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Abstract We present an algorithm for determining
the existence of a Hopf bifurcation of a system of
delayed reaction–diffusion equations with the Neu-
mann boundary conditions. The conditions on param-
eters of the system that a Hopf bifurcation occurs as
the delay parameter passes through a critical value are
determined. These conditions depend on the coeffi-
cients of the characteristic equation corresponding to
linearization of the system. Furthermore, an algorithm
to obtain the formulas for determining the direction of
the Hopf bifurcation, the stability, and period of the
periodic solution is given by using the Poincaré nor-
mal form and the center manifold theorem. Finally, we
give several examples and some numerical simulations
to show the effectiveness of the algorithm proposed.
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Ş. Kayan
Department of Mathematics, Faculty of Science and
Letters, Çankaya University, Eskişehir Yolu 29.km,
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1 Introduction

In order to produce a better understanding for the world
around us and to find solutions to technical problems,
representing the events by using mathematical terms is
called mathematical modeling. The model is initially
kept as simple as possible. After adding new terms
and variables to the model at later stages, it becomes
more realistic. The models obtained are often used to
understand dynamics of the systemswhich changewith
respect to time. However, this is not mostly enough to
understand the whole story. For example, some prob-
lems in real life usually depend on time, but they may
also depend on various independent variables such as
location or age. In an assemblage of particles (for
example, cells, bacteria, chemicals, and animals), each
particle usually moves around in a random way. The
particles spread out as a result of this irregular indi-
vidual particle motion. When this microscopic irreg-
ular movement results in some macroscopic or gross
regular motion of the group, we can think of it as
a diffusion process. Therefore, a model which con-
tains diffusion process can be improved mathemati-
cally by adding a spatial variable to the model. A reac-
tion diffusion system which is a mechanism proposed
as a model for the chemical basis of morphogenesis
by Turing [41] is an example of such models. Such
systems have been studied widely since 1970 (see,
for example, [23,28,30,33,39,40,42,44,46], and ref-
erences therein).
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On the other hand, in many applications, it is gen-
erally assumed that the system under consideration is
governed by a principle of causality; that is, the future
state of the system is independent of the past and is
determined solely by the present. One should keep in
mind that this is only a first approximation to the true
situation. Time delays occur so often (in almost every
situation) that to ignore them is to ignore reality. In
the context of neural network, for example, time delay
can come from close loop for autapse connected to
neuron, and it is classified as propagation time delay
and response time delay (see, for example, [24,25,34]).
Therefore, to create a somewhat more realistic descrip-
tion and to form a more realistic model, a time delay
should be included into the model, which results in
a delay differential equation [21]. Delay differential
equations have been used to model real life problems
arising in various practical applications such as pop-
ulation dynamics (most often accounting for matura-
tion/gestation periods), immunology (incubation/latent
periods), and physiological and pharmaceutical kinet-
ics (glucose–insulin regulation, blood pressure regula-
tion). Studies show that exploring the dynamical behav-
iors of the models involving some of the past his-
tories has attracted very much interest in chemistry,
physics,mathematical biology,medicine, ecology, neu-
roscience, economics, and other fields (see, for exam-
ple, [2,5,7,11,20,21,29,31,32,35,38,43], and refer-
ences therein).

Mathematical models often contain parameters,
such as delay term, which have impact on the dynam-
ics of systems. Bifurcation is answer of the question:
“How the dynamic of a system, for example (1) below,
changes when parameter μ varies?”

X ′ = F(X, μ) X ∈ R
m, μ ∈ R. (1)

Mathematically, the appearance of topologically non-
equivalent phase portraits under variation of parameter
is called bifurcation [22]. We can talk about bifurca-
tion if qualitative or topological structure of system (1)
varies, such as change in the number of or stability
structure of equilibrium point and appearance or dis-
appearance of periodic solutions when the value of the
bifurcation parameter varies. A specific value of the
parameter at which topological structure of the system
changes is called bifurcation value [1]. There are sev-
eral types of bifurcations. The bifurcation which corre-
sponds to purely imaginary eigenvalues λ1,2 = ±iω0

such that ω0 > 0 of a linearized system at bifurca-
tion value is called Hopf bifurcation [22]. The main
feature of Hopf bifurcation is appearance of periodic
solutions. In particular, the properties of periodic solu-
tions appearing through theHopf bifurcation in delayed
reaction–diffusion systems are of great interest.

Determining Hopf bifurcation in a system is impor-
tant to show the existence of periodic solutions of
the system. However, it is not an easy work to deter-
mine whether Hopf bifurcation occurs in the system or
not. Studies on the existence of periodic solutions are
important for the research problems arising in different
research areas ranging from mathematical biology to
applied economics (see, for example, [19,22,27] and
references therein).

The methods often used to analyze existence and
direction of the Hopf bifurcation for a 2 × 2 differ-
ential equation system can be found in [19] and [22];
for a 2 × 2 delay differential equation system can be
found in [18] and [19]; for a 2 × 2 reaction–diffusion
system can be found in [19,22,42] and [45]. For many
cases, reaction–diffusion models involving delay are
more realistic than other models. However, the afore-
mentioned methods for Hopf bifurcation analysis in
the literature do not directly give a method for exis-
tence and direction analysis of the Hopf bifurcation
of a 2 × 2 delayed reaction–diffusion system with the
Neumann boundary conditions below:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(x,t)
∂t = d1

∂2u(x,t)
∂x2

+ f (u(x, t), u(x, t−τ), v(x, t), v(x, t−τ)), x ∈ Ω, t > 0,

∂v(x,t)
∂t = d2

∂2v(x,t)
∂x2

+g(u(x, t), u(x, t−τ), v(x, t), v(x, t−τ)), x ∈ Ω, t > 0,
∂u
∂
−→n = ∂v

∂
−→n = 0, x ∈ ∂Ω, t ≥ 0,

u(x, t) = u∗(x, t), v(x, t) = v∗(x, t), x ∈Ω, t ∈ [−τ, 0] ,

(2)

where f , g : R
4 → R are Ck (k ≥ 2), Ω is an

open bounded domain in R
m , m ≥ 1, with smooth

boundaries ∂Ω , −→n is the unit outer normal to ∂Ω and
u∗, v∗ ∈ C2((Ω, [−τ, 0])) ∩ C(

(
Ω, [−τ, 0]

)
). Here,

d1 and d2, which are positive constants, are diffusion
coefficients of u and v, respectively, and τ > 0 is
delay parameter. For simplicity, we chose the spatial
domain as Ω = (0, �π) ⊂ R, but all calculations can
be extended for the higher dimensions.

In this paper, we derive an algorithm to provide a
simple and quick way to check the existence and direc-
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tion of a Hopf bifurcation of a 2× 2 delayed reaction–
diffusion system (2). This general algorithm can be also
used for a 2 × 2 system of delay differential equa-
tions by taking diffusion coefficients zero in (2). In
literature, there are two common methods to calculate
the normal form of a Hopf bifurcation, namely, Has-
sard’s method (see, for example, [19,20,28,45]) and
Faria’s method ([13–15]). For example, in [39] and
[40], the authors studied Turing–Hopf bifurcation in
the reaction–diffusion equations without delay and a
predator–prey model without delay that involves herd
behavior and cross-diffusion, respectively, by utilizing
Faria’s method for the calculation of normal forms.
Turing–Hopf bifurcation is degenerate case, and the
characteristic equationhas a pair of simple purely imag-
inary roots and also a simple zero root; however, in
Hopf bifurcation the characteristic equation has only a
pair of simple purely imaginary roots. In this paper, we
use Hassard’s method for the normal form calculation
to derive the algorithm for determining the direction
and also some other properties of the Hopf bifurca-
tion arising from the reaction–diffusion equations with
delay.

The paper is organized as follows. In Sect. 2, we
show that the 2×2 system of delayed ordinary differen-
tial equations and the 2× 2 delayed reaction–diffusion
systems have the same form of characteristic equations
with different coefficients. In Sect. 3, an algorithm for
Hopf bifurcation analysis of the systemwhich has char-
acteristic equation of this form is investigated, and a
table for existence of a Hopf bifurcation is obtained.
In Sect. 4, following Hassard’s method, an algorithm
to obtain the formulas for determining the direction
of the Hopf bifurcation and the stability and period of
the periodic solution is derived by using the Poincaré
normal form and the center manifold theorem [19]. In
Sect. 5, we implement these algorithms to three differ-
ent models and perform some numerical simulations
to show the usefulness of them. Paper ends with some
concluding remarks.

2 Form of characteristic equations

2.1 A general DDE model with one delay

Consider the following 2× 2 system of delay differen-
tial equations:

⎧
⎪⎨

⎪⎩

du(t)
dt = f (u(t), u(t−τ), v(t), v(t−τ)), t > 0,

dv(t)
dt = g(u(t), u(t−τ), v(t), v(t−τ)), t > 0,

u(t) = u∗(t), v(t) = v∗(t), t ∈ [−τ, 0] ,

(3)

where f , g : R4 → R are Ck (k ≥ 2) with f (P0) =
g(P0) = 0, P0 = (u0, v0) and u∗, v∗ ∈ C([−τ, 0]).

