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Abstract

In this manuscript, we work to actualize the Darbo (Banas and Goebel in Measure of
Noncompactness in Banach Space. Lecture Notes in Pure and Applied Mathematics,
1980) fixed point theorem (FPT) coupled with the Hausdorff measure of
non-compactness to analyze the existence results for an impulsive fractional neutral
integro-differential equation (IFNIDE) with state-dependent delay (SDD) and
non-instantaneous impulses (NIl) in Banach spaces. Finally, examples are offered to
demonstrate the concept.
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1 Introduction

Throughout this manuscript, we set up the existence of mild solutions for IFNIDE with
SDD and NII in Banach spaces through the utilization of the FPT thanks to Darbo [1].
We discuss the impulsive neutral integro-differential equations of fractional-order of the

model

t
CDY[x(t) + G (&, %0 (1)) | + A x(8) = ﬁ(t, xg(t,x[),/ e(t,s, xg(s,xs))ds),
0

te(s,tal,i=0,1,2,...,N, (L1)
x0=¢(t) € By, te(-00,0], (1.2)
x(t) :gi(t»xg(t,xt))» te(t,sli=12,...,N, (1.3)

where ©D? is the Caputo fractional derivative of order « € (0,1), and .# = [0, T] is an
operational interval. The operator —&/ denotes the infinitesimal generator of an analytic
semigroup {T(¢)};>0 in a Banach space X having norm || - ||, this suggests that we can find
M >1toensurethat |[T()| <M, F : IxByxX—>X,e: DxBy—X,9: 9 xB),—~
X, 0: I x Bj, — (—o0, T| are apposite functions, and Ay, is a phase space characterized
in preliminaries. Here 2 = {(t,s) € ¥ x £ :0<s<t<T}.Here 0=ty =59 <t; <8 <
© 2015 Suganya et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-

vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.


http://dx.doi.org/10.1186/s13662-015-0709-y
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-015-0709-y&domain=pdf
mailto:dumitru@cankaya.edu.tr

Suganya et al. Advances in Difference Equations (2015) 2015:372 Page 2 of 39

Ly <SSy < <ty <sy <ty =T, are prefixed numbers, and g; € C((¢;,5;] X By, X), for all
i=1,2,...,N, stand for impulsive conditions.

For almost any continuous function x characterized on (—oo, 7] and for almostany ¢ > 0,
we designate by x, the part of %, characterized by x,(0) = x(¢ +6) for 6 < 0. Now x;(-) refers
to the historical backdrop of the state from every 6 € (—o0, 0] like the current time £.

Fractional differential equations (FDE) are broadly successfully utilized in science and
engineering. For fundamental results as regards the fractional systems, the reader should
check [2, 3] and [4-19], as well as the references cited therein. Fractional equations with
delay features appear in several areas, such as the medical and physical fields with state-
dependent delay or non-constant delay. Recently, the existence results of mild solutions
for such problems became very attractive and several researchers are working on it; see for
instance [20-25]. As a result some papers were released on the fractional/integer order
problems having SDD and NII [26-29].

The investigation of impulsive functional differential or integro-differential frameworks
is interesting for their application in strengthening techniques and phenomena condi-
tional on short-time perturbations in the course of their progress. The perturbations
are conducted separately and their term is insignificant in correlation with the aggregate
length of time of the procedures. For more details as regards this concept and its uses, see
for example the treatise by Lakshmikantham et al. [30], Stamova [31], Graef et al. [32],
Bainov and Covachev [33], Benchohra et al. [34] and [35-44], and the references cited
therein.

We recall that numerous impulsive frameworks emerging from sensible models can be
depicted as partial differential equations with NIIL. As pointed out in [36, 37], there are var-
ious ways to investigate this sort of models. Also, Kumar et al. [45] analyzed the existence
of solutions for FDE with NII in Banach spaces through the utilization of the appropriate
FPT. Gautam and Dabas [26, 27] acknowledged the existence of mild solutions for FIDE
with SDD and NII through the employment of the suitable FPT. Later Das et al. [28, 29]
researched the existence of mild solution of a class of second order partial neutral differ-
ential equations with SDD and NII in Banach spaces. The results are obtained through
the utilization of the Hausdorff measures of non-compactness and Darbo FPT. However,
the existence results for IFIDE with SDD and NII in %, phase space contexts have not yet
been completely examined. This motivated us to investigate the existence results of the
system (1.1) with NII in Banach spaces. To the best of our knowledge the existence results
for the considered model (1.1)-(1.3) in the present manuscript are new.

In contrast to the current outcomes, this manuscript has some positive aspects, namely:
We include the integral term in the non-linear term .% and present an appropriate notion
of a mild solution of the model (1.1)-(1.3). Then we analyze the existence of mild solutions
for IFIDE with SDD and NII of the design (1.1)-(1.3) under the Darbo [1] fixed point the-
orem, and the results in [27] might be regarded as special circumstances. After that, we
implement %), phase space contexts to examine the model (1.1)-(1.3).

This manuscript is composed as follows. We demonstrate a couple of preliminaries, def-
initions, and lemmas which are to be employed in this fashion to exhibit our essential out-
comes in Section 2. After that, the existence of mild solutions for the model (1.1)-(1.3) is
analyzed under the Darbo [1] FPT in Section 3. Section 4 shows examples of the theoret-

ical results.
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2 Preliminaries

Below, we give some fundamental definitions, lemmas, and preparatory facts from func-
tional analysis, fractional calculus theory, and measures of non-compactness which will
be employed in the course of this manuscript.

Let .Z(X) symbolize the Banach space of all bounded linear operators from X into X,
having norm | - || ().

Let C(.#,X) symbolize the space of all continuous functions from .# into X, having
norm || - [|¢(s x). Moreover, B,(x,X) symbolizes the closed ball in X with the middle at x
and the distance .

We recall that a measurable function x : .# — Xis Bochner integrable iff || x|| is Lebesgue
integrable. (To get extra insights as regards the Bochner integral, refer to the treatise of
Yosida [46].)

Permit L!(.#, X) signifies the Banach space of all measurable functions x : .# — X which
are Bochner integrable and have the norm

T
[l1l .1 =/ |«(®)| dt  forall x € L'(.7,X).
0
Definition 2.1 ([47], Definition 4) Let & : D € X — X be a closed linear operator. The

operator ¢/ is considered to be sectorial if we can find 0 <6 <7, M >0, and 1 € R in
such a way that the p(27) exists exterior of the segment

,u+59={u+k:)»ea

arg(—)\)‘ < 9},

|- 22)7| < MM, A&+ S

|2 -
For short, we say that .27 is sectorial of type (M, 6, u).

Let —of signify the infinitesimal generator of an analytic semigroup in a Banach space
and 0 € p(&), where p() is the resolvent set of 7. We characterize the fractional power
/=1 by

DU S R
“Qﬂ‘r(q)/o O 'T(t)dt, q>O0.

We observe that 279 = (27~7)7! is a closed linear operator with domain D(77) D D(/)
is dense in X for 0 < g < 1. For an analytic semigroup {T(¢)};>0, we have the accompanying
theorem.

Theorem 2.1 ([48], Theorem 6.13) Let —<f be the infinitesimal generator of an analytic
semigroup {T(t)};>0. If 0 € p(&), at that point the accompanying features hold:

(@) T(¢): X — D(&/1) for each t >0 and g > 0.

(b) Foreach x € D(</1), we keep T(t)o/1x = o/ 1T (t)x.

(c) Foreach t >0, the operator /1T (t) is bounded and || /1T (t)|| < Mt~ %™

(d) For0<a <1andxe D(a/), weobtain ||T(t)x — x| < C;t?| o/ x].

To properly characterize our system, we claim that a function x: [0, 7] — X is a normal-
ized piecewise continuous function on [o, 7] if x is piecewise continuous and left contin-
uous on (o, 7]. By the symbol PC([o, 7]; X), we mean the space of normalized piecewise
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continuous functions from [o, 7] into X. Specifically, we signify the space PC established
by all functions x : [0, T] — X in such a way that x is continuous at ¢ # t;, x(¢;') = x(¢;) and
x(t}) exists, for all i =1,2,...,N. It is not difficult to see that PC is a Banach space having
the norm [xllpc = supye o,z I1€(s)1l

It needs to be outlined that, once the delay is infinite, then we should talk about the
theoretical phase space %, in a beneficial way. In this manuscript, we address phase spaces
Py, which are the same as described in [49]. So, we bypass the details.

We expect that the phase space (%, || - |%,) is a semi-normed linear space of functions
mapping (—00, 0] into X, and fulfilling the subsequent elementary contexts as a result of
Hale and Kato (see the case in point in [50, 51]).

Ifx:(—00,T] - X, T > 0, is continuous on .# and x¢ € %y, then for every t € .¥ the
accompanying conditions hold:

(P1) x4 isin By,

(P2) lx®)llx < Hllx¢|l 2,

(P3) lxellz, < Z1(E) supfllx(s)lx : 0 < s <t} + Za(t)l|lxoll ,, Where H > 0 is a constant
and Z(-) : [0,+00) — [0,+00) is continuous, Z,(-) : [0,+00) — [0, +00) is locally
bounded, and %, %, are independent of x(-).

(P4) ([27], p-430) The function t — ¢, is well described and continuous from the set

R(Q_) = {Q(le/f) : (S» I;[/) € [O’ T] X <@h};

into %, and there is a continuous and bounded function J$ : R(0~) — (0, 00) to ensure
that l|s¢ll, </ (D)5, for every t € R(o7).

Define the space
Br = {x : (—00, T] — X such that xy € %), and the constraint x| » € PC}.
For the function || - ||, to be a seminorm in Ar, it is described by
%l 2, = IS Il +sup{[x(s) ] :s € [0, T1}, x € Br.

