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Abstract: The transfer of heat due to the emission of electromagnetic waves is called thermal 

radiations. In local fractional calculus, there are numerous contributions of scientists, like 

Mandelbrot, who described fractal geometry and its wide range of applications in many 

scientific fields. Christianto and Rahul gave the derivation of Proca equations on Cantor sets. 

Hao et al. investigated the Helmholtz and diffusion equations in Cantorian and Cantor-Type 

Cylindrical Coordinates. Carpinteri and Sapora studied diffusion problems in fractal media 

in Cantor sets. Zhang et al. studied local fractional wave equations under fixed entropy.  

In this paper, we are concerned with the exact solutions of wave equations by the help of 

local fractional Laplace variation iteration method (LFLVIM). We develop an iterative 

scheme for the exact solutions of local fractional wave equations (LFWEs). The efficiency 

of the scheme is examined by two illustrative examples.  
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1. Introduction 

Fractional calculus (FC) has attracted the attention of many scientists in different scientific fields due 

to its numerous applications in our day life problems. In these applications, there are contributions of 

different parts of FC. Among the different parts, local FC has a wide range of applications in the fields 

of physics and engineering based on the fractals. The fractal curves [1] are everywhere continuous but 

nowhere differentiable and therefore, the classical calculus cannot be used to interpret the motions in 

Cantor time-space [2]. Calcagni [3] studied continuous geometries with some specific dimensions. Local 

FC [4–7] started to be considered as one of the useful ways to handle the fractals and other functions 

that are continuously but non-differentiable.  

Mandelbrot [8] described fractal geometry as a workable geometric middle ground between the 

excessive geometric order of Euclid and the geometric chaos of general mathematics and extensively 

illustrated wide range of applications fractals in many scientific fields like in, physics, engineering, 

mathematics and geophysics. Zhang and Baleanu [9] studied local fractional wave equations under fixed 

entropy. Srivastava et al. [10] studied an initial value problem by the help of Sumudu Transform.  

Li et al. [11] studied local fractional Poisson and Laplace equations and provided its application in fractal 

domain. Christianto and Rahul [12] gave the derivation of Proca equations on Cantor sets. Hao et al. [13] 

investigated the Helmholtz and Diffusion equations in Cantorian and Cantor-Type Cylindrical 

Coordinates. Carpinteri and Sapora [14] studied diffusion problems in fractal media in Cantor sets.  

Yang et al. [15] and Su et al. [16] studied wave equations in Cantor sets. 

Many techniques are utilized for handling the local fractional problems in both ordinary and partial 

derivatives. For instance, The Yang-Laplace Transform [4], the local fractional Laplace variation 

iteration method (LFLVIM) [7] and many others. These methods are widely used in different scientific 

fields [6–10]. This area of research is much popular in the community of scientists and we are 

continuously observing recent developments in it. These developments are useful in engineering and 

physics and we feel further attention of scientists for the exploration of its different aspects. 

This paper is organized as follows: In the first section, we have pointed out the essential and related 

work to local fractional differential equations (LFDEs) and the techniques which have been produced 

for handling the LFDEs. In Section 2, we have presented the preliminary results, which we will utilize 

for the production of iterative scheme. In Section 3, we produce an iterative scheme based on the 

LFLVIM for the solution of wave equations. Section 4 demonstrates the efficiency of our scheme by the 

help of several examples. 

2. Preliminaries 

In this section we are presenting the basic and related definitions and relations from local fractional 

calculus [1–5]. 

A function g(t) is said to be local fractional continuous function if f(t) satisfies 
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|g(t) − g(t )| < a , (1)

where γ ∈ (0,1], |t − t | < , for a, b > 0 and a, b ∈ R. 
The local fractional derivative of a function g(t) ∈ C (a, b) of order γ is defined as: d f(t)dt = ∆ f(t) − f(t )(t − t ) ,  (2) 

where ∆ f(t) − f(t ) = Г(1 + γ) f(t) − f(t )  (3)

and  ddt tГ(mγ + 1) = t( )Г( (m − 1)γ + 1) ,m ∈ N.  (4)

The local fractional integral of a function g(t) on [a, b] is defined by  

I( )[ , ]f(t) = 1Г(γ + 1) g(x)(dx) = 1Г(γ + 1) lim∆ → g(x )(∆x ) ,	 (5)

where [a, b] is divided into M− 1 sub-intervals (t , t ) and ∆t = t − t , with a = t , b = t  and I( ) , tГ(mγ + 1) = t( )Г((1 + m)γ + 1).  (6)