Jacobian matrix of (3) at P0 is

J (P0) =
(
k1 + k2e−λτ k3 + k4e−λτ

l1 + l2e−λτ l3 + l4e−λτ

)

, (4)

where

k1 = fu(P0), k2 = fuτ (P0),
k3 = fv(P0), k4 = fvτ (P0),
l1 = gu(P0), l2 = guτ (P0),
l3 = gv(P0), l4 = gvτ (P0),

(5)

and

fuτ = ∂ f

∂u(t − τ)
, fvτ = ∂ f

∂v(t − τ)
,

guτ = ∂g

∂u(t − τ)
, gvτ = ∂g

∂v(t − τ)
.

Then the characteristic equation of J (P0) is

λ2 + aλ + be−λτ + cλe−λτ + d + he−2λτ = 0, (6)

where

a = −(k1 + l3), b = (k1l4 + k2l3 − k3l2 − k4l1),

c = −(k2 + l4), d = (k1l3 − k3l1) ,

h = (k2l4 − k4l2) .

2.2 A general PDE model with one delay

Let us now consider the following 2 × 2 delayed
reaction–diffusion system with the Neumann bound-
ary condition:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(x,t)
∂t = d1

∂2u(x,t)
∂x2+ f (u(x, t), u(x, t − τ), v(x, t), v(x, t − τ)),

x ∈ (0, �π) , t > 0,
∂v(x,t)

∂t = d2
∂2v(x,t)

∂x2+ g(u(x, t), u(x, t − τ), v(x, t), v(x, t − τ)),

x ∈ (0, �π) , t > 0,
ux (x, t) = vx (x, t) = 0,
x ∈ {0, �π}, t ≥ 0,
u(x, t) = u∗(x, t), v(x, t) = v∗(x, t),
x ∈ [0, �π ] , t ∈ [−τ, 0] ,

(7)

where �, d1, d2 ∈ R
+ and f , g : R

4 → R are Ck

(k ≥ 2) with f (P0) = g(P0) = 0, P0 = (u0, v0).
We first shift the equilibrium point P0 to the origin

via the transformations ũ = u − u0 and ṽ = v − v0,
and then linearize the new system around zero. For
convenience, we continue our calculations by taking u
for ũ and v for ṽ, then we have the following system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u(x,t)
∂t = d1

∂2u(x,t)
∂x2

+ k1u(x, t) + k2u(x, t − τ)

+ k3v(x, t) + k4v(x, t − τ) + h.o.t.,
∂v(x,t)

∂t = d2
∂2v(x,t)

∂x2
+ l1u(x, t) + l2u(x, t − τ)

+ l3v(x, t) + l4v(x, t − τ) + h.o.t.,

(8)

where the term h.o.t. denotes the higher-order terms
and ki , li for i = 1, 2, 3, 4 are defined in (5).

Let the linear operator Δ be defined by Δ :=
diag

{
∂2

∂x2
, ∂2

∂x2

}
and U (t) := (u(t), v(t))T = (u(·, t),

v(·, t))T . With this notation, system (8) can be rewrit-
ten as an abstract ordinary differential equation in
Banach Space C = C ([−τ, 0], X) where X ={
(u, v) : u, v ∈ W 2,2(0, π); du

dx = dv
dx = 0, x = 0,

π} as follows:

d

dt
U (t) = dΔU (t) + L(Ut ) + h.o.t., (9)

where d = (d1, d2)T ,Ut (θ) = U (t + θ),−τ ≤ θ ≤ 0,
L : C → X . Here, L is defined by

L(ϕ) =
(
k1ϕ1(0)+k2ϕ1(−τ) k3ϕ2(0)+k4ϕ2(−τ)

l1ϕ1(0)+l2ϕ1(−τ) l3ϕ2(0)+l4ϕ2(−τ)

)

(10)

for ϕ(θ) = Ut (θ), ϕ = (ϕ1,ϕ2)
T ∈ C . The character-

istic equation of (9) is

λy − dΔy − L(eλy) = 0, (11)

where y ∈ dom(Δ) and y 
= 0, dom(Δ) ⊂ X.

From properties of the Laplacian operator defined on a
bounded domain, the operator Δ has eigenvalues − n2

�2
,

where n ∈ N0 = {0, 1, 2, . . .}. The corresponding
eigenfunctions for each n are given by

β1
n =

(
γn
0

)

, β2
n =

(
0
γn

)

, γn = cos
(n

�
x
)

,

where n ∈ N0. It is easy to see that
{
β1
n , β

2
n

}∞
n=0 forms

a basis for the phase space X.Therefore, any arbitrary y
in X can be written as a Fourier Series in the following
form:

y =
∞∑

n=0

Y T
n

(
β1
n

β2
n

)

, Y T
n =

(
< y, β1

n >

< y, β2
n >

)

. (12)

One can easily show that

L(ϕT

(
β1
n

β2
n

)

) = L(ϕ)T

(
β1
n

β2
n

)

, n ∈ N0. (13)

From (12) and (13) one can show that equation (11) is
equivalent to

∞∑

n=0

Y T
n

⎡

⎢
⎣

(
λ + d n2

�2

)
I2

−
(
k1 + k2e−λτ k3 + k4e−λτ

l1 + l2e−λτ l3 + l4e−λτ

)

⎤

⎥
⎦

(
β1
n

β2
n

)

= 0,

(14)

where I2 is the 2 × 2 identity matrix here. Notice that
the sum in (14) is zero if and only if the determinant of
the matrix in brackets is zero, i.e., det(λI2 − J (P0)) =
0, where

J (P0) =
⎛

⎝
−d1

n2

�2
+ k1 + k2e−λτ k3 + k4e−λτ

l1 + l2e−λτ −d2
n2

�2
+ l3 + l4e−λτ

⎞

⎠ .

(15)

This means that eigenvalues corresponding to the lin-
earization of (7) is determined by the characteristic
equation of (15) which is equal to
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λ2 + ãλ + b̃e−λτ + c̃λe−λτ + d̃ + h̃e−2λτ = 0,

(16)

where

ã = (d1 + d2)
n2

�2
− (k1 + l3),

b̃ =
(
k1l4+k2l3 − k3l2 − k4l1 − k2d2

n2

�2
− l4d1

n2

�2

)
,

c̃ = −(k2 + l4),

d̃ = d1d2
n4

�4
− (k1d2 + l3d1)

n2

�2
+ k1l3 − k3l1,

h̃ = (k2l4 − k4l2) .

Thus, we conclude the following result.

Lemma 1 Characteristic equations of systems (3) and
(7) have the same form below:

λ2 + Aλ + Be−λτ + Cλe−λτ + D + He−2λτ = 0,

where the coefficients are determinedby their lineariza-
tions.

3 Existence of Hopf bifurcation

We have shown that systems (3) and (7) have the fol-
lowing form of characteristic equation:

λ2 + Aλ + Be−λτ + Cλe−λτ + D + He−2λτ = 0,

(17)

where distribution of its roots will determine stability
properties of each system. The characteristic equations
of many differential equation systems arising in math-
ematical biology, chemistry, and other fields have the
form of (17), in particular, of the form of (18) below
(see, for example, [7,16,28,43]). Studies on distribu-
tion of the roots of this equation have attracted very
much attention. Some stability/instability properties of
the zeros of (17) for H = 0 have been given by Bell-
man and Cooke [4], Cooke and Driessche [9], Mahaffy
[26] and Nayfeh [32]; a similar analysis has been also
done for D = 0, H = 0 by Cooke and Grossman [10]
and Baptistini and Taboas [3]. Ghosh et al. [17] ana-
lyzed (17) for C = 0, D = 0, H = 0. Existence of
Hopf bifurcation has been investigated by Bodnar and
Fory’s [6] for C = 0, H = 0, and by Sen et al. [37] for
C = 0, D = 0, H = 0. Chen et. al [8] determined the
conditions under which equilibrium point is stable or
unstable, and also showed that Hopf bifurcation occurs
under the assumption at least one ofC and D is not zero

beside H is not zero. However, the results obtained in
[8] is valid only when H 
= 0. In other words, if you
have a characteristic equation of the form (17) in which
H = 0, the conclusions in [8] cannot be used. The dis-
tribution of the roots of the characteristic equation of
the form (17) in which H = 0 was partially analyzed
by Ruan [36]. He also applied the result to show the
existence of the Hopf bifurcation of two specific ODE
models. However, none of these works give a complete
and a systematic way of analyzing Hopf bifurcation in
a 2 × 2 general delayed reaction–diffusion system.

In this section, we drive an explicit algorithm which
gives amethodicalway for determining the existence of
Hopf bifurcation of a 2×2 system of general reaction–
diffusion equation including delay whose linearization
yields the characteristic equation of the following form:

λ2 + Aλ + Be−λτ + Cλe−λτ + D = 0. (18)

First, we remind that either type (supercritical or sub-
critical) of Hopf bifurcation has the property that equi-
librium point at which Hopf bifurcation arises loses its
stability when bifurcation parameter (which is delay
term τ for the system we are interested in here) passes
through a critical bifurcation value [22]. That is why,
let us first examine (18) for τ = 0. In other words,
we look for the conditions at which equilibrium point
is stable when τ = 0. Then, if we take τ = 0 in the
characteristic equation (18), it turns into the following
quadratic equation:

λ2 + (A + C)λ + B + D = 0. (19)

The roots of (19) are obtained by the following for-
mula:

λ1,2 = −(A + C) ±√(A + C)2 − 4(B + D)

2
. (20)

Let us assume that the following hypotheses hold:

(H1) (A + C) > 0,
(H2) (B + D) > 0.