Lemma 2.1 ([52], Lemma 2.1) Letx:(—o0,T] — X be a function in such a way that xy = g,
x|.# € PC and if (P4) holds, then

s llz, < (25 +7°) I 13, + 7 sup]{ |%(6) . : 6 € [0, max{0,s}]},
seR(@)UI,
where J¢ = Sup,c -] (£), D7 = supyo,1) 21(5), Z5 = Supse(o,17 Z2(5).

Presently, we provide some fundamental definitions and outcomes of the fractional cal-
culus theory that happen to be utilized additionally within this manuscript.

Definition 2.2 [3] The fractional integral of order y with the lower limit zero for a func-

tion f is determined as

R T A iC)
Ityf(t)—r(y)/0 (t—s)l—VdS’ t>0,y >0,
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where the right part is point-wise described on [0, +00), where I'(:) is the gamma func-

tion.

Definition 2.3 [3] The Riemann-Liouville derivative of order y with the lower limit zero
for a function f € L}(.#,X) is characterized as

dn t
fo(t):r J©) ds, t>0,n-1<y<n.

(n-y)den Jy (t—s)i-mv

Definition 2.4 [3,17] The Caputo derivative of order y for a function f € L'(.#, X) could
be written

DJf(t) =D} (f(t)-f(0)), ¢>0,0<y <L

Definition 2.5 ([53], Definition 4.59) The generalized Mittag-Leffler special function E, g
is defined by

o " a—B 1

z 1 A Pe ~

Eup@)=) 7=—,/ ——dr, o,>0,z€C,
— Clan+B) 2miJy, ¥ -z

1
where Y, is a contour which starts and ends at —co and encircles the disc |A| < |z|«
counter-clockwise and C denotes the complex plane. For short, set E,(z) = E;1(2).

Definition 2.6 [53] The Wright-type function is defined by

= (-2)" 1o (-2)" . =
0u(2) = HZ:; m = ; e 1)!F(noz)s1n(nyroz), O<ac<l,zeC.

Therefore we have the following property [53], Property 4.60:

_/OO o) dt = Ey(-z), zeC.
0

Presently, we are in a position to characterize the mild solution for the system (1.1)-(1.3).
For this, first we consider the subsequent system

CDYx(t) + I x(t) = F (1), (2.1)

x(0) = xq, (2.2)

where D% and — are just like described in (1.1)-(1.3).

Now, we first consider the classical solutions to the problem (2.1)-(2.2). Then, based
on the expression of such solutions, we define the mild solutions of the problem (2.1)-
(2.2). Finally, the relations between the analytic semigroup {T(¢)};>o and some solution
operators are obtained.

Lemma 2.2 ([47], Lemma 6) Using —<f to denote the infinitesimal generator of an analytic
semigroup {T(¢)} >0, then if F satisfies a uniform Holder condition with exponent B € (0,1],
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the solutions of the Cauchy system (2.1)-(2.2) are fixed points of the subsequent operator

equation:

Wx(t) = Ty (t)xo + ftSa(t —8).F(s)ds, (2.3)
0
where

1 1
T,(t) = — / S ATR(, ~ ) dr and  Se(t) = — / eR(A,~) d.
2mwi Jc 2mwi Jc

Here C is a suitable path satisfying A* ¢  + Sg for some \ € C.

Proof According to the definitions of (2.2) and (2.3), we modify the Cauchy system (2.1)-

(2.2) in the equivalent integral equation

1 L F(s) 1 bl x(s)
T@) Jo t—9=“"T(@) )y (t—s)=

x(t) = x + ds. (2.4)

Let A > 0. Making use of the Laplace transform,

o]

(Lx)(A) = /‘Ooe”“x(s) ds and (Cﬁ(t))()\) =/ e F(s)ds,
0 0
of (2.4), we obtain

Y By 1 5 dx(r)
(ﬁx)(k)—/o e [xo_I‘(a)/o P dr

1 5 F(r)
"T@ Jo -1

=/ooe”“x0ds
0
_/ooe“[ L S %x(f) dt]ds
0 F(a) (s—1)
sl 1 7
+/0 ¢ [F(a) 0 (s—f)“dr}ds

= [ A L)+ 5 (LF )0,

dr:| ds

(Lx)(X) + )\%d(ﬁx)(k) = %o+ A—a(ﬁf(t))()»),

o

(AL + ) (L)) = %xo (LT B) ),

(L)) = 2909 + ) g + (AT + )T (LF () (1)

Using A*(A% + &)™ = I — &/ (A% + &/)7., the above equation is then inverse Laplace trans-

formed to obtain

x(8) = T (£)xo + /tSa(t —5).%(s)ds.
0
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It is noted that .% satisfies a uniform Hélder condition with exponent 8 € (0,1). Hence, the
classical solutions of Cauchy system (2.1)-(2.2) are fixed points of the operator equation

t
Wx(f) = Ty (t)xo + / Su (t = 5).F (s) ds. N
0
In view of Lemma 2.2, we determine the mild solutions of the system (2.1)-(2.2).

Definition 2.7 A functionx:.# — Xis considered to be a mild solution of problem (2.1)-
(2.2) if x € C(#,X) fulfills the accompanying integral equation:

x(t) = Ty (£)xo + /tSa(t—s)f(s) ds, teJJ.
0

Remark 2.1 It is straightforward to confirm that the classical solution of the system
(2.1)-(2.2) is a mild solution of the same system. Thus, Definition 2.7 is well defined (see
[48, 54]).

Lemma 2.3 ([47], Lemma 9) Assuming —o7 is the infinitesimal generator of an analytic
semigroup, given by {T(£)};>0 and 0 € p(A), then we now have

Se(t) =« /OO r¢a(r)t°"1"[F(t°‘r) dr and Ty(t)= fw¢a(r)T(t“r) dr.
0 0

Here ¢, (r) is the probability density function characterized on (0,00) in such a way that
its Laplace transform has the form

g o (x)
/0 e ¢a(r)dr:2—x( x>0,
which fulfills
/ooo%(r)dr: 1 and /(;Oor”qba(r)drf 1, 0<p<Ll
Proof For all x € D(«7) C X, we have
n+.o)x= /000 e ™T(s)x ds.

Let

/ e Yo (r)dr=e,

0

where o € (0,1), ¥, (r) = %ZlS,KOO(—1)”r""”’IM sin(nma), and r € (0,00) (see [55]).

n!
Thus, we obtain

(A% + d)_lx = / e ST(s)xds
0

o0 o
= f at* e M T (t* ) dt
0
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= /Ooozt"‘_l [/00 e MYy () dr:|’]l‘(t°‘)xdt
0 0

= /wa[/we_”l/fa(r)dr]l‘(%)xﬁ dt
0 0 r r

= /-oo e (a /OO reo (r)t* VT (¢%7) dr) dt, (2.5)
0 0

where ¢, (r) = (é)r’l’é wa(r_Fl) is the probability density function outlined on (0, 00) in
such a way that

/(l)o,(r)dr:l and / rMo,(r)dr<1, 0<n<l
0 0

It shows from (2.5) that
1 ° _
Sa(t) = —,/e“R(,\“,—d)dh/ MW+ ) dt
e 0

= a/ r¢a(r)t“’1T(t°‘r) dr.
0
Then again, for all x € D(«7) C X, we notice that
1 o a
AT+ ) x= / 2L ST (s)x dis
0

:/ a(h)* e T (¢ ) x dt
0

oo [—
_ /O %%[e’(“w]ﬂ‘(t‘)‘)xdt

_ /O - ‘%%[ /0 e dr]’JI‘(t“)xdt
- /Ooo[/ooo _71[—)\;”6‘“’]1//0,(;”) dr]T(t"‘)xdt

[c ey dee]

= re o (r) drT (£ )x dt
o Jo

_ /Oooe-“[fooo wa(r)T(g)xdr} dt
= /Oooe‘“[/(;oo%(r)’ﬂ‘(tar)xdr] dt.

Thus,
T, (t) = i / TR~ ) di = / A0 + ) e
2wi Jc 0
[e¢]
:/ Go (r)T(tr) dr. 0
0

Before we characterize the mild solution for the system (1.1)-(1.3), finally, we treat the
following system:

DY [x(t) + 9 (6, x(8)) ] + Zx(t) = F (t,%(t)), te (sitinli=0,1,...,N, (2.6)
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x(t) =g(t,x(t)), te(tysili=1,2,...,N, (2.7)

x(0) = xo, (2.8)

where D¢, g;(t,%(t)) and —</ are the same as defined in (1.1)-(1.3) and %y € X, .#, ¥ are
appropriate functions.

We notice that the impulses in problem (2.6)-(2.8) start abruptly at the points ¢; and their
action continues on the interval [¢;, s;]. More specifically, the function x takes an abrupt
impulse at #; and follows different rules in the two subintervals (¢;,s;] and (s;, £;41] of the
interval (¢;, t;,1]. At the point s;, the function x is continuous.

By the results obtained in [24, 47, 56-59], we realize that the definition of mild solutions
for fractional evolutions is more involved than integer order evolution equations. Further-
more, to construct the solutions for impulsive fractional differential equations, we need to
effectively manage the fractional derivative and impulsive conditions due to the memory
property of fractional calculus [53, 60, 61].

From the property of the Caputo derivative, the general solution of the system (2.6)-(2.8)
can be composed as

%0 +4(0,x9) — 4 (t,x(t)) — ﬁ fot(t —8)* L/ x(s) ds
+ 1 Jo (&= )7L F (s,x(5)) dis, te[0,t),
&(6,x(2)), t € (ft,8],
dy -G (t,x(0)) - w15 Jo (£ = ) S x(s) ds
2 =1+ JoE— 9" F (s,x(5) ds, te(si,t), (2.9)
&i(t, x(2)), te(tysil,i=12,...,N,
di = G (t,%(8) - 7y Jo (& = )7 x(s) s
+ 155 Jo (£ = 9" F (s5,x(5)) ds, t € (sitis1),

where d;, i =1,2,...,N, are elements of X. From equation (2.9) and the function x being
continuous at the points s;, we have, fori=1,2,...,N,

x(t) = diXspt10) — g(t,x(t)) - ﬁ /0 (£ — )% aZx(s) ds
1 ! oa-1 g
+ m /(; (t—s5)*"F (S,x(s)) ds, (2.10)

where dy = xo + %(0,%0) and x(s,,,) is the characteristic function of [s;, £;1). That is,

11 te [Si) ti+1)y
X[S:‘:tm)(t) = .
0, otherwise.

