ(mα+ 1)

Γ(αm− αn + 1)
ταm−αn =

∞∑

m=0

gmταm

+

n∑

j=1

[

∞∑

m=0

φj,mταm][

∞∑

m=0

ξj,mταm] +

∞∑

m=0

Nmταm. (11)

Now, by equating the terms having the identical powers of τ , we get the following
relations

ξn,kn
=

1

Γ(αn + 1)
{g0 +

n∑

j=1

γj
0φj,0 +N0},

ξn,kn+1 =
Γ(α+ 1)

Γ(α+ αn + 1)
{g1 +

n∑

j=1

[φj,0ξj,1 + γj
0φj,1] +N1},

ξn,kn+2 =
Γ(2α+ 1)

Γ(2α+ αn + 1)
{g2 +

n∑

j=1

[φj,0ξj,2 + φj,1ξj,1 + φj,2ξj,0] +N2},

....

Thus, we get the approximate solution of Eq. (3) as ξ(τ) =
∑

∞

i=0

∑
∞

m=0 ξi,mτmα.
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3 A flexible framework for building the matched asymptotic expan-

sions method

Now, as an extended alternative for Eq. (5), again we consider the following
problem

D
αn+1

∗τ ξ(τ) = ̥(τ, ξ(τ), Dα1

∗τ ξ(τ), · · · , Dαn
∗τ ξ(τ)), (12)

under the following initial conditions

ξ(k)(0) = γk, k = 0, 1, · · · , [αn+1]− 1 = m− 1, (13)

where 0 ≤ α1 < α2 < · · · < αn < αn+1 and ̥ is a given function on D :=
[0, T ]× Rn+1.

Let us set {
ξ(τ) = Y (τ) +G(τ), Y ∈ C∞,

G(τ) =
∑m−1

k=0 γk
τk

k! .
(14)

Consequently, Eq. (12) can be written as

D
αn+1

∗τ Y (τ) = ̥(τ, Y (τ) +G(τ), L(τ)), (15)

Y (k)(0) = 0, k = 0, 1, · · · ,m− 1.

where L(τ) = Dα1
∗τ Y (τ) +Dα1

∗τG(τ), · · · , Dαn
∗τ Y (τ) +Dαn

∗τ G(τ).
Assume now that

D
αn+1

∗τ Y (τ) = Y (τ). (16)

Thus, for j = 1, 2, · · · , n+ 1 we have

D
αj

∗τ Y (τ) = Iαn+1−αj
τ D

αn+1

∗τ Y (τ) = Iαn+1−αj
τ D

αn+1

∗τ (Iαn+1

τ Y (τ)) = Iαn+1−αj
τ Y (τ).

(17)
Substituting Eq. (17) into (15), we obtain

Y (τ) = ̥(τ, Iαn+1

τ Y (τ)+G(τ), Iαn+1−α1

τ Y+Dα1

∗τG(τ), · · · , Iαn+1−αn
τ Y+Dαn

∗τ G(τ)).
(18)

In Eq. (18), we set

̥(τ, Iαn+1

τ Y +G(τ), Iαn+1−α1

τ Y +Dα1

∗τG(τ), · · · , Iαn+1−αn
τ Y +Dαn

∗τ G(τ))

= f̂(τ) + ̥̂(τ, Iαn+1

τ Y , Iα1

τ Y (τ), · · · , Iαn
τ Y (τ)), (19)

where f̂(τ) represents a given function that does not contain I
αn+1

τ Y and Iαi
τ Y (τ),

i = 1, 2, · · · , n. We assume that the solution of (18) has the form

Y (τ) =

∞∑

i=0

Y i(τ), (20)

where Y i(τ) will be determined upon the following iteration algorithm

Y 0(τ) = f̂(τ), Y 1(τ) = ̥̂(τ, Iαn+1
τ Y 0, I

αn+1−α1
τ Y 0, · · · , I

αn+1−αn
τ Y 0),
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and

Y i(τ) = ̥̂(τ, Iαn+1
τ

i−1∑

j=0

Y j , I
αn+1−α1
τ

k−1∑

j=0

Y j , · · · , I
αn+1−αn
τ

i−1∑

j=0

Y j), i = 2, 3, · · · .

We approximate the solution ξ(τ) by the truncated series

Iαn+1

τ f̂(τ) +
n∑

j=0

Iαn+1

τ Y j(τ). (21)

3.1 Analysis of the convergence

In this section, we provide the sufficient condition for the convergence of the
solution series. Let C([0, T ]) be the space of all continuous functions defined on
[0, T ] with norm

‖ξ(τ)‖∞ = max
τ∈[0,T ]

|ξ(τ)|, ∀ξ(τ) ∈ C([0, T ]). (22)

Theorem 1. Let the continuous function ̥ in (12) satisfy

|̥(τ, z0, z1, · · · , zn)−̥(τ, x0, x1, · · · , xn)| ≤
k−1∑

j=0

Λj |zj − xj |, Λj ∈ R
+. (23)

Also, we assume that the orders αj , j = 1, 2, · · · , n are rational. Then, (12)
subject to (13) has a unique continuous solution on an interval [0, T ] of the real
line.