One can easily check that equilibrium point is
asymptotically stable if (H1) and (H2) holds when
τ = 0. As τ increases from 0 to ∞, stability of the
equilibrium point changes when (18) has either a sim-
ple zero root or a pair of purely imaginary roots which
is not repeating. Note that if (18) had a zero root, then
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(B + D) had to be zero which contradicts to (H2). The
other possibility is that (18) has a pair of purely imag-
inary roots for some τ > 0. Therefore, if (H1) and
(H2) hold, and there is no purely imaginary root of the
characteristic equation (18) at a value of τ > 0, then
equilibrium point stays stable for all τ ≥ 0.This under-
lines that if the characteristic equation (18) does not
have a pair of pure imaginary roots at a positive value
of τ,which is called the critical bifurcation value, Hopf
bifurcation for systems (3) and (7) does not occur at all.
Because of that, we need to determine the condition on
parameters at which (18) has a pair of pure imaginary
roots.

Let us assume that (18) has a pair of pure imaginary
roots, i.e., it has a root λ = iω, ω ∈ R and ω > 0,
when τ 
= 0. To determine the conditions on parame-
ters at which a pair of purely imaginary roots arises, we
substitute λ = iω into the characteristic equation (18)
and then obtain the following transcendental equation:

−ω2 + i Aω + (B + iCω)e−iωτ + D = 0. (21)

Utilizing Euler’s formula and separating its real and
imaginary parts, we get the following two equations in
ω:

{
ω2 − D = B cos(ωτ) + Cω sin(ωτ),

Aω = B sin(ωτ) − Cω cos(ωτ).
(22)

First taking square of both sides and then summing
them up lead to

ω4 + (A2 − C2 − 2D)ω2 + D2 − B2 = 0 (23)

so that we have

ω2 = −X ± √
X2 − 4Y

2
, (24)

where X = A2 − C2 − 2D and Y = D2 − B2.
Recall that we look for aω satisfying the conditions:

ω ∈ R andω > 0.Examining (24) yields the result that
a positive real ω arises under the following conditions:

1. X2 −4Y = 0 and X < 0 that yields a single value:

ω1 =
√

−X
2 > 0,

2. Y < 0 that yields a single value:

ω2 =
√

−X+√
X2−4Y
2 > 0,

3. Y = 0 and X < 0 that yields a single value:
ω3 = √−X > 0,

4. X2 − 4Y > 0, Y > 0 and X < 0 that give two
values:

ω4 =
√

−X+√
X2−4Y
2 > 0,

ω5 =
√

−X−√
X2−4Y
2 > 0.

Thus, we conclude the following results.

Lemma 2 Assume that (H1) and (H2) hold. Then the
equilibrium point P0 = (u0, v0) of systems (3) and (7)
is asymptotically stable when τ = 0.

Lemma 3 Assume that (H1) and (H2) hold. If one of
the following conditions holds:

(i) X2 − 4Y < 0,
(ii) X2 − 4Y = 0, X > 0,
(iii) X = Y = 0,
(iv) X > 0, Y = 0,
(v) X2 − 4Y > 0, X > 0, Y > 0,

then all roots of (18) have negative real parts for all τ ≥
0. Furthermore, the equilibrium point P0 = (u0, v0)
of systems (3) and (7) is asymptotically stable for all
τ ≥ 0.

Proof (24) implies that (23) has no positive root if one
of the conditions (i)–(v) holds.Hence, the characteristic
equation (18) has no purely imaginary root. Since the
equilibrium point is stable when τ = 0, all roots of (18)
have negative real parts by the continuity. �
Lemma 4 If one of the conditions (1)–(4) holds, then
the characteristic equation (18) has a purely imaginary
root of the form λ = iω j ( j = 1, 2, 3, 4, 5) at some τ .

Next we determine τ = τ j associated with each ω j

( j = 1, 2, 3, 4, 5). If we solve the equations in (22) for
cos(ωτ) and sin(ωτ),we have the following identities:

⎧
⎪⎪⎨

⎪⎪⎩

cos(ωτ) = (B − AC)ω2 − BD

B2 + C2ω2 ,

sin(ωτ) = Cω3 + (AB − CD)ω

B2 + C2ω2 ,

(25)

that leads to

τ j,k = 1

ω j
arctan

(
Cω3

j + (AB − CD)ω j

(B − AC)ω2
j − BD

)

+ kπ

ω j
,

(26)
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where j = 1, 2, 3, 4, 5; k ∈ N0. It is also possible to
calculate τ j,k via either

τ j,k = 1

ω j
arcsin

(
Cω3

j + (AB − CD)ω j

B2 + C2ω2
j

)

+ 2kπ

ω j
,

(27)

or

τ j,k = 1

ω j
arccos

(
(B − AC)ω2

j − BD

B2 + C2ω2
j

)

+ 2kπ

ω j
.

(28)

Note that Re(λ(τ j,k)) = 0 and ω(τ j,k) = ω j > 0.
Note also that for each j∗ ∈ {1, 2, 3, 4, 5} we uniquely
determine τ j∗,k such that λ(τ j∗,k) = iω j∗ . This under-
lines that all other roots of the characteristic equation
(18) have nonzero real parts at τ = τ j∗,k .

Now,we check transversality condition for eachλ =
iω j to show that it is a simple root of (18), i.e., by [9]

we need to showRe
(

dλ
dτ

∣
∣
τ=τ j,0

)

= 0, j = 1, 2, 3, 4, 5.

Differentiating the characteristic equation (18) with
respect to τ we get

dλ

dτ
= Bλ + Cλ2

(2λ + A) eλτ + C − Bτ − Cλτ
. (29)

Substituting λ = iω j , ( j = 1, 2, 3, 4, 5) into (29), we
have

dλ

dτ

∣
∣
∣
∣
τ=τ j,0

= i Bω j − Cω2
j

(
i2ω j + A

)
eiω j τ j,0 + C − Bτ j,0 − iCω j τ j,0

.

(30)

Since Re
(

dλ
dτ

∣
∣
τ=τ j,0

)

= 0 if and only if

Re

((
dλ
dτ

∣
∣
τ=τ j,0

)−1
)


= 0, it is enough to show lat-

ter one. From (30) one has

(
dλ

dτ

∣
∣
∣
∣
τ=τ j,0

)−1

= Pj

Q j
,

where

Pj = A cos(ω jτ j,0) − 2ω j sin(ω jτ j,0) + C − Bτ j,0
+ i
(
A sin(ω jτ j,0)+2ω j cos(ω jτ j,0)−Cω jτ j,0

)

Q j = −Cω2
j + i Bω j .

(31)

Let us define

Re

⎛

⎝

(
dλ

dτ

∣
∣
∣
∣
τ=τ j,0

)−1
⎞

⎠ := Re

(
Pj

Q j

)

= P∗
j

Q∗
j
, (32)

where from (31)

P∗
j =

(
−ACω2

j + 2Bω2
j

)
cos(ω jτ j,0)

+
(
2Cω3

j + ABω j

)
sin(ω jτ j,0) − C2ω2

j

(33)

and

Q∗
j = C2ω4

j + B2ω2
j .

Substituting (25) into (33) one obtains

P∗
j = ω2

j

(
2ω2

j + A2 − C2 − 2D
)

.

Recalling that X = A2 − C2 − 2D, we have

Re

⎛

⎝

(
dλ

dτ

∣
∣
∣
∣
τ=τ j,0

)−1
⎞

⎠ = P∗
j

Q∗
j

= 2ω2
j + X

B2 + C2ω2
j

. (34)

Let us now check whether Re

((
dλ
dτ

∣
∣
τ=τ j,0

)−1
)

is

nonzero. Since Q∗
j > 0 for all j = 1, 2, 3, 4, 5, it

is enough to check sign of P∗
j for j = 1, 2, 3, 4, 5.

1. If X2 − 4Y = 0 and X < 0, then ω1 =
√

−X
2 > 0

so that

P∗
1 = 2ω2

1 + X = 0.

2. If Y < 0, then ω2 =
√

−X+√
X2−4Y
2 > 0 so that

P∗
2 = 2ω2

2 + X =
√
X2 − 4Y > 0.

3. If Y = 0 and X < 0, then ω3 = √−X > 0 so that

P∗
3 = 2ω2

3 + X = −X > 0.
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4. If X2 − 4Y > 0, Y > 0 and X < 0, then ω4 =√
−X+√

X2−4Y
2 > 0 and ω5 =

√
−X−√

X2−4Y
2 > 0

so that

P∗
4 = 2ω2

4 + X =
√
X2 − 4Y > 0,

P∗
5 = 2ω2

5 + X = −
√
X2 − 4Y < 0.