Presently, partly using [8, 56] and applying the Laplace transformation for (2.10) we get

u() = 10+ ) e =1 (WL ) e

(0T + ) W) + (W + ) (),
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where
u(d) = /00 e x(s) ds, v(A) = /00 e‘“ﬁ(s,x(s)) ds,
0 0
w() = /00 €Y (s,%(s)) ds.
0

At that point by the same calculations in [56] and the properties of the Laplace transform,
we obtain

x(t) = Xisio0) Ta (£ = $1)di = X(ty,1,00 T (£ = 8:)di — 4 (£, %(2))
t t
+ / 'S (t - s)%(s,x(s)) ds + / Se (£ - s)f(s,x(s)) ds.
0 0
Here T, and S, are given by Lemma 2.3. Hence, we have

x(t) = To(t - s)d; =9 (£,2(0)) + f St 99 (s:x(5)) ds
0

+ /t St - s)ﬁ(s,x(s)) ds, teEl[siti).
0

Presently the time has come to decide the estimations of d;, i = 1,2,...,N. Utilizing the
fact that x is continuous at the points s;, we get

Gi(six(s:)) = di =4 (si,x(s1)) + / o Sa(si — )9 (s, x(s)) ds
0
! Sot i~ F ’ ds.
+ fo (s; — 8).F (s,%(s)) ds

Therefore, we obtain
d; = gi(six(s:)) + ¥ (si,%(s:)) — /0 " A Sulsi- )Y (s,(s)) ds
- /OSi Se(s; — s)ﬁ(s,x(s)) ds.
Therefore, a mild solution of the model (2.6)-(2.8) is given by

Ta (820 +4/(0,x0)] - (£, %(2))
+ [y Sa(t — )9 (s,x(5)) ds

+ [y Salt —5).F (s,x(5)) ds, te[0,4],
gl(trx(t))r te (t1,51],
© To(t —s1)di — G (6, %)) + [ o/ Sa(t — )G (s, %(s)) ds
X =
+ [y Salt —5)F (s, %(s)) ds, t€ (s, ta],
&i(t,x(2)), te(t,s),i=1,2,...,N,

Ty (t - s;)d; — 9 (t,x(¢t)) + fot 'Sy (t —8)4(s,x(s)) ds
+ [y Salt = 9).F (5,x(5)) ds, t € (sirtia),
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where

d; = gi(six(s:)) + 9 (si,%(s:)) — /Si A Sy(si — )9 (s, %(s)) ds
0
- /Si Sa(si —8)F (s,%(s))ds, i=12,...,N.
0

Next, we show that this mild solution satisfy the system (2.6)-(2.8). To prove this, first
we prove the following crucial lemma.

Lemma 2.4 Assuming —</ is the infinitesimal generator of an analytic semigroup, given
by {T(t)}s50 and if 0 < a < 1, then

CDY[Tq(t)x0] = — [Ta(t)x0]

and

CD“ (/ Se (£ - s)[ﬁfg(s,x(s)) + (s x(s))] )
= —,@7/ —s m/% s, x(s )) + ﬁ’(s,x(s))] ds + %g(t,x(t)) + y(t,x(t)),

where T, (t) and S, (t) are the same as defined in Lemma 2.2.
Proof In perspective of T, (¢), we have

L(To(t)x0) = A“"R(L*, —o )x0. (2.11)
Therefore, we obtain

LEDETO)0)
= 2% L(Ta(8)x0) - 2% 0
= AR (AT + ) x| - AT (AT + )T (AT + o o
=280 + ) A = (04T + ) Jxo
=— AN (W + ) o
=~ A R(AY, — ) xo. (212)
In view of (2.11) and (2.12), we have

CD(Z [Ta(t)xo] = —%[Ta (t)xo].

In the same way, we have

£</ Sa(t = 5)[ Y (s,%(5)) + .F (s, x(5)) ] 4 )

= L(Se(0) L(AY (£, x(2)) + .F (£,x(2)))
=R(X*, - ) L(AY (t,x(0)) + .F (t,%(t))) (213)
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and

,c(CD«; ( ]0 Sult = [ (55(6) + F (5,5(5))] ds))

A [R(A, - ) L(A Y (t,x(0) + F (£,4(2)))] - 2% -0

AT+ - )R\, ~ ) L(AY (t,%(t)) + F (t,%(2)))
= (M1 + A )R(, — ) L(AY (t,%(2)) + F (t,x(2)))
- AR\, - ) L(AY (t,x(0)) + F (£,x(2)))
=—d R\~ ) L(AY (t,%(0)) + F (t,x(2)))
+ L(AY (6, x(2)) + F (£,x(2))). (2.14)

Thus, it follows from (2.13) and (2.14) that
CD‘;‘ (/ Se (£ - s)[,ngg(s,x(s)) + f(s,x(s))] ds)
0

=—af /t Sa(t = )[FY (5,%(5)) + .F (s,x(s)) | ds + Y (t,(t)) + .F (£, x(2)). 0
0

Now it is time to show that the mild solution satisfies the system (2.6)-(2.8). From the

above discussion, we have
x(t) = ’]I‘a(t)[xo + g(O,xo)] - g(t,x(t))
+ /t Su(t —s) [,Qfg(s,x(s)) + ﬁ(s,x(s))] ds, tel0,4].
0
That is,

x(t) + g(t,x(t)) =T, (2) [xo + %(O,xo)] + /Ot Se (t - 5) [&7% (s,x(s)) + f(s,x(s))] ds.

Taking the Caputo derivative on both sides and with regard of Lemma 2.4, we have

D (x(t) + 9 (t,x(2)))
= D (To(8)[x0 + 4(0,x0)])

+ CD‘; (/t Se(t —=3) [ﬂg(s,x(s)) + cg‘\(s,x(s))]) ds
0
=~/ {Ta(t)[x0 + 9(0,%0)]} - /t Sa(t = 8)[FY (s,x(5)) + F (s,x(s5)) ] ds
0
+ Y (t,x(0)) + F (£,x(t))

= - [Ta(t)[xo + %(O,xo)] - %(t,x(t))

+ /t Se(t =) [ﬂi%(s,x(s)) + f(s,x(s))] ds} + ,?(t,x(t))
0

= —d/x(t) + F (t,x(2)).
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That is,

DY (x() + 9 (6, x(0))) + Fx(t) = F (£, %(2)).
In a similar manner, we have

x(t) = To(t - s)d; — 9 (t,%(t))

+ /Ot Sa(t = )[F Y (s,%(5)) + F (s,x(5)) | ds, ¢ € (si,tisa],

where

d; = gi(si,x(si)) + %(si,x(si)) - /OSi oSy (s; — s)%(s,x(s)) ds

- /OSi Sa(si —8).F (s,%(s))ds, i=1,2,...,N.

That is,

x(t) + 9 (t,x(8)) = To (¢ — si)d; + /: Sa(t = s)[FY (s, x(5)) + .F (s,x(s)) ] ds.
Taking the Caputo derivative on both sides and in view of Lemma 2.4, we obtain

DY (x(t) + 9 (£, x(2)))
=D} (Tt - s1)d;)

<pr ( | Sult - [ /Y (5,56) + y(s,x(s))]) ds
-~/ Tle-spd} - o | Sult— [ A (s5(5)) + F (5,4(5)) ] ds
+ Y (t,x(0)) + F (t,(t))
=—d [’H‘a(t —si)d; — 9 (t,%(1))
; /0 Sult = [ A (55(5) + 7 (5,5(5))] ds] + F(62(0)
= —/x(t) + F (t,5(2)).
That is,
DY (x(t) + 9 (6, x(0))) + Fx(t) = F (£, x(8)).
From the above discussion, we observe that our definition of a mild solution satisfies the
given system (2.6)-(2.8).

In accordance with the above discussion, now we present the mild solution for the sys-
tem (1.1)-(1.3).
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Definition 2.8 A function x : (0o, T] — X is called a mild solution of the model (1.1)-
(L.3) if xo = ¢ € B, x(-)| .+ € PC and for each s € [0, £) the function &7 S, (¢ — $)¥ (s, Xo(s,x,))
is integrable and

To ()15 (0) +4(0, 5 (0)] = F (&, (1.0

+ o @ Salt = )9 (5, %g(5.x)) ds

+ Jo Salt = ) (5, %g5)»

Jo €5, 7, %g(c 1) dT) ds, telo.al
x(8) = &t %), tetpsli=12....N, 219
To(t - s)di — G (t, %o (1))

¥ fot A Sa(t — )Y (8, %0(5,x,)) ds

e Sut= 97 5 5n

I e(s, T %g(z,x)) dT) dis, te(sitial,

where

si
di = gi(si: xg(s,-,xsi)) + E4(513 x@(si,xsi)) - / dSa (Sl' - s)%(s, xg(s,xs)) ds
0

Si s
_ / Se (s — s)ﬁ(s,xQ(s,xS),/ e(s, T, %oz x,)) dt) ds,
0 0

i=1,2,...,N. (2.16)

Before we complete this segment, finally, we demonstrate some long-recognizable re-
sults from the Hausdorff measure of non-compactness.

Now, we specify the Hausdorff measure of non-compactness xy being xy(B) = inf{e >
0; B can be secured by a finite number of balls of radii smaller than ¢ in Y}, for abounded
set B in any Banach space Y.