Theorem 2. Let ̥ defined in (12) be the continuous functions on D := [0, T ]×
Rn+1 and there exist nonnegative functions p0(τ), p1(τ), · · · , pn(τ) ∈ L[0, T ] such
that

|̥(τ, z0, z1, ξ, zn)−̥(τ, x0, x1, ξ, xn)| ≤ p0(τ)|z0−x0|+ ξ+pn(τ)|zn−xn|, (24)

and assume that d < 1, where

d =

n∑

i=1

1

Γ(αn+1 − αi)

∫ τ

0

(τ − t)(αn+1−αi−1)pi(τ)dt

+
1

Γ(αn+1)

∫ τ

0

(τ − t)(αn+1−1)p0(τ)dt. (25)

Also, suppose that Y 0 ∈ Nr(Y ) where Nr(Y ) = {ξ ∈ C[0, T ]; ‖ξ−Y ‖ < r}. Then,
the sequence of partial sums of the series solution is absolutely convergent
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Proof. Define the sequence {Sk}∞k=0 as





S0(τ) = Y 0(τ),
S1(τ) = Y 0(τ) + Y 1(τ),
...
Sk(τ) = Y 0(τ) + Y 1(τ) + · · ·+ Y k(τ).

(26)

Let Sk(τ) be an arbitrary partial sums. Then for M = |Sk(τ)− Y (τ)| we get

M =
∣∣ ̥̂(τ, Iαn+1

τ

k−1∑

j=0

Y j , · · · , I
αn+1−αn
τ

k−1∑

j=0

Y j)− ̥̂(τ, Iαn+1
τ Y , · · · , I

αn+1−αn
τ Y )

∣∣

≤
1

Γ(αn+1)

∫ τ

0

(τ − t)(αn+1−1)
p0(τ)|Sk−1(τ)− Y (τ)

∣∣dt

+
n∑

i=1

1

Γ(αn+1 − δi)

∫ τ

0

(τ − t)(αn+1−αi−1)
pi(τ)

∣∣Sk−1(τ)− Y (τ)
∣∣dt.

≤
1

Γ(αn+1)

∫ τ

0

(τ − t)(αn+1−1)
pi(τ)dt

∥∥Sk−1(τ)− Y (τ)
∥∥
∞

+
n∑

i=1

1

Γ(αn+1 − αi)

∫ τ

0

(τ − t)(αn+1−αi−1)
pi(τ)dt

∥∥Sk−1(τ)− Y (τ)
∥∥
∞

. (27)

Hence, we have ‖Sk(τ)−Y (τ)‖∞ ≤ d
∥∥Sk−1(τ)−Y (τ)

∥∥
∞
. Proceeding by induc-

tion, we obtain

‖Sq − Y (τ)‖∞ ≤ dq
∥∥S0 − Y (τ)

∥∥, q = 0, 1, · · · , k. (28)

Since S0 = Y 0 ∈ Nr(Y ) and d < 1, then limk→∞ dk = 0, therefore the sequence
{Sk}∞k=0 is absolutely convergent.

Theorem 3. Let ̥ defined in (12) be continuous functions on D := [0, T ]×Rn+1

such that

|̥(τ, z0, z1, · · · , zn)−̥(τ, x0, x1, · · · , xn)| ≤ Λ0|z0−x0|+ · · ·+Λn|zn−xn|, (29)

where Λ, is a constant and assume that

Tαn+1

αn+1!
+

n∑

i=1

T (αn+1−αi)

Γ(αn+1 − αi + 1)
<

1

Λ
,Λ = max{Λj}, j = 0, 1, · · · , n. (30)

Also, suppose that S0 ∈ Nr(Y ) where Nr(Y ) = {ξ ∈ C[0, T ]; |ξ−Y ‖ < r} . Then,
the series {Sk}∞k=0 defined in (26) is absolutely convergent.
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Proof. We prove that {Sk}∞k=0 defined in (26) is absolutely convergent. Let Sk(τ)
be an arbitrary partial sums. Similar to (27) we get

|Sk(τ)−Y (τ)| ≤
ΛTαn+1

αn+1!

∥∥Sk−1(τ)−Y (τ)
∥∥
∞

+

n∑

i=1

ΛT (αn+1−αi)

Γ(αn+1 − αi + 1)

∥∥Sk−1(τ)−Y (τ)
∥∥
∞

.