Thus, the transversality conditions hold for j =
2, 3, 4, 5. Moreover,

sign Re

⎛

⎝

(
dλ

dτ

∣
∣
∣
∣
τ=τ j,k

)−1
⎞

⎠

= sign Re

⎛

⎝

(
dλ

dτ

∣
∣
∣
∣
τ=τ j,0

)−1
⎞

⎠

for j = 1, 2, 3, 4, 5; k ∈ N0. By the general Hopf
bifurcation theorem [19], we have the following
results:

Theorem 1 Assume (H1) and (H2) hold. Equilibrium
point P0 = (u0, v0) is asymptotically stable for τ ∈[
0, τ j,0

)
for j = 2, 3. Moreover, systems (3) and (7)

which have characteristic equation of the form

λ2 + Aλ + Be−λτ + Cλe−λτ + D = 0

undergo a Hopf bifurcation at the equilibrium point
P0 = (u0, v0) if one of the following conditions in the
first column of Table 1 holds as the delay parameter τ

passes through τ = τ j,0 where from (26)

τ j,0 = 1

ω j
arctan

(
Cω3

j + (AB − CD)ω j

(B − AC)ω2
j − BD

)

and ω j is given in the second column of Table 1 for
j = 2, 3.

Theorem 2 Assume (H1) and (H2) hold. For systems
(3) and (7) which have characteristic equation of the
form

λ2 + Aλ + Be−λτ + Cλe−λτ + D = 0

there is a positive integer r such that the equilibrium
point P0 = (u0, v0) is stable when τ ∈ [0, τ4,0) ∪
(τ5,0, τ4,1) ∪ · · · ∪ (τ5,r−1, τ4,r ) and unstable when
τ ∈ (τ4,0, τ5,0) ∪ (τ4,1, τ5,1) ∪ · · · ∪ (τ4,r−1, τ5,r−1) ∪

Table 1 This table shows the conditions on parameters of sys-
tems (3) and (7) to have Hopf bifurcation. Here, X = A2 −C2 −
2D and Y = D2 − B2

Table 2 This table shows the condition onparameters of systems
(3) and (7) to have Hopf bifurcation and stability switches. Here,
X = A2 − C2 − 2D and Y = D2 − B2

(τ4,r ,∞) if the condition in the first column of Table 2
holds. This means that the stability switches of the equi-
librium point P0 = (u0, v0) from stability to instability
to stability occur as τ increases, and the equilibrium
point P0 = (u0, v0) eventually becomes unstable for
τ ∈ (τ4,r ,∞). Moreover, systems (3) and (7) undergo a
Hopf bifurcation at the equilibriumpoint P0 = (u0, v0)
when τ = τ4,0 where from (26)

τ4,0 = 1

ω4
arctan

(
Cω3

4 + (AB − CD)ω4

(B − AC)ω2
4 − BD

)

and ω4 is given in Table 2.

4 Direction analysis

In the former section, we have shown that systems (3)
and (7) undergo a Hopf bifurcation at the equilibrium
point P0 = (u0, v0) when τ = τ j,0 ( j = 2, 3, 4) under
the conditions given in Theorem 5 and Theorem 6. In
this section,wewill give a complete and systematicway
of analyzing the direction of the Hopf bifurcation, the
stability and period of bifurcating periodic solutions by
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applying normal form theory and the center manifold
theorem. To do this, we first translate systems (3) and
(7) into the following systems (35) and (36), respec-
tively, by the transitions ũ = u − u0, ṽ = v − v0,

and then linearize the systems around zero. For conve-
nience, we still use u and v for ũ and ṽ , respectively,
in the new systems, so we have
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

du(t)
dt = k1u(t) + k2u(t − τ) + k3v(t)

+ k4v(t − τ) + h.o.t.,
dv(t)
dt = l1u(t) + l2u(t − τ) + l3v(t)

+ l4v(t − τ) + h.o.t.,

(35)

and
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u(x,t)
∂t = d1

∂2u(x,t)
∂x2

+ k1u(x, t) + k2u(x, t − τ)

+ k3v(x, t) + k4v(x, t − τ) + h.o.t.,
∂v(x,t)

∂t = d2
∂2v(x,t)

∂x2
+ l1u(x, t) + l2u(x, t − τ)

+ l3v(x, t) + l4v(x, t − τ) + h.o.t.,

(36)

where the term h.o.t. denotes the higher-order terms
and ki , li for i = 1, 2, 3, 4 are defined in (5).

The aim of this section is to derive an algorithm
to analyze the direction of the Hopf bifurcation, the
stability and period of bifurcating periodic solutions
of a general 2 × 2 delayed reaction–diffusion system
(36). This general algorithm can be also applied for a
general 2 × 2 system of delay differential equations
(35) by taking diffusion coefficients zero in (36).

In order to determine thedirection and the stability of
the Hopf bifurcation, we consider the following system
which is equivalent to system (36) [see (15)]

( du
dt
dv
dt

)

= B

(
u(t)

v(t)

)

+ C

(
u(t − τ)

v(t − τ)

)

+ F, (37)

where u(t) = u(., t), v(t) = v(., t) and

B =
⎛

⎝
−d1

n2

�2
+ k1 k3

l1 −d2
n2

�2
+ l3

⎞

⎠ ,

C =
(
k2 k4
l2 l4

)

, F =
(
F1
F2

)

.

(38)

We normalize the delay with the scaling t → (t/τ) .

Using τ = τ j,0 + μ, (37) can be rewritten as follows:

( du
dt
dv
dt

)

= (τ j,0+μ
)
(

B

(
u(t)

v(t)

)

+ C

(
u(t−1)

v(t−1)

)

+F

)

.

(39)

Let U (t) = (u(t), v(t))T . Then (39) can be rewrit-
ten as

U ′(t) = (τ j,0 + μ
)
(BU (t) + CU (t − 1) + F) .

For φ = (φ1, φ2)
T ∈ C = C

(
[−1, 0] ,R2

)
we can

define Lμ : C → R
2 as follows:

Lμ(φ) = (τ j,0 + μ
)
(Bφ(0) + Cφ (−1)) . (40)

Now, system (39) can be rewritten as a functional
differential equation in C

(
[−1, 0] ,R2

)
as

U ′(t) = Lμ(Ut ) + h(μ,Ut ), (41)

where Ut (θ) = U (t + θ) = (u(t + θ), v(t + θ))T ,
θ ∈ [−1, 0] and h : R × C→ R

2 where

h(φ, μ) = (τ j,0 + μ
)
F(φ) (42)

in which

F =
(
F1(φ(θ))

F2(φ(θ))

)

, (43)

where

F1(φ(θ)) = m11φ
2
1(0) + m12φ1(0)φ1(−1)

+m13φ1(0)φ2(0) + m14φ1(0)φ2(−1)

+m22φ
2
1(−1) + m23φ1(−1)φ2(0)

+m24φ1(−1)φ2(−1) + m33φ
2
2(0)

+m34φ2(0)φ2(−1) + m44φ
2
2(−1)

+ h.o.t.,

F2(φ(θ)) = r11φ
2
1(0) + r12φ1(0)φ1(−1)

+ r13φ1(0)φ2(0) + r14φ1(0)φ2(−1)

+ r22φ
2
1(−1) + r23φ1(−1)φ2(0)

+ r24φ1(−1)φ2(−1) + r33φ
2
2(0)

+ r34φ2(0)φ2(−1) + r44φ
2
2(−1) + h.o.t.,

123
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and

m11 = 1
2 fuu(P0), m12 = fuuτ (P0),

m13 = fuv(P0), m14 = fuvτ (P0),

m22 = 1
2 fuτ uτ (P0), m23 = fuτ v(P0),

m24 = fuτ vτ (P0), m33 = 1
2 fvv(P0),

m34 = fvvτ (P0), m44 = 1
2 fvτ vτ (P0),

r11 = 1
2guu(P0), r12 = guuτ (P0),

r13 = guv(P0), r14 = guvτ (P0),

r22 = 1
2guτ uτ (P0), r23 = guτ v(P0),

r24 = guτ vτ (P0), r33 = 1
2gvv(P0),

r34 = gvvτ (P0), r44 = 1
2gvτ vτ (P0).

(44)

Notice that system (41) has two different unknown
functions, namely, U (t) and Ut = U (t + θ). By the
Riesz Representation theorem, there exists 2×2matrix
η(θ, μ), θ ∈ [−1, 0] whose elements are of bounded
variation functions such that

Lμ(φ) =
∫ 0

−1
dη(μ, θ)φ(θ) for φ ∈ C. (45)

In fact, we can choose

dη(μ, θ) = (τ j,0 + μ
)
(Bδ (θ) + Cδ(θ + 1)) dθ,

(46)

where δ (θ) is the Dirac delta function here. Then, for
φ ∈ C, we define

A(μ)φ =
⎧
⎨

⎩

dφ(θ)

dθ
,

∫ 0
−1 dη(μ, θ)φ(θ) = Lμ (φ) ,

θ ∈ [−1, 0)

θ = 0

(47)

and

R(μ)φ =
{
0,
h(φ, μ),

θ ∈ [−1, 0)
θ = 0.

(48)

Then system (41) is equivalent to the following abstract
differential equation which involves only one unknown
function

.

Ut = A(μ)Ut + R(μ)Ut , (49)

where Ut (θ) = U (t + θ) for θ ∈ [−1, 0]. In order
to construct center manifold coordinates, we need an
inner product. For ψ ∈ C [0, 1] and φ ∈ C [−1, 0], it
is defined by

< ψ,φ > = ψ(0) · φ(0) −
∫ 0

θ=−1

∫ θ

ξ=0
ψ

T
(ξ − θ)

×dη(μ, θ)φ(ξ)dξ.