In this manuscript, we designate by x¢ the Hausdorff measure of non-compactness of
C([0, T1,X) and by xpc the Hausdorff measure of non-compactness of PC.

Now, we turn to the statement of the Darbo fixed point theorem.

Lemma 2.5 [1] If W C Y is closed and convex and 0 € W, the continuous map Y : W —
W is a xy-contraction, and if the set {x € W : x = A X«} is bounded for 0 < X <1, then the
map Y has at least one fixed point in V.

Remark 2.2 For more details on this topic we suggest the reader to read [62], Defini-
tion 2.5, Lemmas 2.4, 2.8, and 2.9.

3 Existence results
In this segment, we show and demonstrate the existence of solutions for the model (1.1)-
(1.3) under the Darbo [1] fixed point theorem together with Hausdorff measures of non-
compactness.
Presently, we itemizing the subsequent suppositions:
(H1) The function ¥ : .¢ x %, — X is continuous and we can find constants 8 € (0, 1),
Ci >0, and C; > 0 in such a way that ¢ is X -valued and fulfills the subsequent
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assumptions:

()P4 (t,401) = ()G (&, 92) | < Cillvn = Vol €I, 92 € By
[, 9)|x < ClY Iz, +Co te Iy eBy

(H2) The function e: 9 x %), — X fulfills:
(i) For every (¢,5) € 2, the function e(t,s, ) : %, — X is continuous and for each
Y € %y, the function e(-, -, V) : Z — X is strongly measurable.
(ii) There exist a function m € L}(.#,R*) and a continuous non-decreasing

function Q : R* — (0, 00) to ensure that
”e(t,s, 1/f)HX < m(s)Q(||1p||,@h) fora.e. t,se€ .,y € By.
(iii) There exists u € L}(# x .#,R*) to ensure that

X(e(t,s,H)) < po(t,s)[ sup x(H(@))] fora.e. t,s € .7,V € By,
—00<0<0
where H(0) = {v(0) : v € H} and y is the Hausdorff measures of
non-compactness.
(H3) The function % : .# x %), x X — X complies with the subsequent condition:
(i) Forae.te 7, (Y,u) — Z(t,¥,u) is continuous and for all (, u) € B, x X,
t — Z(t, ¥, u) is strongly measurable.
(ii) There exist a function ¢ € L}(.#,R*) and a continuous non-decreasing

function §) : R* — (0, 00) to ensure that
||f(t,1/f,u)||x < ﬁ(t)SZ(lll/fHQh + ||M||), (t,V,u) e I x By x X

(iii) For every bounded sets D C %y, F C X, there exists a positive function
n € L}(#,R*) in such a way that

X(FEDE) =n® sup x(DO)+x(F)] forae.te.,

—00<6<0

where D(0) = {w(0) : w € D}.
(H4) The functions g;: (t;,s;] x B, — X,i=1,2,...,N, are continuous, and fulfill the
subsequent conditions:
(i) There exist constants ¢;,¢; >0,i=1,2,...,N, in such a way that

lgi@t )| <cill¥lla, + & te(tys] ¥ € B

(ii) There exist constants fi; > 0 such that, for each bounded D C %},

x(@(D)) <1, sup x (D))

—00<f<0

fora.e. t € (t,s;],i=1,2,...,N, where D(0) = {u(0) : u € D}.
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(H5) For every bounded set A C %, the set {t = gi(t, Xp(t.x,)) : Xo(tx) € A}
i=1,2,...,N, are equicontinuous in %,.
(H6) The following inequalities hold:

7 Ml_,gI‘(ﬂ+1) Taﬂ %
£ = (M +1)[(M0 + W?)Cl@l] <1

and

. M 1 * T T
Aozlrga)lc\[(/\/l+1){ui+%/ n(s)ds} <1
<i< 0

Remark 3.1 We represent ji* = fos wu(s, ) dt < oo.

Theorem 3.1 Assume that (H1)-(H6) hold, and we expect that u* =1 — £ > 0, then
the model (1.1)-(1.3) has at least one mild solution on .7, due to the fact fOT m(s)ds <

+00 ds
o [env 21 ) Y (9)+906) and

max Z; (M + 1)|:ci + MoCy + (3.1)

1<i<N

MigT(B+1) T“ﬂ} .
Faf+1) ' B '

Proof We will transform the model (1.1)-(1.3) into a fixed-point problem. Let the operator
Y : Br — PBr be specified by

<), t € (—00,0],
To(H)[5(0) + 4(0, 5 (0)] = G (¢, %0(2,x,))

+ [y A Salt = )9 (5, %p(5x,) ds

+ fot S (t = 8)F (8, %g(s.x5)»

o €(8, T, %g(ex)) dT) ds, tel0,4],i=0,12,...,N,
@l %), te(tysli=1,23,...,N,
T (t —s)di — G (&, %o(tx,))

+ [y A Sa(t — )9 (5, Xp(s.x,)) ds

+ [y Salt = ). (5, %o (5,19,

fos e(s, T, %o(zx,)) A7) dis, te(sptial,i=1,2,3,...,N,

(Tx)(2) =

with d;, i=1,2,3,...,N, defined by (2.16).
It is evident that the fixed points of the operator Y are mild solutions of the model (1.1)-
(1.3). We express the function y(-) : (—oo, T] — X by

s(®), t<0,
Ta(H)s(0), te.?,

y(t) =

then yo = ¢. For every function z € C(.#,R) with z(0) = 0, we take z characterized by

0, t<0,
z(t), teSf.

z(t) =
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If x(-) fulfills (2.15), we are able to split it as x(¢) = y(¢) + z(¢), t € .#, which suggests x; =
y¢ + 24, for each ¢ € # and also the function z(-) fulfills

T ()90, 6) =G (& 2p(t2149) + Yoltzyn)

+ fot A So(t = )G (8, Z0(s,25435) + Volszs4y9) AS

+ fot Sa(t = $)F (5, Zg(s20455) + Volsizsss)»

fos €(S, T, Zg(r,zc +y0) + Volrze +y)) AT) dS, te[0,4],i=0,1,2,...,N,
2(8) = 1 (6 Zote,zreye) + Voltzesye)s te(t,s),i=12,3,...,N,
To(t = 5:)di — Gt Zott170) + Voltzrsnn)

+ [y Sy (t — )95, Zo(s,254y5) + Volsizstys)) A5

+ fo F (8, Zo(s,25435) + Volszsrys)s
fO e(sx Ty 2o(t,zr +y7) T Vo(r,z¢ +yf)) dr)ds, t € (s tiv1l,
where
di = iSis Zo(sizq+75) + Volsizs+95)) + 9 (Sis Zolsizs+s) + Volsizs+s)

/ Sy (si — )9 (s, Zo(szs+ys) T yg(s,zs+ys)) ds
_/ S (si _5) (S, Zo(s,zs+ys) T Vols,zs+ys)s
0
S
/ e($, Ty Zo(r 20 +y7) +yg('r,zf+yf))dt> ds, i=1,2,3,...,N. (3.2)
0
Let #9 ={z€ B :20=0€ By}. Let || - ||@(% be the seminorm in %Y. described by

z€ B,

lzll g0, = f;BIIZ(t) I +lzoll, = ts:}pHdﬂ! -

as a result (%2, ]| - ll0) is @ Banach space. We delimit the operator Y : B9 — B by

Tou(®)9(0, ) =Gt 2o(tz43) + Voltiz+y0))

+ Jo TSt = G (5,Zp(5.505,) + Volsiesr9) S

+ [y Salt = 8).F (8, Zg(s.zye9) + Volsizsrre)s

Jo €05, T, Zp(.2090) + Volz.zeye) dT) ds, te(0,4},i=0,1,2,...,N,
(Y2)(8) = | gi(ts Zo(ezrne) + Voltrsrn)s te(tssili=1,23,....N,
T, (¢t - S,’);ii — Y (t, Zo(t,20490) + Voltizerye)

+ [y ' Salt = 8)9 (S, Zo(s.2505) + Volsizerye) dS

+ Jo Sa(t = )-F (8, Zg(s.zgsy) + Volszser)s

f(f e(S, T5 Zo(r 2 4y2) + Volr,z04y2)) AT) dis, t € (si, tic1l,

with d;, i =1,2,...,N, defined by (3.2).
Thus, the operator Y has a fixed point if and only if Y has a fixed point.
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Remark 3.2 From the above discussion, we have the subsequent estimates:
(i) For A € (0,1), then

oy
”ZQ(Sst*J’s) + Yolszsys) [l 3,

) AN P P2 eRen]

< 75| 2|, + (25 +J°)zollz, + Z5 |y6)| + (Z5 +T°)lIs | 3,
< 2|2, + ZiMH sl z, + (Z5 +T°) s,

< Z| |, + (25 +J° + ZEMH) s 3,

< 7|2, +cm

where ||2*; = sup, -, 12" (s)llx and ¢, = (Z5 +]¢ + 2 MH)|| || ,.
(ii) In the perspective of Theorem 2.1 and for any x € X and S € (0,1), we have

|| A'So(t = 8)YG (8, %g(5.x,))

I
= “42/17’380,@ —s)yfﬁ%(s,xg(s,xs))

%

< [a / 1o (r)(t — )/ PT((¢ - 5)°7) dr]ﬂf PG (s, %(s.1))
0 X
<aM g(t-s)P? |:/ P o () dr] H dﬁ%(s,xg(s,xs)) |X. (3.3)
0
On the other hand, from fooo r W, (r)dr = 1;((11_35—,)), for all g € [0,1] (see [56], Lemma 3.2),
we have
o © 1 ra+p)
p _ = - _vtP
/(; P o (r) dr /0 T Yo (r)dr Tt ap) (3.4)
Then, by (3.3) and (3.4), it is easy to see that
aMy_gT(1+B) 5
”,Q{Sa(t — S)g(s,xg(s,xs)) |X < T+ ap) )b ”427 %(s,xg(s,xs)) |X‘ (3.5)

