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Abstract: In this paper we construct Weyl’s theory for the singular left-definite Dirac systems. In particular, we prove

that there exists at least one solution of the system of equations that lies in the Sobolev space. Moreover, we describe

the behavior of the solution belonging to the Sobolev space around the singular point.
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1. Introduction

Consider the equation

y′′ + y = 0.

One can immediately obtain that the solution is described by

y = c1 sin(x+ c2),

where c1 and c2 are arbitrary constants. However, a different approach to obtain the solution from the ordinary

way is possible. In fact, multiplying the equation by y′ one can find

(y′)2 + y2 = c2 (1.1)

and

y′ =
√
c2 − y2.

Considering y = c sin γ it is obtained that γ = x+ d. Consequently, the solution is y = c sin(x+ d) [5].

The main point of this construction of the solution is the equation (1.1), which can arise naturally in

Sturm–Liouville equations, called left-definite Sturm–Liouville equations. The name left-definite comes from

the left-side of the equation

−(py′)′ + qy = λwy, x ∈ (a, b) ⊆ R, (1.2)

in contrast to the standard right-definite case. That is, as is well known, in the right-definite case we impose

the condition to the weight function w to be positive, which gives rise to the standard Lebesgue space L2
w(a, b)

with the inner product

(y, z) =

b∫
a

yzwdx.
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However, in general, in the left-definite case the function w is allowed to change the sign on the interval (a, b).

In this case, the positiveness conditions are imposed on the functions p and q. Namely, in this case, the inner

product is defined as

⟨y, z⟩ =
b∫

a

[py′z′ + qyz] dx,

which generates the Sobolev space H1(a, b; p, q).

If one of the functions in the equation (1.2) increases boundedness then it is hard to describe the behavior

of the solutions around a neighborhood of the singular point. This problem was solved by Weyl in 1910 [16]

for the right-definite second order Sturm–Liouville equation with his extraordinary way. In 1995, Krall and

Race [6] studied the singular left-definite Sturm–Liouville equations in the Sobolev space and they showed that

there always exists at least one solution belonging to the Sobolev space under some conditions. Moreover, one

can find some papers that contain the left-definite case [7–10]. In particular, in [10], Krall investigated the

self-adjointness of the regular left-definite Hamiltonian systems.

As is well known, Dirac systems are of the form [12], [13]

y′2 + p(x)y1 + r(x)y2 = λe(x)y1 + λf(x)y2,

−y′1 + r(x)y1 + q(x)y2 = λf(x)y1 + λh(x)y2,
(1.3)

where λ is a complex parameter and p, r, q, e, f, h are real-valued and locally integrable functions on (a, b) ⊆ R.
The right-definite case corresponds with the positiveness of the matrix[

e(x) f(x)

f(x) h(x)

]
> 0, x ∈ (a, b),

and has been investigated in the literature (see [1–5,11–15]). We should note that the system (1.3) plays a

central role in relativistic quantum theory. Namely, the system (1.3) coincides with Dirac’s radial relativistic

wave equation for a particle in a central field. In this paper we investigate the singular left-definite Dirac systems

and we describe the solution of Dirac systems belonging to the Sobolev space. Moreover, we investigate the

behavior of the solution of Dirac system belonging to the Sobolev space around a neighborhood of the singular

point.

2. Singular Dirac systems

To investigate the left-definite case we consider the following special Dirac systems on (a, b) ⊆ R

y′2 + p(x)y1 + r(x)y2 = λe(x)y1,

−y′1 + r(x)y1 + q(x)y2 = 0,
(2.1)

or

Ly =W−1(x)ℓ(y) = By′ +Q(x)y = λy, x ∈ [a, b) ⊆ R, (2.2)

where p, r, q, e are real-valued, Lebesgue measurable functions on [a, b), a is the regular point and b is the

singular point for (2.1) or (2.2), p > 0, q < 0, e > 0 on [a, b), ρe ≤ p for some ρ > 0, e and p are integrable
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functions on [a, b),W−1(x)W (x) =

[
1 0

0 0

]
and

B =

[
0 1

−1 0

]
, Q =

[
p r

r q

]
, W =

[
e 0

0 0

]
, y =

[
y1

y2

]
.

As is well known, the ordinary inner product is defined as

(y, z) =

b∫
a

z∗Wydx,

in which the Lebesgue space L2
W (a, b) is equipped with this inner product.

We assume that

By′ +Qy =Wf

exists a.e. and f =

[
f1
f2

]
is in L2

W (a, b).

The ordinary inner product in L2
W (a, b) gives rise to the following:

(y, z) =

b∫
a

z∗Wydx =

b∫
a

(
z1 z2

)( e(x) 0

0 0

)(
y1

y2

)
dx =

b∫
a

ey1z1dx.

If By′ +Qy =Wf is decomposed into components we find

y′2 + p(x)y1 + r(x)y2 = e(x)f1,

−y′1 + r(x)y1 + q(x)y2 = 0.

On the other hand, By′ +Qy =Wf implies

(Ly, z) =

b∫
a

z∗WLydx =

b∫
a

z∗Wfdx =

b∫
a

ef1z1dx.