(50)

Let q (θ) be an eigenvector of A(0) corresponding to
λ(0) = iω jτ j,0 and q∗ (s) be an eigenvector of A∗(0)
corresponding to λ(0) = −iω jτ j,0 satisfying

{ 〈q∗ (s) , q (θ)〉 = 1,
〈q∗ (s) , q (θ)〉 = 0,

(51)

{
A(0)q (θ) = iω jτ j,0q (θ) ,

A∗(0)q∗ (s) = −iω jτ j,0q∗ (s) ,
(52)

where A∗(μ) is adjoint operator of A(μ) defined as

A∗(μ)φ =
⎧
⎨

⎩

−dφ(s)

ds
, s ∈ (0, 1]

∫ 0
−1 dη

T (μ, s)φ(−s), s = 0.
(53)

First, we determine q (θ) from A(0)q (θ) = iω jτ j,0
q (θ) in (52). It will be done in two cases as follows:

Case A1: If θ ∈ [−1, 0), then, by (47),

A(0)q (θ) = dq(θ)

dθ
= iω jτ j,0q (θ) (54)

so that we obtain that q (θ) =
(
1
c

)

eiω j τ j,0θ from (54)

where c will be determined in Case A2.

Case A2: When θ = 0, utilizing (47) we have

A(0)q (0)

=
∫ 0

−1
dη(0, θ)q(θ)

= τ j,0

(

B
∫ 0

−1
δ (θ) q(θ)dθ + C

∫ 0

−1
δ (θ + 1) q(θ)dθ

)

= τ j,0

(
k1 + c

(
k3 + k4e−iω j τ j,0

)+ k2e−iω j τ j,0 − d1
n2

�2

l1 + l2e−iω j τ j,0 + c
(
l3 + l4e−iω j τ j,0 − d2

n2

�2

)

)

,
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and we also have A(0)q (0) = iω jτ j,0q (0) . Hence

(
k1 + c

(
k3 + k4e−iω j τ j,0

)+ k2e−iω j τ j,0 − d1
n2

�2

l1 + l2e−iω j τ j,0 + c
(
l3 + l4e−iω j τ j,0 − d2

n2

�2

)

)

=
(
iω j

iω j c

)

.

From the calculations above one obtains c as follows:

c =
iω j −

(
k1 − d1

n2

�2
+ k2e−iω j τ j,0

)

(
k3 + k4e−iω j τ j,0

) . (55)

Second, we determine q∗ (s) from A∗(0)q∗ (s) =
−iω jτ j,0q∗ (s) in (52). Once again, it will be done in
two cases as follows:

Case B1: If s ∈ (0, 1], then, by (53), one has

A∗(0)q∗ (s) = −dq∗(s)
ds

= −iω jτ j,0q
∗ (s)

so that one obtains that q∗ (s) = E

(
c∗
1

)

eiω j τ j,0s . The

constant c∗ will be calculated below.

Case B2: When s = 0, we have [see (53)]

A∗(0)q∗ (0)

=
∫ 0

−1
dηT (0, s)φ(−s)

= τ j,0

(

BT
∫ 0

−1
δ (s) q∗(−s)ds + CT

∫ 0

−1
δ (s + 1) q∗(−s)ds

)

= Eτ j,0

(
l1 + l2eiω j τ j,0 + c∗

(
k1 + k2eiω j τ j,0 − d1

n2

�2

)

l3 + l4eiω j τ j,0 − d2
n2

�2
+ c∗ (k3 + k4eiω j τ j,0

)

)

,

and we also have A∗(0)q∗ (0) = −iω jτ j,0q∗ (0) .

Hence

(
l1 + l2eiω j τ j,0 + c∗

(
k1 + k2eiω j τ j,0 − d1

n2

�2

)

l3 + l4eiω j τ j,0 − d2
n2

�2
+ c∗ (k3 + k4eiω j τ j,0

)

)

=
(−iω j c∗

−iω j

)

.

These calculations yield that c∗ has the following form:

c∗ = −
⎛

⎝
iω j + l3 + l4eiω j τ j,0 − d2

n2

�2

k3 + k4eiω j τ j,0

⎞

⎠ . (56)

These two eigenvectors must satisfy the properties
given in (51). Since λ(0) = iω jτ j,0 is a simple eigen-
value of A(0) , one can show that 〈q∗ (s) , q (θ)〉 = 0
(see [19] and [42]). Let us now choose E such that
〈q∗ (s) , q (θ)〉 = 1. By the definition of inner product
[see (50)], one has

〈q∗ (s) , q (θ)〉

= q∗(0) · q(0) −
∫ 0

θ=−1

∫ θ

ξ=0
q∗T (ξ − θ)dη(0, θ)q(ξ)dξ

= E
(
c∗+c

)−E
(
c∗ 1

)
(∫ 0

−1
dη(0, θ)eiω j τ j,0θ θ

)(
1
c

)

.

First, we calculate the integral on the right-hand side
of the latter equation as follows:
(∫ 0

−1
dη(0, θ)eiω j τ j,0θ θ

)

= τ j,0

(∫ 0

−1
Bδ (θ) eiω j τ j,0θ θdθ

+
∫ 0

−1
Cδ(θ + 1)eiω j τ j,0θ θdθ

)

= −e−iω j τ j,0τ j,0

(
k2 k4
l2 l4

)

.

Second, we substitute the result into the equation above
to determine E , and we obtain E as follows:

E =
(
c∗ + c + e−iω j τ j,0τ j,0

(
c∗k2 + c∗ck4 + l2 + cl4

))−1

(57)

since 〈q∗ (s) , q (θ)〉 = 1.
Next, using a similar notation as in Hassard

et al. [19], we compute the coordinates to describe the
center manifold C0 at μ = 0. Let Ut be the solution of
equation (49) with μ = 0. Define
{
z(t) = 〈q∗,Ut 〉 ,
w(t, θ) = Ut (θ) − z(t)q(θ) − z(t)q(θ).

(58)

On the center manifold, w(t, θ) = w(z(t), z(t), θ)

where

w(z, z, θ) =
∑ 1

i ! j !wi j (z)
i (z) j

= w20(θ)
z2

2
+ w11(θ)zz + w02(θ)

z2

2
+ · · · ,

(59)
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Indeed, z and z are local coordinates for the center
manifold C0 in C = C

(
[−1, 0] ,R2

)
in the direction

of q∗ and q∗. For Ut ∈ C0,

.
z(t) =

〈
q∗,

.

Ut

〉
= 〈q∗, AUt + RUt

〉
,

where ′·′ means the derivative with respect to time here.
Since μ = 0,
.
z(t) = iω jτ j,0

〈
q∗,Ut

〉+ < q∗, h0 >

= iω jτ j,0z(t) + g(z, z),

where

h0 := h(z, z, 0), < q∗, h0 >= q∗(0) · h0.

We can represent g(z, z) as

g(z, z) = q∗(0) · h0
= g20

z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · · .

(60)

Thus, at μ = 0, system (49) is reduced to the fol-
lowing system in (z, w)-coordinates:
{ .
z(t) = iω jτ j,0z + g(z, z),
.
w(t) = A(0)w + H(z, z, θ),

(61)

where

H(z, z, θ)

=
{− < q∗, h0 > q (θ) − < q∗, h0 >q (θ)

h0− < q∗, h0 > q (0) − < q∗, h0 >q (0)

, θ ∈ [−1, 0) ,

, θ = 0.

(62)

From (42) we have

h0 = h(Ut , 0) =
(
h01(Ut )

h02(Ut )

)

, (63)

where

h01 (Ut ) = τ j,0

⎛

⎜
⎜
⎜
⎜
⎜
⎝

m11u2t (0) + m12ut (0)ut (−1)
+m13ut (0)vt (0) + m14ut (0)vt (−1)

+m22u2t (−1) + m23ut (−1)vt (0)

+m24ut (−1)vt (−1) + m33v
2
t (0)

+m34vt (0)vt (−1) + m44v
2
t (−1) + h.o.t.,

⎞

⎟
⎟
⎟
⎟
⎟
⎠

h02 (Ut ) = τ j,0

⎛

⎜
⎜
⎜
⎜
⎜
⎝

r11u2t (0) + r12ut (0)ut (−1)
+ r13ut (0)vt (0) + r14ut (0)vt (−1)

+ r22u2t (−1) + r23ut (−1)vt (0)

+ r24ut (−1)vt (−1) + r33v2t (0)

+ r34vt (0)vt (−1) + r44v2t (−1) + h.o.t.,

⎞

⎟
⎟
⎟
⎟
⎟
⎠

andmi j and ri j are defined in (44). From (58) and (59),
we have

Ut (θ) =
(
ut (θ)

vt (θ)

)

= zq(θ) + zq(θ) + w20(θ)
z2

2
+ w11(θ)zz

+ w02(θ)
(z)2

2
+ h.o.t.. (64)

On the purpose of finding h0 = h(Ut , 0), we put
θ = 0 in (64) that leads to the following equations

ut (0) = z + z + w201(0)
z2

2
+ w111(0)zz

+ w021(0)
(z)2

2
+ h.o.t.

vt (0) = cz + cz + w202(0)
z2

2
+ w112(0)zz

+ w022(0)
(z)2

2
+ h.o.t..