It is obvious that the function 8 — /T, (¢ —6)9 (0, %,(s,xy)) is integrable on [0, £) for every
t>0.
(iii) In view of [56], Lemma 3.2, (3.5), and (H1), we have

IT.(0%0,9)], - H / 6u (VT (Er) dr %(0, )

X
= M|[(@)| ") ()90, )|
< MMo[Cilislaz, + C),

where Mg = ||(27)~#, and

”g(t’ Zo(tzi+ye) + Voltzriye) ”X

= (@) (VG (2ot + ot |
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< Mo[Ci| 2543 + Yottizrsn | 5, + C2]
< Mo[Gi(Z5 |2, + cn) + Co]
< MoCi(Zf |||, + en) + Mo Co,

|9 (51 Zo(s125; 435 + Votsis o950 |5

= ” (”d)_ﬂ(ﬂ)ﬁg(si’ZQ(Sinsi+J’s,-) +y9(3ivzsi+3’sl-))||x

S MO[CI Hzg(s,v,zsi +y5l.) + yQ(Sivzsi+ysi) '%h + C2]
= Mo[G(Z] ][], + ) + C]

< MoCi(Zf|| 2 ”s,- +¢n) + MoCy,  t € (s tinl,

t
H / ()P So(t = $)(A) G (8, 20(5.20090) + Valsizasy) dS
0

X

L aMipT(B +1) /0 (=97 (CUZ |2 |, +en) + Co) ds

C(ap +1)
aMipT(B +1) * ¢ af-
= W(Cl(gl ”ZA||t+C") +C2)/0 (t—s)*Pds
Mi_gT(B+1) § b
: %(Q(@l [, +en) + Cz)lf’ te[0,4],

f () PSa (51 = )DL S Zatommn) + Vatsmmay) d
0

X

(s:)*F

<MTED (e 2], ) + o) o tebutil,

I'(ep +1)

t
/ (52{)1_/380: (t- S)(%)ﬂg(s, Zo(s,zs+ys) T yg(s,zs+ys)) ds
0

X

MigD(B+1) T
< SRR G ] re) +C) T telO T

(iv) From the assumption (H4) with the above discussion, we get

||g,-(t, Zo(taty) T Yoltzsn) ”X
=¢ sz(tvztﬂfz) + Yoltzr+y) ||33h +G
<a[2¢|2 Ht +Cu| + G LE (tsil,

“gz’(sivze(s,uzsi +5) + Volsizs; +95) ”x

A‘ ~
=¢ “ZQ(SI',ZSi+ySi) + yQ(SinsﬁJ’s,-) By, +¢i

< Cl‘[@{k HZ)\ “51‘ + Cn] +Ci,  teE(Sitil

(v) In perspective of the suppositions (H2)-(H3) and (3.4), we obtain

t
f Szx(t - 5)'?(5: Zo(s,zs+ys) T Yo(s,zs+ys)s
0

s
/ e(s, T ZQ(T,ZrJrJ’r) + yQ(Terﬂ’r)) dT) ds
0 X

Page 19 of 39
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T e 5T - 5r) dr

oz
X F <S’ Zo(s,zstys) T Volsizstys)s

X

<a«a |:/0 rde(r) dr:| /0 (¢ —s5)*t || 'H‘((t - s)”‘r) ||

S
/ €(S, T5 Zo(z 20 4y7) +y@(r,zf+yr))d7> ds
0

X

aF
7 (S’ Zo(sizstys) T Volsizstys)r

S
/ €S, T5 Zo(z 20 4y7) +y9(r,zf+yr))d7> ds
0 X

aM t o .
< m/ (t—S) 119(5)9(@1 ||Z)L||S+Cn

/m @*HZAH +c,,)dt>ds

L
< F(oz-:l)/o z?(s)Q(@l*HzA”S+cn

+ /S m(0)QZ; 2|, + cu) dr> ds, tel0,t],
0

Si
/ Sa (Si - S)y (S’ Zo(szs+ys) T Volszs+ys)r
0

S
/ e(S, T’ZQ(T;Z':*J’I) +yQ(T,Zr+J’r))dT> ds
0

M) [ ,
< asD / ﬁ(s)gz(% [l + e

o[ 2121, vadr s retsinal

X

/ Se (£ - S)'gz(s’ Zo(szstys) 1 Volszstys)r
0

S
/ €(8, T, Zo(r v 40 +yg(m,+y,))dr> ds
0

MT(X L N
st

+ /sm(r)Q(@f‘ | ”T +Cp) d‘L’) ds, tel0,T].
0

X

(vi)
“ %(t, Zg(t,z;uyt) + y@(t,z;“+yt)) H X
= H (M)iﬂ (ﬂ)ﬂ [g (t’ Zg(t,z;"ert) + yQ(t:Z?*')’t))

=G (& Zo(tzey) + J’Q(t,Zt+yz))] ” X

= Mo ” ()’ [%(t, Zg(t,z;uyt) +y9(m?+yz))
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Yt Zo(t,zr490) +yQ(t:Zt+yt))] | X

t
/0 (%)17}9 St —s) (d)ﬂ [% (S’ Zg(s,zfﬂfs) + yQ(Syng’s))

= 9(8, 2p(s,2595) + yQ(Sst*'J’s))] ds
X

Mi_gT(B+1) £F .,
=< WIF /0 1[4 (5.2} 51y + Volsiiony)

— 9 (S, Zg(s,25475) + yQ(s,zﬁys))] ”X ds, tel0,t],

” /0 ()P (s; — s)()P [{4 (s, Zg(s,z?+y5) + yg(s,z;?+ys))

- g(s’ ZQ(S:ZS"'J’S) + yQ(Sst’fJ’s))] dS
X

- My_gT(B+1) (sp)%f [
F(ep+1) B Jo

- g(sr Zo(s,zs+ys) T yg(s,zs+ys))] ”X ds, te(sitil]

[V (9 (5 2y + Tetozton)

(vii)

t
/ Sa (t - S) I:gZ (S’ ZZ(S,Z?"'J’S) t Yol +ys)r
0
S
/ €($, ToZo(r,204y0) + Volr 2teyr) d‘r)
0

o~
- (Sr Zo(s,zs+ys) T Volszs+ys)r

S
/ €(S, T5 Zg(r 20 437) +yQ(T:Zr+yr))dT>]
0

Mg [t
<
- F(Ol + 1) 0

S
/ €S, To Zo(t,204y0) +3’Q(r,Z¥+yr))dT)
0

ds
X

n
7 <S’ Zg(s,z§‘+ys) * Vols,zf+ys)r

- y (S’ ZQ(Sst+J/s) + yQ(S:ZS‘*')’s)’
S
/ €(S, T5 Zo(z 20 437) +y@(r,zf+yr))d7> H ds, tel0,4l,
0 X
Si
”/ Sa(si — 5) I:gZ (S’ Zg(s,z?ers) * Vo(s.i+ys)r
0
S
/ e(S’ Ty Zo(v, 2t +y,) T yg(r,z¥+yf)) d‘L’)
0
-F (5’ Zo(s,zs+ys) T Volszs+ys)r

ds
X

s
/ e(s, T ZQ(T,ZrJrJ’r) + yQ(Terﬂ’r)) dT)]
0
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a n
& <S’ Zg(s,z:-'erS) * Yols,2f+ys)»

M) [
“T+D /0

/ 6(57 Ty Zo(v, 2t +y,) T yg(r,z¥+yf)) d‘L’)
0

- LOZ<5’ Zo(sizs+ys) T Volszstys)r
S
/ €S, T5 Zg(r 20 4y7) +3’Q(r,Zr+yr))dT> H ds, te(sytial
0 X
(viii) Now, we define (T12)(¢) as

Tou(®)9(0, ) =Gt 2o(tzr43) + Voltiz+y0)

+ [y A Salt —s)

X G (8, Zg(s,254y5) + Vols,zs+ys)) A4S tel0,t],i=0,1,2,...,N,
0, te(tysi,i=1,2,3,...,N,
To (¢ = 8 (5ir Zo(s1,26,475,) + Volsizs; +95))

— Jo' FSulsi—3)

X G(8, Zo(s,25495) + Volszstys)) 45

(N12)(0) =

=Yt Zo(tzy) + Yoltzrin)
+ [y /St —s)
X 9 (s, Zo(s,zs+ys) T yg(s,szrys)) ds, te(sitil,i=12,3,...,N.

Presently, we obtain

|(T12)(0) - (F12)(0)|
=< H (JZ{)_‘3 ” ” (ﬂ)ﬂg(t’ Zg(t,zﬁyz) + yg(t,zﬁy;))

- (d)ﬁg(t’ Zo(tzriye) t Voltzriyr) ”X

+

t
/ ()P Sa(t = ) [(A) L (5, Zo(s.z5y0) + Votsassr)
0

- (d)ﬂg(srze(s,zsm) +yQ(5:Zs+J’S))] ds -

< MOCI ”Zg(t,zﬁyt) - zQ(t,zﬁyt) ”%h

M1_ﬂr(ﬂ +1) L‘(lxﬂ

z -z .
F(ap + 1) B 1l o(t,ze+yt) o(t,zt+yt) ||93h

Since

”Zg(t,zt+yt) - Eg(t,Ztﬂ'z) ”@h
<2t 20|y + (25 +T°) 20l 8, — 2|20 |« — (Z5 +T°)IZ0l 5,
= 720 - 200

= Dz -7l .