The Mittage-Leffler function in fractal space is defined by  E (t ) = tГ(jγ + 1) . (7)

Yang-Laplace Transforms (YLT) 

In this subsection, we are giving definitions and some basic results related to the Yang-Laplace 

transforms (YLT). For a function	g(t) satisfying the following inequality, 1Г(γ + 1) |g(t)|(dt) < m < ∞, (8)

the YLT is defined by Ɫ {f(t)} = 1Г(γ + 1) E (−s t ) g(t)(dt) , (9)

where γ ∈ (0,1] and s = β +i ω  for i , the fractal imaginary unit and Re(s ) = β > 0. The YLT 

has the following properties: Ɫ {ah(t) + bg(t)} = aⱢ {h(t)} + bⱢ {f(t)},  (10)Ɫ {h(t, x)} = s Ɫ {h(t, x)} − s( ) h(0, x) − s( ) h(0, x)( )									 				−s ( )h(0, x)( ) − ⋯− h(0, x) ( ) ,  (11)
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Ɫ {t } = Г(mγ + 1)s( ) ,  (12)

cos	h (t ) = tГ(2jγ + 1).  (13)

3. Iteration Scheme 

In this section, we produce an iterative scheme for the solution of LFWEs based on LFLVIM. For 

this we consider the following LFDE v − p(x)v = 0,  (14)

where m, n  are orders of local fractional partial derivatives with respect to 	 	  respectively. 

Applying the local fractional variation iteration method for the correction local fractional operator for 

(14), we have  v (t, x) = v (t, x) + I( ) , (x)Г(γ + 1) v − p(x)v (t, x) , (15)

where 
( )Г( ) is the Lagrange multiplier and (15) leads to  

v (t, x) = 	 v (t, x) + I( ) , (t − x)Г(γ + 1) v (t, x) − p(x)v (t, x) .	 (16)

Applying the operator YLT, of order  that is Ɫ  on (16), we have Ɫ {v (t, x)} = Ɫ {v (t, x)} + Ɫ (x)Г(γ + 1) Ɫ v − p(x)v (t, x) . (17)

Taking the  order local fractional variation of (17) with respect to	 , and assuming that the term p(x)v (t, x) be invariant, we have δ( )Ɫ {v (t, x)}= δ Ɫ {v (t, x)} + Ɫ (x)Г(γ + 1) δ( ) s Ɫ {v (t, x) − s( ) v (0, x)−	s( ) v (0, x)( ) − s ( )v (0)( ) − ⋯− v (0) ( ) = 0,	 (18)

From (18) we obtain the Lagrange-Multiplier as follows Ɫ { (x)Г(γ + 1)} = −1s ,  (19)

and by the help of (18) and (19), we have the following relation  Ɫ {v (t, x)} = Ɫ {v (t, x)} − 1s s Ɫ {v (t, x) − s( ) v (0, x) 									− 	s( ) v (0, x)( ) − s ( )v (0, x)( ) − ⋯− v (0, x) ( )− p(x)v (s, x)}. (20)

Hence, we obtain the following iterative scheme  
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v (t, x) = Ɫ 1s −s( ) v (0, x) − s( ) v (0, x)( ) − s ( )v (0, x)( ) − ⋯− v (0, x) ( ) . (21)

Consequently, we have the solution of (14) as v(t, x) = lim→ Ɫ (Ɫ {v (s, x)}). (22)

4. Interpretation of the Iterative Scheme 

This section is reserved for the interpretation of the iterative scheme (22). The iterative scheme is 

applied on some examples of wave equations for their solutions. 