Similarly, ut (−1) and vt (−1) can be obtained by plug-
ging in θ = −1 into (64), so we have the followings:

ut (−1) = ze−iω j τ j,0 + zeiω j τ j,0 + w201(−1)
z2

2

+ w111(−1)zz + w021(−1)
(z)2

2
+ h.o.t.

vt (−1) = cze−iω j τ j,0 + czeiω j τ j,0 + w202(−1)
z2

2

+ w112(−1)zz + w022(−1)
(z)2

2
+ h.o.t..

Substituting now ut (0), vt (0), ut (−1) and vt (−1) into
(63), one obtains h0(z, z) as follows:

h0(z, z)

=
(
h01(z, z)
h02(z, z)

)

=
(
K20z2+K11zz + K02 (z)2 + K21z2z + h.o.t.
L20z2+L11zz + L02 (z)2 + L21z2z + h.o.t.

)

,

(65)
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where

K21 = τ j,0

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(
2w111 (0) + w201 (0)

)
m11

+
⎛

⎜
⎝

w111 (−1) + 1
2w201 (−1)

+ e−iω j τ j,0w111 (0)

+ 1
2 e

iω j τ j,0w201 (0)

⎞

⎟
⎠m12

+
(
cw111 (0) + c

2w201 (0)

+ w112 (0) + 1
2w202 (0)

)

m13

+
(
e−iω j τ j,0cw111 (0) + w112 (−1)

+ eiω j τ j,0 c
2 w201 (0) + 1

2w202 (−1)

)

m14

+
(
2e−iω j τ j,0w111 (−1)

+ eiω j τ j,0w201 (−1)

)

m22

+
(
e−iω j τ j,0w112 (0) + cw111 (−1)

+ 1
2 e

iω j τ j,0w202 (0) + c
2w201 (−1)

)

m23

+

⎛

⎜
⎜
⎜
⎜
⎝

e−iω j τ j,0cw111 (−1)

+ eiω j τ j,0 c
2 w201 (−1)

+ e−iω j τ j,0w112 (−1)

+ eiω j τ j,0

2 w202 (−1)

⎞

⎟
⎟
⎟
⎟
⎠
m24

+ (2cw112 (0) + cw202 (0)
)
m33

+
(
e−iω j τ j,0cw112 (0) + cw112 (−1)

+ eiω j τ j,0 c
2 w202 (0) + c

2w202 (−1)

)

m34

+
(
2e−iω j τ j,0cw112 (−1)

+ eiω j τ j,0cw202 (−1)

)

m44

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

K02 = τ j,0

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

m11 + eiω j τ j,0m12

+cm13 + eiω j τ j,0cm14

+ e2iω j τ j,0m22 + eiω j τ j,0cm23

+ e2iω j τ j,0cm24 + c2m33

+ eiω j τ j,0c2m34 + e2iω j τ j,0c2m44

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= K20,

K11 = τ j,0

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2m11 + (e−iω j τ j,0 + eiω j τ j,0
)
m12

+ (c + c)m13 + (e−iω j τ j,0c + eiω j τ j,0c
)
m14

+ 2m22 + (eiω j τ j,0c + e−iω j τ j,0c
)
m23

+ (c + c)m24 + 2ccm33

+ (e−iω j τ j,0 + eiω j τ j,0
)
ccm34 + 2ccm44

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

K20 = τ j,0

⎛

⎜
⎜
⎜
⎝

m11 + e−iω j τ j,0m12 + cm13

+ e−iω j τ j,0cm14 + e−2iω j τ j,0m22

+ e−iω j τ j,0cm23 + e−2iω j τ j,0cm24

+ c2m33 + e−iω j τ j,0c2m34 + e−2iω j τ j,0c2m44

⎞

⎟
⎟
⎟
⎠

,

and

L21 = τ j,0

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(
2w111 (0) + w201 (0)

)
m11

+
⎛

⎜
⎝

w111 (−1) + 1
2w201 (−1)

+ e−iω j τ j,0w111 (0)

+ 1
2 e

iω j τ j,0w201 (0)

⎞

⎟
⎠m12

+
(
cw111 (0) + c

2w201 (0)

+w112 (0) + 1
2w202 (0)

)

m13

+
(
e−iω j τ j,0cw111 (0) + w112 (−1)

+ eiω j τ j,0 c
2 w201 (0) + 1

2w202 (−1)

)

m14

+
(
2e−iω j τ j,0w111 (−1)

+ eiω j τ j,0w201 (−1)

)

m22

+
(
e−iω j τ j,0w112 (0) + cw111 (−1)

+ 1
2 e

iω j τ j,0w202 (0) + c
2w201 (−1)

)

m23

+

⎛

⎜
⎜
⎜
⎜
⎝

e−iω j τ j,0cw111 (−1)

+ eiω j τ j,0 c
2 w201 (−1)

+ e−iω j τ j,0w112 (−1)

+ eiω j τ j,0

2 w202 (−1)

⎞

⎟
⎟
⎟
⎟
⎠
m24

+ (2cw112 (0) + cw202 (0)
)
m33

+
(
e−iω j τ j,0cw112 (0) + cw112 (−1)

+ eiω j τ j,0 c
2 w202 (0) + c

2w202 (−1)

)

m34

+
(
2e−iω j τ j,0cw112 (−1)

+ eiω j τ j,0cw202 (−1)

)

m44

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

L02 = τ j,0

⎛

⎜
⎜
⎜
⎜
⎜
⎝

r11 + eiω j τ j,0r12
+ cr13 + eiω j τ j,0cr14
+ e2iω j τ j,0r22 + eiω j τ j,0cr23
+ e2iω j τ j,0cr24 + c2r33
+ eiω j τ j,0c2r34 + e2iω j τ j,0c2r44

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= L20,

L11 = τ j,0

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2r11 + (e−iω j τ j,0 + eiω j τ j,0
)
r12

+ (c + c) r13 + (e−iω j τ j,0c + eiω j τ j,0c
)
r14

+ 2r22 + (eiω j τ j,0c + e−iω j τ j,0c
)
r23

+ (c + c) r24 + 2ccr33
+ (e−iω j τ j,0 + eiω j τ j,0

)
ccr34 + 2ccr44

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

L20 = τ j,0

⎛

⎜
⎜
⎜
⎝

r11 + e−iω j τ j,0r12 + cr13
+ e−iω j τ j,0cr14 + e−2iω j τ j,0r22
+ e−iω j τ j,0cr23 + e−2iω j τ j,0cr24
+ c2r33 + e−iω j τ j,0c2r34 + e−2iω j τ j,0c2r44

⎞

⎟
⎟
⎟
⎠

.
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By (60), we have

∑ 1

i ! j !gi j (z)
i (z) j = E

(
c∗h01 + h02

)
. (66)

In order to determine the stability and thedirectionof
theHopf bifurcation,weneed to evaluate the coefficient
c1(0) of the Poincaré normal form that is given by the
following formula

c1(0) = i

2ω jτ j,0

(

g20g11 − 2 |g11|2 − 1

3
|g02|2

)

+ g21
2

, (67)

where from (66)

⎧
⎪⎪⎨

⎪⎪⎩

g20 = 2E(c∗K20 + L20),

g11 = E(c∗K11 + L11),

g02 = 2E(c∗K02 + L02),

g21 = 2E(c∗K21 + L21).

(68)

To calculate g21, we first need to find w20 and
w11. We can express H(z, z, θ) as H(z, z, θ) =
∑ 1

i ! j ! Hi j (θ)(z)i (z) j . Using (59) and substituting this
expressions into

.
w(t) = A(0)w + H(z, z, θ)

yields the following equalities:

H20(θ) = (2iω jτ j,0 − A(0))w20(θ), (69)

H11(θ) = −A(0)w11(θ), (70)

w02(θ) = w20(θ). (71)

First, we find w20. From (62) H20 equals to

H20(θ) =
⎧
⎨

⎩

−g20q(θ) − g02q(θ), θ ∈ [−1, 0)

2

(
K20

L20

)

− g20q(0) − g02q(0), θ = 0.

(72)

We analyze the right-hand side of the latter equation
with respect to the position of θ as follows.

Case C1: If θ ∈ [−1, 0), then using (47) we can
rewrite (69) as follows:

H20(θ) = 2iω jτ j,0w20(θ) − dw20(θ)

dθ
. (73)

Combining (72) and (73) one obtains the following dif-
ferential equation:

dw20(θ)

dθ
− 2iω jτ j,0w20(θ) = g20q(θ) + g02q(θ).

Its solution is

w20(θ) = Se2iω j τ j,0θ − 1

iω jτ j,0
q(0)eiω j τ j,0θg20

− 1

3iω jτ j,0
q(0)e−iω j τ j,0θg02. (74)

Case C2: If θ = 0, then from (72) we get

H20(0) = 2

(
K20

L20

)

− g20q(0) − g02q(0). (75)

Both (69) and (75) give us

A(0)w20(0) = 2iω jτ j,0w20(0) + g20q(0)

+ g02q(0) − 2

(
K20

L20

)

. (76)

From Case C1 we have a formula for w20(θ), namely
(74). By substituting w20(0) into (76) we obtain

A(0)w20(0) = −g20q(0) + 1

3
g02q(0)

+ 2iω jτ j,0S − 2

(
K20

L20

)

. (77)

On the other hand, from definitions of the opera-
tor dη(0, θ), A(0) [see (46), (47)] and the fact that
A(0)q (0) = iω jτ j,0q (0), we get

A(0)w20(0) = −g20q(0) + 1

3
g02q(0)

+ τ j,0

(
B + Ce−2iω j τ j,0

)
S, (78)

so that (77) and (78) yield the following equality that
will give us

S =
(
2iω jτ j,0 I − τ j,0

(
B + Ce−2iω j τ j,0

))−1
(79)

(
2K20

2L20

)

. (80)

Similarly, we will find w11 so that, from (62), H11

will be equal to

H11(θ) =
⎧
⎨

⎩

−g11q(θ) − g11q(θ), θ ∈ [−1, 0)
(
K11

L11

)

− g11q(0) − g11q(0), θ = 0

(81)
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To do this we consider two cases as follows.