Page 22 of 39
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we have

|(fi2)(@) - (T2

Ml_ﬁr(ﬂ +1) ttllﬂ

< Mocl-@fFHZ—E”@g + WFCI@I*HZ_EH@%
% Ml_ﬂr(ﬂ + 1) tlaﬁ " _
= |:M0C1@1 + W?Cl@l ||Z_Z”@(%; te[0,t],

|(T12)(2) - (T12)(0)|
= “ Tc{ (t - Si) H;’Z(X) |:“ (42{)7}8 || || (ﬂ)ﬁg(si’zg(siﬂsiﬂ’s,-) + yQ(SinsﬁJ’si))
- (d)ﬁg(sl” EQ(S:':ZSL' +}’s,-) + yQ(Si'Zsi +J’si)) ”X

+

f ()P Sa(si = ) [( AL (5, Zo(s.zsy) + Votsassr)
0

J

+ ” ()P H ” ()4t Zo(taye) T Yoltzin)

- (@4, Zottzeye) t Voltasne) “X

— (@)Y (s, Zo(s,zs+ys) + yQ(s,zsﬂ/s))] ds

t
. / (D) PSa(t — )[( D)L Zatormrp) + Tatsasep)

0

— (@) (s, Zo(s,zs+ys) + )’g(s,mys))] ds
X

MugT (B +1) (s)*°

SM[MoQ@fIIZ—EII,@g + C1@1*||Z—leggg}

Flp+1) B
* = M - F(ﬂ + 1) (ti+ )aﬂ % —
+ MoCL 27 122 g + 1'1‘(2,3+1) ; G2 N1z~ 2 g,

< [(M + )M C o

MigT(B+1) o @) Ms)*P _
F(p + 1) C1@1{ 5 + 5 ”IIZ—leggg,

t € (s Ll
and

|(T12)(@) - (T12)(0)]

My_gT(B+1) T
Fag+1) B

§(M+1)|:M0C191*+ C1@1*:|||z—2||{@(%, te s

Now, we enter the main proof of this theorem. Presently, let us demonstrate that Y has
a fixed point. For greater comprehensibility, we divide the treatment into a few steps.

Step 1: To use Lemma 2.2, we set up a priori estimates for the solutions of the integral
equation z = Az, A € (0,1). Let z* be a solution of z = Az, A € (0,1), z € PC. From the
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assumptions (H1)-(H4) together with the Remark 3.2, we obtain, for ¢ € [0, #],
|2 = [Ta®] 45 |90 ) + |9& 2ozt + Yotearer) |

¢
+ / A Sa(t = )G (8, Zp(s,25+5) * Volszs+y5)) A4S
0

X

+

t
/ Se(t—s)F (S» Zo(s,zs+ys) T Volszs+ys)s
0

S
/ €(8, T5 Zp(r 20 +y7) +yQ(T:ZT+yT))dT) ds
0 X

< MMo[Cilisllz, + Co] + MoCi(Z5 |||, + cn) + MoCy

My_gT'(B +1) . 8
Mt D e r21, v a) + )L

My tﬁ(s)gz(@f”zknsﬂﬂ | Sm(f)sz(@;knzwhﬂn)df) s
0

T+,

Forany ¢ € (¢,s;],i=1,2,...,N, we have

”Zk(t)” = ”gi(t’ Zo(tat+ye) +J’9(t,2z+yt))||x = Ci”Zg(t,Zﬁyr) * Yotz “%h +a

< Ci[.@f ||zA Ht + cn] +Ci.
In the same way, for any ¢ € (s;,£41], i =1,2,...,N, we obtain

”Z)\(t)” = ”Ta (t - Si)”g(x) |:||gi(si: Zg(si,zsi+ysl.) +yg(s,',zsi+y5i))||x

+ ”g(si’zg(sivlsﬁysi) +yQ(5inSi+ySi)) |X

+

Si
/ 2 Se(s; — )9 (s, Zo(s,zs+ys) + Volszstys)) AS
0

X

+

Si
/ Se(si —8)F (5: Zo(szs+ys) T Volszs+ys)r
0

J

¢
/ 2 Se(t —8)¥Y (s, Zo(s,zs+ys) T yQ(S,Zs+ys)) ds
0

S
/ €(8, T5 Zp(r ze +7) "’yg(r,szf))df) ds
0

+ ”g(t’ Zo(t,ze+yt) +yQ(t,Zt+;Vz))||x

+

X

+

t
/ Se(t—5)F (Srzg(s,zsws) * YVo(szs+ys)r
0

s
f e(s, 7, Zo(t,zr+yr) T yg(r,zr+yf)) d‘[) ds
0

X
< M[ci[@l* |24, +en] + i+ MoCUZE (|2, + €n) + MoCe
Mg (B +1)
I'(ap +1)

M(s;)*
T+ /),

(s:)*?

(@121, +) + )

l ﬁ(s)gz(%* 1], +cn

Page 24 of 39
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+ /sm(t)Q(@l* |12, +cn) dr) ds]
0

+ Mocl(%* sz Ht + c,,) + MyCy

ML (B +1) \ ()
D )2 e v )
M(tin)* [* .
" T +11) /0 19(5)9«(% |2, + e

+/ m(D)QZ; |2, + cn) dl’) ds.
0

Then, for all £ € .#, we find that

1

|# @] < ¢+ M+ 1’[(“ PG TRy O

MM+ DT [* .
e /0 ﬁ(s)Q(_@l A

+ /5 m(t)Q(Zy |7 ||r +Cp) dr) ds,
0
where

C* = max {MM()[Clng‘”ggh +Co]+ (M + 1)<M0C2 +G

1<i<N

Mg (B +1) T“f‘)}
Fep+1) g )

Thus

D5\ 2|, + en < e +9f‘C*+_@1*(M+1)|:Q+M0C1
T+ B

9* Ta t
+ %/0 0(3)52(@1* sz ||S + ¢y,

of
ek (CE N

+ / m(D)QZ; |2, +cu) dr) ds.
0
From (3.1), we realize that

Fap+D) O P

€= max 7 (M + 1)[05 + MoCp +

1<i<N

Hence

* o t
74 sz Ht +c¢p < %I:cn +9;C" + M/ ﬁ(s)gz(@f sz Hs +c,
0

[N +1)

. /OS m@QAZ; |2, + ) "”) ds}‘

of
M B DT @i, e

MipI(B+1) Taﬂ:| <1

Page 25 of 39
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We conceive the function 8 characterized by
B () =sup{ Z; || ()| +cn:0<s<T}, 0<t<T.

Because of the aforementioned inequality, we maintain, for t € .#,

D MM +1)T*

A i * ok
,B(t)fm[c,,+_@lC+ NEE)

X [otﬁ(s)gz<ﬁx(s) + /Osm(t)Q(,Bk(r)) dr) ds].

Let us refer to the right-hand part of the overhead inequality as v*(¢). Then we keep B*(¢) <
v (¢) for all t € .#. Then we obtain

A 1 * vk
0)=—|c,+ZFC*|.
v*(0) M*[C+1 ]

This leads us to the accompanying inequality for t € .#,

MM +1)T*
IMNa+1)

! Py * s
X/o z&‘(s)Q(v (s)+f0 WI(T)Q(V (t))dr) ds:|,

1
VHE) < —*[cn + DECH +
"

where

DEMM +1)T*

(o) = A2 ﬁ(t)gz(w(m /O m(s)sz(v*(s))ds).

Next, we weight the function
t
0t (t) = V() + [ m(s)Q(v'(s)) ds.
0

Then we produce n*(0) = v*(0) and v*(¢) < n*(¢) for all ¢ € .#. Applying the non-
decreasing character of ), we obtain

(@) < (V) + me)Q(v )

< wﬂ(tm(nl(t)) +m)Qn* (@), aete.s.

w T (a +1)
We characterize the function 7(t) = max{%ﬁ(t), m(t)}, t € &, which suggests
that
A t / .
W
QUn*(@)) + Qn*(2))
and hence

() ds t T oo ds
_ 2 | )4 in(s)d L
/WO) Q06 + 20) —/o (s) Sffo ls) “fnx@ Q6 + 20)
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which indicates that the set of functions {#*(:) : A € (0,1)} is bounded on .#. This reveals
that the set {z*(-): 1 € (0,1)} is bounded on .#.

Step 2: Now, we demonstrate that Y : %9 — %% is continuous.

Let {z"}%°, € %9 with 2" — z in %Y. Then we can find a number g > 0 in such a way
that ||z (t)|| < ¢ for all # and a.e. t € .#, so 2" qu ={ze %0 IIZIIQO <q} < % and

z € B;. From Remark 3.2, we have ||z + Yoo |, <45 t € F. By (H2), we obtain

(2] +yt)

¢
F <t Zg(tzt +yt) +y9 (t,zf +9t) _/0 (t 5z (sz +s) +yQ (s,2¢ +J’s)) dS)
t
- 9(@ Zo(t.zr+ye) +J’Q(t12z+y:)'/ e(t, 8, Zp(s,25+75) +yg(sy2s+ys))ds)
0

for every t € .#, and considering the fact that

¢
Hg(t, Zg(t,zfﬂ/z) +yQ(t,zf’+y¢)>/.§ e(t, S, ZZ(szg'ers) +yg(s,zg+ys)) ds)

‘ X

By (H2), (H3), Remark 3.2(vi)-(vii), and the dominated convergence theorem, we obtain,
for t € [0, t],

t
-7 <t Zo(tzs+yr) T Voltze+ye)r / e(t, S, Zo(s,zy5) +yQ(5rZs+J’s))ds)
0

<2007

|(F=)0 - (P20,
= Mo ” ()’ [%(t, Zn(t,z"ert) + y@(tz?m)) ~ Gt Zo(tzry) + y@(ﬁzﬁy:))] ”x

MisT(B+1) &7
T T Tp+ D) /” (D[ (52551 * Yetsct )

- g(s’ ZQ(S’ZS+J/S) + yQ(SstU’s))] ||X dS

M /t
+7
Ma+1) Jo

S
/ €S, To Zo(z,204y0) +yQ(T»Z¥+J’z))dT)
0

a7 n
F (S’ Zg(s,z§‘+ys) * Vo(s.2f+ys)r

-7 (S’ZQ (szs+ys) T Volszs+ys)

ds
X

S
/ €8, TrZg(t,z04y7) +yQ(Ter+J’r))dT)
0
— 0 asn— oo.
Forany ¢ € (t;,s:],i=1,2,...,N, we obtain