(31)
Hence we obtain

‖Sk(τ)− Y (τ)‖∞ ≤ Λ
∥∥Sk−1(τ)− Y (τ)

∥∥
∞

(
Tαn+1

αn+1!
+

n∑

i=1

T (αn+1−αi)

Γ(αn+1 − αi + 1)
). (32)

Proceeding by induction we obtain

‖Sq − Y (τ)‖∞ ≤ Λq(
Tαn+1

αn+1!
+

n∑

i=1

T (αn+1−αi)

Γ(αn+1 − αi + 1)
)q
∥∥S0 − Y (τ)

∥∥
∞
, (33)

where q = 0, 1, · · · , k, S0 = Y 0 ∈ Nr(Y ) and

lim
k→∞

Λk(
Tαn+1

αn+1!
+

n∑

i=1

T (αn+1−αi)

Γ(αn+1 − αi + 1)
)k = 0. (34)

Consequently, we derive limk→∞ ‖Sk−Y (τ)‖∞ = 0, and this completes the proof.

4 Applications

In order to demonstrate the performance of the present method as a novel
solver for multi order fractional differential equations, some different problems
were selected as test examples. In all cases we have ξ ∈ Ck[0, T ], T < ∞, k =
1, 2, · · · .

Example 1. Consider the following initial value problem for the inhomogeneous
Bagley-Torvik equation [8]

MD2
∗τ ξ(τ) + 2S

√
µρ D

3/2
∗τ ξ(τ) +Kξ(τ) = ϑ(τ), 0 ≤ τ ≤ T, (35)

ξ(0) = 1, ξ′(0) = 1.

In order to make comparison with the numerical solution of [8] we choose M =
2S

√
µρ = K = 1, T = 5 and ϑ(τ) = K(τ + 1). By the same manipulation as

Section 2 we set

ξ1,0(τ) = 1 + τ,

ξ1,m+1(τ) = I1.5ξ2,m, m = 0, 1, · · · , (36)

ξ2,0(τ) = 0,

ξ2,1(τ) = 0,

ξ2,m+1(τ) = −I0.5(ξ1,m(τ) + ξ2,m(τ)), m = 1, 2, · · · .



10 D. Baleanu, K. Sayevand

Thus, we obtain

{
ξ1,m+1(τ) = 0,
ξ2,m+1(τ) = 0, m = 0, 1, · · · . (37)

Hence, ξ1(τ) = 1+ τ and ξ2(τ) = 0. So, ξ(τ) = 1+ τ is the solution of Eq. (35).
It is easily verified that τ + 1 is the exact solution of Eq. (35).
Table (1) shows the resulting error at τ = 5 obtained by numerical method in [8]
and compared with the solution obtained by the proposed scheme.

Table 1: The resulting error at τ = 5

Error at τ = 5 by proposed method Error at τ = 5 by [8] (step size)

0 −0.15131473519232 (0.5000)
0 −0.04684102179946 (0.2500)
0 −0.01602947553912 (0.1250)
0 −0.00562770408881 (0.0625)

Example 2. Consider the following equation

αD2
∗τ ξ(τ) + βDα2

∗τ ξ(τ) + θDα1

∗τ ξ(τ) + λξ3(τ) = g(τ), α, β, θ, λ ∈ R. (38)

where

g(τ) = 2ατ +
2βτ3−α2

Γ(4− α2)
+

2θτ3−α1

Γ(4− α1)
+

λτ9

27
, 0 < α1 < α2 ≤ 1, ξ(0) = ξ

′

(0) = 0.

(39)
By the same manipulation as Section 3, the first few terms of the series are given
by Y 0(τ) =

1
αg(τ) and

Y i(τ) = −
1

α
(βI2−α2

τ Y i−1(τ) + θI
2−α1
τ Y i−1(τ) + λ[(I2τ

i−1∑

j=0

Y j(τ))
3 − (I2τ

i−2∑

j=0

Y j(τ))
3]).

By considering α = β = θ = λ = 1, α1 = 1 and α2 = 0, the exact solu-

tion of Eq. (38) can be written as ξ(τ) = τ3

3 . Under this assumption, the exact

and approximate solution (ξ(τ) ≈ I2τ (Y 0(τ) + Y 1(τ))) of Eq. (38) are shown in
Fig. 1. This example shows that the result of the present method (after only 3
iterations) is in excellent agreement with the exact solution. Furthermore, the ap-
proximate solution using (G′/G)-expansion method and Adomian decomposition
method (ADM) (after 20 iterations) are presented.

5 Concluding remarks

In this manuscript the matched asymptotic expansions method was success-
fully applied to compute the approximate solution of the fractional differential
equations with multi-orders. The convergence analysis of our solutions was thor-
oughly reported. The obtained results proved the performance robustness of
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Fig. 1: Numerical convergence of the exact and approximate solution.

the proposed scheme. Furthermore, we notice that a large category of analytical
methods such as (G′/G)-expansion method, Adomian decomposition method and
etc., are in principle based on the matched asymptotic expansions method. In
other words, the matched asymptotic expansions method includes an auxiliary
parameter which can control and adjust the convergence region of the series solu-
tion. For instance, by using (G′/G)-expansion method we can write the solution

of Eq. (38) in the form ξ(τ) =
∑N

j=0(
G

′

G )j where G satisfies the Eq. (38) but the
obtained results are not satisfactory. Similar results are reported for Adomian
decomposition method.
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