Case D1: If θ ∈ [−1, 0) , then because of defini-
tion of the operator A(θ) (see(47)) the equality (70)
becomes

H11(θ) = −dw11(θ)

dθ
. (82)

Both (81) and (82) give us

dw11(θ)

dθ
= g11q(θ) + g11q(θ)

so that we have

w11(θ) = G + 1

iω jτ j,0
q(0)eiω j τ j,0θg11

− 1

iω jτ j,0
q(0)e−iω j τ j,0θg11, (83)

where G will be determined in Case D2.

Case D2: If θ = 0, then from (81) we have

H11(0) =
(
K11

L11

)

− g11q(0) − g11q(0). (84)

Both (70) and (84) give us

A(0)w11(0) = g11q(0) + g11q(0) −
(
K11

L11

)

. (85)

On the other hand, from definitions of the opera-
tor dη(0, θ), A(0) [see (46), (47)] and the fact that
A(0)q (0) = iω jτ j,0q (0) we get

A(0)w11(0) = g11q(0) + g11q(0) + τ j,0 (B + C)G.

(86)

Equating the right-hand sides of the equations (85) and
(86), one obtains the following identity

G = − 1

τ j,0
(B + C)−1

(
K11

L11

)

. (87)

Now we can compute all the unknowns in the equation
of c1(0) which is given (67). Moreover, using these
coefficients we can evaluate the following values:

Re {c1(0)} = Re
( g21

2

)
− 1

2ω jτ j,0
Re(g20) Im(g11)

− 1

2ω jτ j,0
Im(g20)Re(g11),

Im {c1(0)} = Im
( g21

2

)
+ 1

2ω jτ j,0
(Re(g20)Re(g11))

− 1

2ω jτ j,0

×
(

Im(g20) Im(g11)+2 |g11|2+ 1

3
|g02|2

)

,

μ2 = − Re {c1(0)}
Re
{
λ′(τ j,0)

} ,

β2 = 2Re {c1(0)} ,

T2 = − Im {c1(0)} + μ2 Im
{
λ′(τ j,0)

}

ω jτ j,0
.

(88)

Finally, using the quantities above, some properties of
Hopf bifurcation can be determined, which are given
by the following theorem.

Theorem 3 If Re {c1(0)} 
= 0, then

a. the quantity μ2 determines the direction of Hopf
bifurcation: If μ2 > 0, then Hopf bifurcation is
supercritical and the bifurcating periodic solutions
exist for τ > τ j,0; and if μ2 < 0, then Hopf bifurca-
tion is subcritical and the bifurcating periodic solu-
tions exist for τ < τ j,0.

b. β2 determines the stability of the bifurcating peri-
odic solutions: If (H1) and (H2) hold, then the bifur-
cating periodic solutions are stable ifβ2 < 0; unsta-
ble if β2 < 0.

c. the period of the bifurcated periodic solution is
2π

ω j τ j,0
as τ = τ j,0 and T2 determines the period

of the bifurcating solution: The period increases if
T2 > 0 and decreases if T2 < 0.

5 Applications and examples

In this section, we give several examples to show the
effectiveness of the algorithms derived in the preceding
sections.

5.1 Example 1

Bi and Ruan [5] studied dynamics of a delayed ODE
model of tumor–immune system interaction of the fol-
lowing form:
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx

dt
= x (t) [ν (x (t − τ)) − φ (x (t) , y (t))] ,

dy

dt
= β (x (t − τ)) y (t) − μ (x (t)) y (t)

+σq (x (t)) + θ (t) ,

(89)

where x(t) and y(t) are the densities of tumor cells
and immune effector cells at time t > 0, respectively,
and τ is positive constant. The authors implement their
results to the following example:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx

dt
= x (t) [1.636 (1 − 0.002x (t − τ)) − y (t)] ,

dy

dt
= 1.131x(t−τ)

20.19+x(t−τ)
y (t)

− (0.00311x + 0.3743) y (t) + 0.1181.

(90)

This system has two positive equilibrium points,
namely,microequilibriumpoint (8, 18971, 1.6092) and
macroequilibrium point (447.134, 0.17298). They
showed that system (90) has a supercritical Hopf bifur-
cation at themicroequilibriumpoint (8, 18971, 1.6092)
when τ = τ0 = 1.27248 and the bifurcating periodic
solution is stable.

Since (89) is a special case of system (3) with d1 =
d2 = 0 and it has a characteristic equation of the form in
(18) (i.e., H = 0), one can apply the algorithms given
in Sects. 3 and 4 for the existence of Hopf bifurcation
and its properties, respectively. First, applying Lemma
2 one can determine the local stability of the equilibria.
To show the existence of Hopf bifurcation of (90), one
needs to check the conditions in Sect. 3 which are

(H1) 0.1002 > 0, (H2) 0.0706 > 0 and

Y = −0.0062 < 0.

Hence, by Theorem 1, system (90) undergoes a Hopf
bifurcation at the positive equilibrium (8, 18971,
1.6092) when τ passes through τ2,0 = 1.2725 asso-
ciated with ω2 = 0.2618. Using the algorithm given
in Sect. 4 one can also determine the properties of the
Hopf bifurcation via calculating the values below:

μ2 = 5.3436 > 0, β2 = −0.3996 < 0,

T2 = 0.7035 > 0, (91)

which yield the same result (by Theorem 3) for the
direction of the Hopf bifurcation in [5]. Summary, the
results agree with those in [5].

5.2 Example 2

Zou andWei [47] considered a diffusive predator–prey
model with delay of the form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(x, t)

∂t
= d1

∂2u(x, t)

∂x2+u (x, t) [r1 − a11u (x, t − τ) − a12v (x, t)] ,
x ∈ (0, π) , t > 0,
∂v(x, t)

∂t
= d2

∂2v(x, t)

∂x2+v (x, t) [−r2 + a21u (x, t) − a22v (x, t)] ,
x ∈ (0, π) , t > 0,
ux (x, t) = vx (x, t) = 0, x ∈ {0, π}, t ≥ 0,
u(x, t) = φ(x, t) ≥ 0, v(x, t) = ψ(x, t) ≥ 0,
x ∈ [0, π ] , t ∈ [−τ, 0] ,

(92)

where u(x, t) and v(x, t) stand for the prey and preda-
tor densities, respectively. ri and ai j (i, j = 1, 2) are
positive constants; τ > 0 denotes the generation time
of the prey species. d1 and d2 denote the diffusion coef-
ficients of prey and predator species, respectively.

In [47], stability of the positive equilibrium point

P0 =
(

r1a22 + r2a12
a11a22 + a12a21

,
r1a21 − r2a11
a11a22 + a12a21

)

,

where (r1a21 − r2a11) > 0, and the existence and
direction analysis of Hopf bifurcation have been inves-
tigated for system (92)when τ varies. For the following
coefficients:

d1 = 0.2, d2 = 3, n = 1, r1 = r2 = 1,
a11 = a12 = 1, a21 = 8, a22 = 7,

(93)

their analytical results yield that the positive equilib-
rium P0 = (0.5333, 0.4667) is asymptotically stable
when τ < 21.3827; however, the positive equilibrium
point lose its stability and a Hopf bifurcation occurs
when τ passes through the critical value 21.3827, i.e.,
a family of inhomogeneous (n 
= 0) periodic solutions
are bifurcating from P0. Also, they determine that since
μ2 < 0 and β2 > 0, the direction of the Hopf bifur-
cation is subcritical and the bifurcating periodic solu-
tions are unstable. Once again, (92) is in the form of
system (7) and its characteristic equation is similar to
the equation in (18) (i.e., H = 0). Hence, we can use
the algorithm given in Sect. 3 to show the existence of
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Hopf bifurcation. We first analyze system (92) under
the conditions (93) with zero diffusion, i.e.,

d1 = 0, d2 = 0, r1 = r2 = 1,
a11 = a12 = 1, a21 = 8, a22 = 7.

(94)

When there is no diffusion, since

(H1) 3.8000 > 0 and (H2) 3.7333 > 0,

X = 6.4044 > 0 Y = 0.9292 > 0,

X2 − 4Y = 37.3002 > 0,

by Lemma 3-(v) the equilibrium point P0 = (0.5333,
0.4667) is asymptotically stable for all τ ≥ 0, hence
there is no Hopf bifurcation. Figures 1 and 2 support
the analytical results.

However, if the model involves diffusion, then with
the coefficients given in (93), one obtains that

(H1) 7 > 0, (H2) 6.5867 > 0 and Y = −0.6440 < 0.