[ (=)@ - (F2)@)]

= ||g,»(t, ZZ(t,z;uyt) +yQ(t,Z?+yt)) — 8t Zo(t.zey) +y9(t,2¢+yz))||x

— 0 asun— oo.
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In the same way, for any ¢ € (s;,£;41], i =1,2,...,N, we have
| (C=") @) - (F2)(0)]
= H To‘ (t - Si) Hf(X) |:ng (Si’ Zg(si,zg'i +Js;) + yQ(Si:Z?i +J’sl~))

- &i(si Zo(sivzs;+ys;) T Volsiszs; +J’si)) ” X
NN G (5252113 * Yoty o)

— (d)ﬂg(&’, Zo(sivzs; +ys;) T yQ(ShZS,'*ySL')) HX
MuipT(B+1) () [
FaB+1) B /o [ [9 (5,253 + Yotsarono)
—Y(8, Zo(s.z5435) + Volsizsrys)) ] ||X ds

M(s))* [
T+ /0

s
/ e(s: T, Zg(r,z¥+yr) + yQ(r,z¥+yf)) d‘L’)
0

a
F (S’Z (5,28 +y5) +y@ (/28 +ys)7

-7 <S’ Zo(sizs+ys) T Volszstys)r

S
/ €8, T Zp(x,ze40) + Yolr.zeryo) dT) H ds]
A X
+ | AV D (02 + ot o)

A Zo(tz+ye) + Voltzsyr) ”x

MigT(B+1) (tl+1)°‘ﬂ
" Tp+1) f I

(sz +s) * Yol (s,2¢ +ys))

- g(s’ ZQ(S’ZS+J/S) + yQ(Sst+}’s))] ||X dS

M(tiﬂ)a
IMa+1)

S
/ €(S, T5 Zo(c 2 4y0) + Volr,2ivye)) df)
0

a7
J(’Z (.28 +ys) +yQSZs+J’s)

-7 (sze (szs+ys) T Volszs+ys)

ds
X

S
/ e, TrZo(t,z04y7) +yQ(Ter+J’r))dT)
0

— 0 asn— oo.
It is simple to see that

lim ” (Tz(”)) (Tz)“%(% =0.

n—00

Thus, Y is continuous.
Step 3: Y is x -contraction.
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To demonstrate this, we split Y as T, + T, for t € .#, where (Y,z)(¢) is defined in Re-

mark 3.2(viii) and

Jo Salt = 9).F (5, Zg(s.zg70) + Volszseye)s

/0 e(S, Trzg(r,zr+yf) +y,Q(‘[,ZT+y1)) dT) dS, t € [01 tl]; l = O’ 1, 2’ . )N’

gi(t) Zo(tzi+yr) T yg(t,zﬁy;))’ te (tiy Si]yi =1,2,3,...,N,

(TzZ)(t) = Ta(t = 5i)lgi(ss, Zolsizs;+ys;) T Volsi, Zsﬁysl'))
=[5 Sa(si = $)F (5, 2Zg(s20475) + Volsizsre)s
fo e(s, T, ZQ(T Zr+y7) +yQ (t,zr+y1) )dT) dS]

+ fO S (t S) (S Zg(szs+ys +yQ (8,25 +Ys)?

fo (S, T5 Zo(r 20 +y2) + Volr,z04y0)) AT) dis, te(sitial,i=1,2,3,...,N.

First, we show that Y is Lipschitz continuous on %9. In fact z,Z € %9, then from Re-
mark 3.2(viii), we have, for all ¢ € [0, 1],

_ _ My sT(B+1) ¢ _
|(12)(®) - (T2) @) < [(Mo + %?)G%‘] Iz =21l 0.

In the same way, for any ¢ € (s;,¢;41], i =1,2,...,N, we obtain
|(T12)(8) - (T12)(0)||

Mi_gT(B +1) (s)*f . _
§(M+1)[<Mo+ ;(Zﬂ(f;) )(S; )q@l]uz—zngg.

Then, for all t € .7, we get

|(12) - (T12) | 0

Mi_gT(B +1) T . _
§(M+1)[<Mo+% 5 >C1@1i|||2—z||(@(%

<Ltz =2l 59.-

From the assumption (H6), we observe that € < 1. Hence, Y is Lipschitz continuous.
Next, we prove that T, maps bounded sets into equicontinuous sets of %%..

Let 0 <y <0y < t1. For each z € B;, we have

|| (TZZ)(WZ) - (T2Z)(Th) ||X

m
=< Se(n2 - S)ﬁ<5» Zo(s.zstys) 1 Vo(szs+ys)r

s
/ €(8, T, Zo(r v 40 +J’Q(mr+yr))df> ds
0

n
—/ Sa(’?l_s)y<srzg(s,zs+ys) * Yolszs+ys)r
0

X

s
/ e(s, T ZQ(T,ZrJrJ’r) + yQ(Terﬂ’r)) dT) ds
0
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m
=< / [Sa(ﬁz —8) = Se(m - S)]g(& Zo(s,zs+ys) T Volszs+ys)s
0

S
/ €(8, T, Zo(r 2 4y0) +yg(m,+y,))dr> ds
0 X

+

n
/ Se(n2 — 5)y(5: Zo(s,zs+ys) T Volszs+ys)r
n

1

S
/ €($, Ty Zg(r zey0) * Volr e +y0) dT) ds
0 X

n
< [ 180t =) 8um =9y O ) s

n2
+ % ; (2 = 9)*"10(5)$2(q') ds.

For any 1,12 € (t;,8:], m < n2,i=1,2,...,N, we have
1(C22)(n2) = (T22)(m) |

= ||gi(’72’zg(nz,zq2+yn2) +J’Q(nz,zn2+yn2))

- gi(nl: Zg(m,znl +yn1) + yQ(')l:Zrzl +J’nl)) || X

In the same way, for any 11,12 € (si, tis1], m <n2,i=1,2,...,N, we get

| (T22)(n2) - (Ta2)(m)

= “ [Trx(nz —5;) = Tolm - sz’)]gi(sir Zo(sizs;+ys;) T yg(s,-,zsi+ysi)) ”X

+

[To(n2 = s:) = To (1 —s:)] / iSa(Si -5)

0

S
X y<3’ Zo(s,zs+ys) +yQ(5:Zs+J’s)’/ e($, Ty Zg(r 2 +y2) +J’Q(T,Zr+yr))d":) ds
0 X

+

m
/0 [Sa(n2 =) = Sa (11 —9)]

S
X ﬂ(s, Zo(s,z5+ys) +yQ(Sst+)’s)’/ €(8: 75 Zo(r 20 +0) +yQ(T:21+J’r))dT> ds
0 X

m
+ / Saln2 - s)ﬁ(s, Zo(s,zstys) T Volszs+ys)r
n

1

/ €S, T5 Zo(r 20 437) +yQ(Ter+J’r))dT) ds
0 X
< || Ta(n2 = ;) = Ta(n1 - s:) ”g(x) [cid +&i]
M2 =50 = Tan =) e, [ (5= 9196024 d
+F(Ol) a\2 = 8i) — Lg\Mm = S; LX) o Si—S S q)as
m
+/ |Sa (2 =) = Sa(m = 9)|| 5y ()52(a") s
0

m
+ % /;1 (12 =90 ()$2(q) ds.
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Atthe point when 1, — 1, the right-hand side of the overhead inequality has a tendency
to zero, subsequently by (H4)-(H5), T, (), S,(¢) are uniformly continuous, this demon-
strates the equicontinuity.

We finish this step by proving that T, is a x -contraction.

Forany W C %9, W is piecewise equicontinuous since S, (£) is equicontinuous. Hence,
from the fact that o(s,zs + y5) < s, s € & and [62], Lemmas 2.8 and 2.9 and xpc¢ =
sup{y W(t)), ¢t € [si,t;11]}, i =0,1,2,...,N. Then, for each bounded set W € PC, from the
assumptions (H2)-(H4), we have, for ¢ € [0, #],

t
x(C2V)(1) = x ( f Se(t —5).F (S: Wolszsys) + Vols.zstys)s
0

/ (8, T, Wo (e ze492) + Yolr.ze+ye) )dr)ds)

=< 1_, /(f s)* ( < o(szs+ys) T Vols,zetys)r

/ e(s, T, WQ (t,zr+y7) T Vol t,zr+yr)) d‘[)) ds

0

MO
SF(oe)/o(t s) n(s)[ sup x(W(s+6)+y(s+0))

—00<h<0

/S (s,7) sup X(W(s+9)+y(s+9))dr:|ds

—00<0<0

Ot 1 ~ %
a)/ t—s) sup )((W(r))+u sup X(W(t))] ds

0<t<s 0<t<s

M+ A7) / (£ -5 \n(s)ds sup x(W(S))

= T 0<s<T
M+ %) :
< M pe W) /0 1(s) ds.

Forany ¢ € (¢;,s],i=1,2,...,N, we have

x(T2V)(0) = « (g,-(t, Woltzesy) + y@(t,2z+yt)))
<@ sup x(W(t+6)+y(t+0))

—00<60<0
<[t sup X(W(t)) < itixpeW).

0<t<T

In the same way, for any ¢ € (s;, 1], i=1,2,...,N, we have

X(T2W)(t) =< X( o(t— s,)g,(s,, osizs;+ys;) T Volsis zsl+ysl)))

+ X (Ta(t - Si)fo Sa(s; — S)9<Sx Wg(s,zs+ys) * YVolszs+ys)r

S
/ e($, T, Woz z4y0) + Yoltzey0)) dr) dS)
0

t
X (/0 Se(£ - 5)9<S’ Woszsys) + Vols.zs+ys)s
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S
/ (S, T Wo(r 2 4y0) + Vol ,z4y0)) dT) d5>
0

= MX( i(Si)W 0(Sivzs; +9s;) )t Do sizsi+y5i)))

MZ
/ (si—5)""x $ Wols.zs+ys) + Vols.zs+y5)»

S
/ (8, T, Wt 20 4y0) + Volr,ze4y0) AT ))ds

/(t S)a ! ( < o(s,zs+Ys) +yQ (s,25+ys)?