Therefore

b∫
a

ef1z1dx =

b∫
a

z1 (y
′
2 + py1 + ry2) dx = y2z1 |ba −

b∫
a

y2 (z
′
1 − rz1) dx+

b∫
a

py1z1dx

= y2z1 |ba −
b∫

a

qy2z2dx+

b∫
a

py1z1dx

provided that

−z′1 + ry1 + qy2 = 0.
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Consequently, we can introduce a new inner product

⟨y, z⟩ =
b∫

a

py1z1dx−
b∫

a

qy2z2dx =

b∫
a

z∗

(
p 0

0 −q

)
ydx,

which gives rise to the Sobolev space H1(a, b; p, q).

We can therefore give the relation

(Ly, z) = ⟨y, z⟩+ y2z1 |ba . (2.3)

3. Sobolev space solutions

Consider the solutions

φ(x, λ) =

[
φ1(x, λ)

φ2(x, λ)

]
, ψ(x, λ) =

[
ψ1(x, λ)

ψ2(x, λ)

]

of the equation

By′ +Qy = λWy (3.1)

satisfying the conditions

φ1(a, λ) = cosα, φ2(a, λ) = sinα,

ψ1(a, λ) = sinα, ψ2(a, λ) = − cosα,

where α is a fixed real number. We have W [φ,ψ] = φ2ψ1 − φ1ψ2 = 1. Therefore the general solution of (3.1)

must be of the form
χ(x, λ) = φ(x, λ) +m(λ)ψ(x, λ).

Now consider the following boundary condition at d, a < d, as follows:

cos θy1(d) + sin θy2(d) = 0, (3.2)

where θ is a real number. Then

m(λ) = −cos θφ1(d, λ) + sin θφ2(d, λ)

cos θψ1(d, λ) + sin θψ2(d, λ)
. (3.3)

It is well known that for 0 ≤ θ < π , m(λ) describes a circle in the complex plane. Equation (2.3) shows

that

λ

d∫
a

e |y1|2 dx =

d∫
a

p |y1|2 dx−
d∫

a

q |y2|2 dx+ y2y1 |da . (3.4)

Equation (3.4) implies that

(Reλ+ iImλ)
d∫
a

e |ψ1|2 dx =
d∫
a

p |ψ1|2 dx−
d∫
a

q |ψ2|2 dx− |K|2 cos θ sin θ

+
[
|m|2 − 1

]
sinα cosα+m cos2 α−m sin2 α,

(3.5)
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where

ψ1(a, λ) = cosα+m(λ) sinα,

ψ2(a, λ) = sinα−m(λ) cosα,

and

ψ1(d, λ) = K sin θ,

ψ2(d, λ) = −K cos θ.

The imaginary part of (3.5) is

Imm = Imλ

d∫
a

e |ψ1|2 dx

and the real part of (3.5) is

d∫
a

p |ψ1|2 dx−
d∫
a

q |ψ2|2 dx− |K|2 cos θ sin θ =
[
1− |m|2

]
sinα cosα− Rem cos2 α

+Rem sin2 α+Reλ Imm
Imλ .

Now let θ = π
2 . In this case (3.2) and (3.3) become

χ2(d, λ) = 0

and

m(λ) = −φ2(d, λ)

ψ2(d, λ)
.

In this case we obtain

d∫
a

p |ψ1|2 dx−
d∫

a

q |ψ2|2 dx =
[
1− |m|2

]
sinα cosα− Rem cos2 α

+Rem sin2 α+Reλ
Imm

Imλ
,

where all m ’s are on the limit point or limit circle. Therefore we arrive at the following result.

Theorem 3.1 There exists a solution

χ(x, λ) = φ(x, λ) +mb(λ)ψ(x, λ), Imλ ̸= 0,

of the equation (3.1), which lies in H1(a, b; p, q).

To describe the behavior of the solution of Dirac systems we need to restrict the system (2.1) to the

following:

y′2 + p(x)y1 = λe(x)y1,

−y′1 + q(x)y2 = 0,
(3.6)

Then we obtain the following theorem.
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Theorem 3.2 Let χ(x, λ) = φ(x, λ) +mb(λ)ψ(x, λ) be the solution of (3.6) in H1(a, b; p, q) generated by the

approximation solution χ̂(x, λ) = χ̂1(x, λ)χ̂2(x, λ) satisfying χ̂2(x, λ) = 0. Then lim
x→b

χ2(x, λ) = 0.

Proof We have the following equation

ψ2(d, λ) = ψ2(a, λ) +

d∫
a

ψ′(x, λ)dx = ψ2(a, λ) +

d∫
a

[λeψ1 − pψ1] dx.

Therefore we get

|ψ2(d, λ)| ≤ |ψ2(a, λ)|+K

d∫
a

e |ψ1|2 dx

≤ |ψ2(a, λ)|+K

 d∫
a

edx

1/2  d∫
a

e |ψ1|2 dx

1/2

.

On the other side one can write

χ2(d, λ) = χ2(d, λ)− χ̂2(d, λ) = (mb −md)ψ2(d, λ).

In the limit-point case

|mb −md| < 2rb =
2

|Imλ|
d∫
a

e |ψ1|2 dx

and hence

|mb −md| |ψ2(d, λ)| ≤
A+B

[
d∫
a

e |ψ1|2 dx

]1/2
d∫
a

e |ψ1|2 dx

which approaches zero as d approaches b.

In the limit-circle case
|ψ2(d, λ)| < K.

Since md → mb,

lim
d→b

(md −mb)ψ2(d, λ) = 0.

Therefore the proof is completed. 2
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