Hence, by Theorem 1 system (92) undergoes a Hopf
bifurcation at the positive equilibrium P0 = (0.5333,
0.4667)when τ passes across τ2,0 = 21.3827 which is
associated with ω2 = 0.1355. Figures 3 and 4 support
to our findings. In addition, by the algorithm given in
Sect. 4, we also get

μ2 = −5921.5 < 0, β2 = 2640.7 > 0,

T2 = 17,778 > 0. (95)

Using Theorem 3, we achieve the same result for the
direction of Hopf bifurcation in [47] which is subcrit-
ical. This example and its numerical simulations (see
Fig. 1, 2, 3, 4) underline one of the effects of diffu-
sion on the dynamics. Figures 2 and 4 represent that
diffusion changes the stability of the equilibrium point
from stable to unstable when τ > τ2,0 = 21.3827
so that a Hopf bifurcation arises as τ passes across
τ2,0 = 21.3827. In other words, if there is no diffu-
sion, the ODEmodel does not have a Hopf bifurcation;
however, the PDEmodel involving diffusion has aHopf
bifurcation (Fig. 5).

5.3 Example 3

In this example, we consider the following reaction–
diffusion model with time delay under the Neumann
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Fig. 1 Graphs of the solutions u(t) and v(t) and the phase por-
trait of system (92)with zero diffusion and the parameters in (94).
For these simulations,we take initial condition as u(0) = 0.5320,
v(0) = 0.4630, and τ = 15 < τ2,0 = 21.3827. Simula-
tions show that the equilibrium point is asymptotically stable
for τ < τ2,0 = 21.3827
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Fig. 2 Graphs of the solutions u(t) and v(t) and the phase por-
trait of system (92)with zero diffusion and the parameters in (94).
For these simulations,we take initial condition as u(0) = 0.5320,
v(0) = 0.4630, and τ = 25 > τ2,0 = 21.3827. Simulations
show that the equilibriumpoint is still asymptotically stablewhen
τ > τ2,0 = 21.3827
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Fig. 3 Graphs of the solutions u(x, t) (on the top) and v(x, t) (in
the bottom) of system (92) with nonzero diffusion and the param-
eters in (93). For these simulations, we take initial conditions as
u(x, 0) = 0.5333+0.02cos(x), v(x, 0) = 0.4667+0.03cos(x),
and τ = 15 < τ2,0 = 21.3827. Simulations show that the equi-
librium point is asymptotically stable for τ < τ2,0 = 21.3827

boundary conditions studied by Merdan and Kayan
[28]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(x, t)

∂t
= d1

∂2u(x, t)

∂x2

+ a − u(x, t) − 4
u(x, t)v(x, t − τ)

1 + u2(x, t)
,

x ∈ (0, π) , t > 0,
∂v(x, t)

∂t
= d2

∂2v(x, t)

∂x2

+ σb

(

u(x, t) − u(x, t)v(x, t − τ)

1 + u2(x, t)

)

,

x ∈ (0, π) , t > 0,
ux (x, t) = vx (x, t) = 0, x ∈ {0, π}, t ≥ 0,
u(x, t) = u∗(x, t), v(x, t) = v∗(x, t),
x ∈ [0, π ], t ∈ [−τ, 0] ,

(96)
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Fig. 4 Graphs of the solutions u(x, t) (on the top) and v(x, t)
(in the bottom) of system (92) with nonzero diffusion and the
parameters in (93). For these simulations, we choose initial con-
ditions as u(x, 0) = 0.5333 + 0.02cos(x), v(x, 0) = 0.4667 +
0.03cos(x), and τ = 25 > τ2,0 = 21.3827. Simulations show
that the equilibrium point is unstable when τ > τ2,0 = 21.3827

where u∗, v∗ ∈ C2(((0, π) , [−τ, 0])) ∩ C(([0, π ] ,
[−τ, 0])). When there is no time delay, system (96)
reduces to the well-known Lengyel–Epstein reaction–
diffusion model based on the chlorite-iodide-malonic
acid chemical (CIMA) reaction (see [12,28] and the ref-
erences therein for more details). In the model, u(x, t)
and v(x, t) denote chemical concentrations of the acti-
vator iodide and the inhibitor chlorite, respectively.
a > 0 and b > 0 are parameters related to the feed con-
centrations, σ > 0 is a rescaling parameter depending
on the concentration of the starch. Here, the positive
constants d1 and d2 are diffusion coefficients of the
activator and the inhibitor, respectively, and τ is delay
parameter.

In [28], the authors give a detail analysis of exis-
tence of Hopf bifurcation and its properties for system
(96). In laboratory conditions, a sample of parameters
is taken in the range 0 < a < 35, 0 < b < 8, σ = 8.
When there is no diffusion, under the following values
of parameters:
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Fig. 5 Graphs of the solutions u(x, t) (on the top) and v(x, t) (in
the bottom) of system (92) with nonzero diffusion and the param-
eters in (93). For these simulations, we take initial conditions as
u(x, 0) = 0.5333+0.02cos(x), v(x, 0) = 0.4667+0.03cos(x),
and τ = τ2,0 = 21.3827. These simulations show that there are
periodic solutions for τ ∈ (τ2,0 − ε, τ2,0], where ε > 0

d1 = 0, d2 = 0, a = 15, σ = 8 and b = 1.2,

(97)

the characteristic equation of the equation is in the form
of (18) since H = 0. The conditions are calculated as:

(H1) 0.6800 > 0 and (H2) 14.4000 > 0,

hence its equilibrium point N0 = (3, 10) is stable when
τ = 0. On the other hand, since Y = −207.3600 < 0,
when τ = τ2,0 there is a purely imaginary eigenvalue
λ
(
τ2,0
) = iω2 where

ω2 = 4.0287 and τ2,0 = 0.0443.

Transversality condition is satisfied automatically as
shown in Sect. 3. Now applying Theorem 1 one can
show that system (96) with coefficients (97) undergoes
a Hopf bifurcation at the equilibrium point N0 as the
delay parameter τ passes through τ2,0 = 0.0443.More-
over, using algorithm given in Sect. 4, one can easily
obtain thevalues to determine theproperties of theHopf
bifurcation as follows:
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μ2 = 0.000013488, β2 = −0.00024811,
T2 = 0.0099, Period = 35.2195.

(98)

Using Theorem 3, we conclude that since μ2 > 0 and
β2 < 0, bifurcating spatially non-homogeneous peri-
odic solutions (since n = 1 
= 0) exist for τ > τ2,0
and they are stable (i.e., supercritical). Also, because
T2 > 0, the period of the bifurcating solution increases.

To see the effects of diffusion, we choose second set
of parameters as follows:

d1 = 1, d2 = 13, a = 15, σ = 8 and b = 1.2.

(99)

The characteristic equation of the PDE model is again
in the form of equation (18) (i.e., H = 0). We first
checked the conditions (H1) and (H2). The calculations
yield that

(H1) 14.6800 > 0 and (H2) 1.6800 > 0,

so that N0 = (3, 10) is stable when τ = 0. On the
other hand, since Y = −55.2384 < 0, there is a purely
imaginary eigenvalue λ

(
τ2,0
) = iω2 when τ = τ2,0

where

ω2 = 0.5831 and τ2,0 = 0.8650.

Thus, by Theorem 1, a Hopf bifurcation occurs at the
equilibrium point N0 as the delay parameter τ passes
through τ2,0 = 0.8650 for system (96)with coefficients
(98). On the other hand, using Theorem 3, we conclude
that periodic solutions exist for τ < τ2,0. Moreover,
they are unstable (i.e., subcritical) and the period of the
bifurcating solution increases since μ2 < 0, β2 > 0
and T2 > 0 where

μ2 = −0.4117, β2 = 1.3782,
T2 = 3.2607, Period = 12.4582.

(100)

By comparing (98) and (100), we observe that diffusion
has effects on the dynamics of the model as follows:
(i) diffusion changes the type of Hopf bifurcation from
supercritical to subcritical, (ii) it changes the critical
bifurcation value at which the Hopf bifurcation occurs,
and (iii) it also changes the periods of the periodic solu-
tions.

6 Conclusion

In this paper, we drive an algorithm which gives a
methodical way for determining the existence and
direction of Hopf bifurcation of a 2 × 2 system of
reaction–diffusion equation with the Neumann bound-
ary conditions incorporating delay. We determine the
conditions on parameters of the system that Hopf bifur-
cation occurs as the delay parameter passes through a
critical value. Once one determines the conditions at
which equilibrium point of the system is stable when
there is no delay, then one can decide whether Hopf
bifurcation exists by checking the conditions (given in
Tables 1, 2) on X and Y that depend on the coefficients
of the characteristic equation associated with the linear
part of the system including delay. These tables rep-
resent a quick and simple way for determining Hopf
bifurcation of a system having the characteristic equa-
tion in a special form, and also give formulae for purely
imaginary eigenvalues and the bifurcation value. Fur-
thermore, one can determine the stability switches at
an equilibrium point of the system by utilizing Table 2.
Moreover, an algorithm to get the formulae that deter-
mine direction, period and stability of the periodic solu-
tion is generated using the normal form theory and the
center manifold theorem.

We also observe that diffusion has effects on the
dynamics of amodel. Diffusionmay change (i) the type
of Hopf bifurcation from supercritical to subcritical or
vice versa (ii) the critical bifurcation value at which
the Hopf bifurcation occurs, and (iii) the periods of the
periodic solutions (see Examples 5.2 and 5.3).
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