/ (8, T, Wt ze492) + Yolr.ze+ye)) AT ))ds

0
<Mip; sup x(WC(s;i+6)+@(si +6))

—00<f<0

% /Osi(si - s)aln(s)|: sup x(Wis+0)+y(s+0))

—00<f<0

+/su(s,t) sup X(W(s+9)+y(s+9))dt}ds
0

—00<60<0

M e
+F(oz)/0(t s) 77(8)[ sup x(W(s+8) +y(s+0))

—00<6<0
+/ wu(s,T) sup X(W(s+9)+y(s+9))dr:|ds
0 —00<0<0
< Mfi; sup x(W(1))

0<t<T

20 [ o= s x(w) i sup £ (0]

0<7t<s 0<t<s

a-1 ~ %
+ m /0 (t—5)*"n(s) [Oiligs)( (W(‘L’)) +@* sup x (W(‘L’))] ds

0<t=<s

2 ~*
< MixpeV) + MF1(+)“ / (5= ) ds sup (W)

1+pL -l
T / (t-ys) n(S)dsoilSlETx(W(S))

< MiixpeOV) + %mw /0 "n(s)ds
MA+ 1) (E1)®

T e ) /0 n(s) ds.

Along these lines, for all £ € .7, we get

o 1 ¥ T T
A(T)0) = (Mo )7+ 5D [0 ) new)

and

x(T2W) < AoxpeW) < xpc W),
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where Ag = max;<;<n(M +1)(@; + % fOT n(s)ds) < 1. Therefore Y is x -contraction.

In the perspective of Lemma 2.5, we realize that T has at least one fixed point z* € W C
%’% Let x(¢) = z*(¢) + y(t) on (—o0o, T]. Along these lines, x is a fixed point of the operator
T which is the mild solution of the system (1.1)-(1.3). Thus, the confirmation is finished.

O
4 Applications
Below, we illustrate by two examples our theoretical results.
Example 1 First, we treat the IFNIDE with SDD and NII of the model
t
CD? [u(t, x) — / ui(t,x,s — t)u(s - Ql(t)gg(” u(t) ),x) dsj|
—-00
82 t
= @u(t,x) + / o (t,x,8 — t)u(s - Ql(t)Qz(Hu(t) ),x) ds
t N
+ / / k(s = T)u(t - 01(v)o2 (| u(x)|), 7) dr ds,
0 J-o0
N
(t! x) U[Sil tl'+l] X [Ol 7T], (4'1)
i=1
u(t,0)=0=u(t,7), tel0,T], (4.2)
u(t,x) = g(t)x); t< ny S [017[]: (4'3)
t
u(t,x) = / it x,s — u(s — or(B)ox(|u(®)||), %) ds,
—00
(t,x) € (t;,s:] x [0,7],i=1,2,...,N, (4.4)

where D! is Caputo’s fractional derivative of order 0 < g <1, 0 =ty =59 < t; < tp <
oo <ty < Sy <ty < tny = T are pre-fixed real numbers and ¢ € %),. We consider

X = L2[0,7] having the norm | - ||;2 and determine the operator .7 : D(#/) C X — X
by &@/w = w” having the domain

D(o) = {w € X: w,w' are absolutely continuous, w” € X, w(0) = w(rr) = 0}.

Then
Agdw = Z -2 (W, wy)w,, we D),
n=1

where w,(s) = \/g sin(ns), n=1,2,..., denotes the orthogonal set of eigenvectors of .o7. It
has long been well known that %7 is the infinitesimal generator of an analytic semigroup
{T(#)};>0 in X and is provided by

o0
T()w = Z et w, w)w, forallw e X and every t > 0.

n=1
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We can find a constant M > 0 in such a way that || T(¢)|| < M. If we fix 8 = %, then the
operator (—.of )% is given by

(~)iw=>"-ni ww)w, we (D)),

n=1

in which (D(-A)1) = {0(-) € X: Y%, 13 (w, w,)w, € X}. Then
Se(t)w =« /00 rq’)a(r)t“’l'ﬂ‘(t“r) dr
0

oo
= ZE‘W (-2t*) (W, w)w,, weX.

n=1

For the phase space, we choose / = €%, s < 0, then [ = ff)oo h(s)ds = % < 00, for t <0, and

we determine
0
Il = [ 09) sup [5(0)],
-0 0€ls,0]

Hence, for (¢, ¢) € [0, b] x Py, where ¢(0)(x) = ¢(0,%), (0,x) € (—00,0] x [0,7]. Set

),

u@)x) =ult,x),  olts)=01(0)o2(]5(0)

we have
0
D(t,¢)(x) - f 16,0 (s (0)(x) b,
0
(6, )(x) = / (2, 0)(s(0) () b,

0

9(t,5,3‘f§)(x)=/ na(t,x,0)(s(0)(x)) dO + < (x),

—00

where
t p0
%g(x)z/o/ k(s —0)(s(0)(x)) db ds.

Here, we believe that:
(i) the functions g; : [0,00) — [0, 00), i = 1,2 are continuous;
(ii) the functions u;(¢,x,0) are continuous in [0, T'] x [0,7] X (-00,0],i=1,2;

(iii) the function k(¢ — s) is continuous in [0, T] and k(¢ — s) > 0;

(iv) the functions fi; € C([0,00),R), i=1,2,...,N, are continuous and bounded.

Moreover, 4(¢,-), gi, i =1,2,...,N are bounded linear operators.

Correspondingly, the aforementioned model (4.1)-(4.4) can be written in the theoretical
form as model (1.1)-(1.3). Additionally, we can force some acceptable circumstances on the
above characterized functions to check the presumptions of Theorem 3.1. As a result, from
Theorem 3.1, the model (4.1)-(4.4) has a mild solution on [0, T].
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Example 2 Now, we consider the IFNIDE with SDD and NII of the model

CD?[u(t,x)_ /Oo 26 u(s—g1<s)iz9(||u(s)||>,x> ds}

9 K x)+/t 260 s = a1 (lu@).»)

8 2 9
+/0 sin(t - s) /_; 2s) u(t - Ql(T)gé(HM(T)H)»x) dvds,
N
&,0) | Jlsi tin] x [0, 7], (4.5)
i=1
u(t,0)=0=ul(t,w), tel0,T], (4.6)
u(t,x) =c(t,x), t<0,x€l0,x], (4.7)
)= [ o= eI
(t,x) € (t;,s:] x [0,7]),i=1,2,...,N, (4.8)

where D is the same as defined in Example 1. In the perspective of this example, we set

0

_ 2s) S
Y1, 6)(x) = / s
0
(6, o)) = / s
% L9S
Fltr s H6)(x) = / SO ds s Hs()

where

Hc(x) = / sin(¢ —S)/ dr ds,

then, with these settings, equations (4.5)-(4.8) can be written in the theoretical form of
model (1.1)-(1.3).

To treat this system we assume that g; : [0,00) — [0,00), i = 1,2, are continuous. Now,
we can see that, for ¢t € [0, 7], ¢, T € %), we have

3 T 0 g ) %
—) = 29| S
”( Qf)‘ﬂg(t,g)nx ([} (/:ooe 49‘ ds> dx)
(L[ a0 2 \7%
= (/0 (E [we Sup||§||ds> dx)

=Cclsli,

where C, = ){—9; and

|19t 6) - (~)19(6,9)

([ (L5 )

s _5

49 49
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2 1
T 1 0 2
5(/0 (@ /_ooe“s)supng—?uds) dx)

=Cilis =<z,

Similarly, we conclude

|7, 9],
5 2 \?
—H drds) dx>
25

T 0 t 0
< </ (/ &) ds +/ [sin( - 9)|| / 2™
0 —00 0 —00
(1 [° 2(s) 1 0 2(s) ’ %
< — eV supllgllds + — e"Vsuplisllds) dx
s \9 ). 25 .

¥

b JT
< — 2, + —
=55 s, 75 s,

0
9

<Lzlsl=,
where L g = % and

||§(t7§:%g)_cgz(trfrt%f)“llz

b4 0
([
- 0 —00
t 0 — 2 1
HSin(t—S)”/ P i—iH d‘L’dS) dx)z
0 . 25 25

1[0 1[0 2 N2
sf —/ e“”supng—?ndu—/ P9 sup s ~ ¢l ds) da
, \9 ) . 2%/ .

v

<X -g| —ﬁn Il
— + —

S _Sllds
9 9

+

we can see that each bounded set D C %), F C X,

X(F@DF) <Ls| suwp x(DE) + x(F)]

—00<0<0

Moreover, we have for any ¢ € (¢;,5;],i=1,2,...,N,

lgt )y < cglisllz, <€ B

T

where c,, = %, and also, we can see that, for each bounded set D C 4,

x(g(&D)) <¢g sup x(D@®)), i=12,...,N,

—00<f<0

where ¢, = max{cg},i=1,2,...,N.
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Therefore, (H1), (H3), (H4) are all satisfied and $3(s) = 2(s) = 3, ffoo % = +00. Then, by

using Theorem 3.1, we deduce the following result.

Proposition 4.1 Under the abo;/?’e a)ssumptions, if Ao = maxy<;<n(M + D{Cq, + %’;‘1‘;) X
_ MyT(3+1
Ly} <1,£= (M + 1)[M() + %Cg.@f] <1, with I/L* =1, MO = ”(d)_% ”’ and
4 \7
M%F(% +1)
x
111112)](\[{@1 (M + 1) [(Cgi + M()Cg) + mcg]} < 1,

then the system (4.5)-(4.8) admits a mild solution on [0,1].
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