Example 1. Consider the following wave equation on Cantor sets, ∂∂t v(t, x) − C ∂∂x v(t, x) = 0,  (23)

and the initial-boundary conditions read as  ∂ v(0, x)∂t = 0, v(0, x) = E (x ).  (24)

By the use of (20), we have Ɫ {v (t)} = Ɫ {v (t, x)} − 1s s Ɫ {v (t, x) − s v (0, x) 
−	v (0, x)( ) − C ∂∂x v (s, x)}. (25)

Using the initial conditions (24), we get v (s, x) = Ɫ {v (0, x)} = E (x )s ,  (26)

From (24)–(26), we proceed to Ɫ {v (t, x)} = Ɫ {v (t)} − 1s s Ɫ {v (t, x) − s v (0, x) − v (0, x)( ) 													− C ∂∂x v (s, x)} = 1s s E (x ) + CE (x )s = E (x )s + CE (x )s= v (s, x). (27)

For the second iteration, we utilize (24)–(27), as under Ɫ {v (t, x)} = Ɫ {v (t, x)} − 1s s Ɫ {v (t, x) − s v (0, x) 						−	v (0, x)( ) 		− C ∂∂x v (s, x)} 													= 1s s E (x ) + C E (x )s 	+ CE (x )s  								 	= E (x )s + CE (x )s + C E (x )s = v (s, x) 
(28)
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For the third iteration, using (24)–(26) and (28), we have Ɫ {v (t, x)} = Ɫ {v (t, x)} − 1s {s Ɫ {v (t, x)} − s v (0, x) − v (0, x)( ) −C ∂∂x v (s, x)} 
 = s E (x ) + C ( ) + C ( ) + C ( )

 														= E (x )s + CE (x )s + C E (x )s + C E (x )s = v (s, x). 
(29)

Continuing this process up to the nth approximation, we deduce  Ɫ {	v (t, x)} = E (x )s + CE (x )s + C E (x )s + C E (x )s + ⋯+ C E (x )s( ) . (30)

Applying Ɫ  on (30), we obtain v (t, x) = E (x ) + C t E (x )Г(2γ + 1) + C t E (x )Г(4γ + 1) + C t E (x )Г(6γ + 1) + ⋯+ C t E (x )Г(2nγ + 1)= E (x ) lim→ c tГ(2jγ + 1) = E (x ) cos h (ct ). (31)

Example 2. Consider the following wave equation on Cantor sets, ∂ v(t, x)∂t − xГ(γ + 1) ∂ v(t, x)∂x = 0,  (32)

and the initial-boundary conditions read as  ∂ v(0, x)∂t = 0, v(0, x) = xГ(2γ + 1). (33)

From (33), we form v (s, x) = Ɫ {v (0, x)} = xs Г(2γ + 1).  (34)

From (20) and (32)–(34), we get Ɫ {v (t, x) = Ɫ {v (t, x) − 1s s Ɫ {v (t, x) − s v (0, x) 															−v (0, x)( ) −	 xГ(γ + 1) ∂ v(s, x)∂x } 	 		= xs Г(2γ + 1) − xs Г(γ + 1) = v (s, x) (35)

For the second iteration, using (33)–(35), we proceed to Ɫ {v (t, x) = Ɫ {v (t, x) − 1s s Ɫ {v (t, x) − s v (0, x) 
					−v (0, x)( ) 	−	 xГ(γ + 1) ∂ v(s, x)∂x } 

							= xs Г(2γ + 1) − xs Г(γ + 1) = v (s, x). (36)
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For the third iteration, (34)–(36) are utilized and we get Ɫ {v (t, x) = Ɫ {v (t, x) − 1s s Ɫ {v (t, x) − s v (0, x) − v (0, x)( )
−	 xГ(γ + 1) ∂ v (s, x)∂x 		= xs Г(2γ + 1) − xs Г(γ + 1) ∂∂x xs Г(2γ + 1) − xs Г(γ + 1)= xs Г(2γ + 1) − xs Г(γ + 1) = v (s, x). 

(37)

Continuing this process up to nth approximation, we get Ɫ {v (t, x)} = xs Г(2γ + 1) − xs Г(γ + 1).  (38)

Applying Ɫ on (38), we deduce the following result as the solution of (32), (33), by the help of 

proposed method LFLVIM and our scheme in (22): v(t, x) = xГ(2γ + 1) − t xГ(2γ + 1)Г(γ + 1). (39)

5. Conclusions  

This paper describes an iteration scheme based on the LFLVIM for the solutions of LFWEs which is 

a powerful technique and the efficiency of the iterative scheme is examined by two illustrative examples. 

The solutions obtained are graphically presented by the figures, Figure 1, Figure 2 respectively for  γ = . The prescribed technique is a better approach for the approximation of LFWEs in particular and 

LFEs in general. 

 

Figure 1. Exact solution of Equation (23) for γ = . 
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Figure 2. Exact solution of Equation (32) for γ = . 
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