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Abstract: In this paper, we investigate the spectral properties of singular eigenparameter dependent dissipative problems

in Weyl’s limit-circle case with finite transmission conditions. In particular, these transmission conditions are assumed

to be regular and singular. To analyze these problems we construct suitable Hilbert spaces with special inner products

and linear operators associated with these problems. Using the equivalence of the Lax–Phillips scattering function and

Sz-Nagy–Foiaş characteristic functions we prove that all root vectors of these dissipative operators are complete in Hilbert
spaces.
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1. Introduction

As is known, Dirac systems are of the form

y′2 + p(x)y1 + r(x)y2 = λy1,

−y′1 + r(x)y1 + q(x)y2 = λy2,
(1)

where λ is a complex parameter, and p, q , and r are real-valued and locally integrable functions on some

interval (a, b) ⊆ R. The system (1) plays a central role in relativistic quantum theory. In fact, the system

(1) corresponds to Dirac’s radial relativistic wave equation for a particle in a central field [12,14]. One of the

important problems of the system (1) is to describe the solutions belonging to squarely integrable space on some

singular intervals, that is, intervals in which at least one of the potentials p, q , and r increase boundedlessly.

In 1910, Weyl showed with his extraordinary method that at least one of the linearly independent solutions

of a singular second-order differential equation must belong to a squarely integrable space [18]. Moreover, two

linearly independent solutions and combinations of them may belong to a squarely integrable space. These

cases are known as limit-point and limit-circle cases, respectively. Weyl’s method was adopted by Levitan and

Sargsjan to the first-order (Dirac) system (1) [12]. Therefore, the behavior of the coefficients p, q , and r at

singular point(s) describes the solutions belonging to a squarely integrable space (or not).

In some boundary value problems, eigenparameters occur at both differential equation (system) and

boundary conditions. In this situation, the corresponding operator associated with the problem is unusually

defined but with operator-theoretic formulation. This formulation is from Friedman [5]. It is better to note

that a lot of authors have used this formulation to investigate regular and singular eigenparameter dependent

selfadjoint (symmetric) and nonselfadjoint problems [3,6,8].
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An important class of nonselfadjoint operators is the class of dissipative operators. A well-known result

is that all eigenvalues of dissipative operators belong to the closed upper half-plane. In the literature there are

some methods to complete the spectral analysis of dissipative operators. Functional model theory from Sz.-

Nagy and Foiaş [17] is one of the basic methods to study the spectral properties of a dissipative operator. This

method can be used once the characteristic function of the corresponding contractive operator is established.

On the other hand, there is an equivalence between the characteristic function of a contractive operator and

abstract scattering function. In fact, Lax and Phillips established the abstract scattering theory to analyze the

scattering problems of acoustic waves off compact obstacles [11]. Originally this theory was constructed for

hyperbolic partial differential equations. Adamyan and Arov showed that the Lax–Phillips scattering function

and Sz.-Nagy–Foiaş characteristic function can be handled as equivalent [1]. This equivalence has been used in

many papers (for example, see [3,4,13]).

Recently, a new type of operator has been studied intensively called operators with transmission condi-

tions. These transmission conditions occur between end points of disjoint intervals. It is better to note that

operators with transmission conditions appear as a natural description of observed evolution phenomena of

several real-world problems. Many physical, chemical, and biological phenomena involving thresholds; bursting

rhythm models in medicine, pharmacokinetics, and frequency modulated systems; and mathematical models

in economics exhibit transmission effects [10]. Therefore, the theory of differential operators with transmission

conditions is a new and important branch of operator theory that has extensive physical, chemical, and realistic

mathematical models.

In this paper, we investigate the spectral properties of two main first-order differential systems with finite

regular and singular transmission points. Finally, showing the absence of the singular factor in the factorization

of the characteristic function, we prove the completeness theorem.

2. First-order system with finite regular transmission conditions

We consider the system (1) on the multi-interval I :=
∪n+1
k=1 Ik in the following form:

τ(y) := By′ + P (x)y = λy, (2)

where Ik = (ζk−1, ζk) and

B =

(
0 1

−1 0

)
, P (x) =

(
p(x) r(x)

r(x) q(x)

)
, y =

(
y1

y2

)
.

Basic assumptions on (2) and the intervals Ik are as follows:

(i) −∞ < ζ0 < ζ1 < · · · < ζn+1 ≤ ∞,

(ii) p, q , and r are real-valued and Lebesgue measurable functions on Ik, k = 1, n+ 1 := 1, 2, ..., n+ 1,

(iii) ∫
Im

{|p(x)|+ |r(x)|+ |q(x)|} dx <∞, m = 1, n,

and ∫
In+1

{|p(x)|+ |r(x)|+ |q(x)|} dx = ∞.
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Let L2(I,C2) denote the Hilbert space consisting of all vector-valued functions y =
(
y1
y2

)
in C2 satisfying∫

I

(
|y1|2 + |y2|2

)
dx <∞ with the usual inner product

(y, χ) =

∫
I

yTχdx,

where yT denotes the transpose of the vector y =
(
y1
y2

)
.

Consider the set D(I,C2) consisting of all vector-valued functions y =
(
y1
y2

)
∈ L2(I,C2) in which y1 and

y2 are locally integrable functions on all Ik, k = 1, n+ 1, and τ(y) ∈ L2(I,C2).

For arbitrary two vector-valued functions y, χ ∈ D(I,C2) we have the following Green’s formula:

(τ(y), χ)− (y, τ(χ)) =

n+1∑
k=1

[y, χ]ζk−ζk−1+
,

where [y, χ]ζk−ζk−1+
= [y, χ](ζk−)− [y, χ](ζk−1−) and [y, χ](x) = y2(x)χ1(x)− y1(x)χ2(x), x ∈ Ik, k = 1, n+ 1.

Green’s formula implies that at singular point ζn+1 the value [y, χ](ζn+1−) for arbitrary y, χ ∈ D(I,C2) exists

and is finite.

We assume that Weyl’s limit-circle case holds at singular point ζn+1 for (2) [12], [16].

Consider the solutions

u(x) =



u1(x), x ∈ I1

u2(x), x ∈ I2

...

un+1(x), x ∈ In+1

, z(x) =



z1(x), x ∈ I1

z2(x), x ∈ I2

...

zn+1(x), x ∈ In+1

of the equation

τ(y) = 0, x ∈ I,

satisfying the conditions

{
uk1(ζk−1+) = 0, uk2(ζk−1+) = 1,

zk1(ζk−1+) = 1, zk2(ζk−1+) = 0,

where

uk(x) =

(
uk1(x)

uk2(x)

)
, zk(x) =

(
zk1(x)

zk2(x)

)

and k = 1, n+ 1.

Clearly one can infer from Green’s formula that for two solutions y(x, λ) and χ(x, λ) of (2) for the same

value of λ the Wronskian of y and χ defined as W [y, χ] := −[y, χ] = y1χ2 − y2χ1 does not depend on x
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UĞURLU/Turk J Math

and depends only on λ on each Ik, k = 1, n+ 1. Moreover, they are linearly independent if and only if their

Wronskian is nonzero.

Since W [zk, uk] ≡ 1 on each Ik, k = 1, n+ 1, z and u are linearly independent solutions of (2). Further

they belong to D(I,C2). This implies that for arbitrary y ∈ D(I,C2) the values [y, z](ζn+1−) and [y, u](ζn+1−)

exist and are finite.

Note that for y, χ ∈ D(I,C2), a direct calculation shows that

[yk, χk](x) = [yk, uk](x)[χk, zk](x)− [yk, zk](x)[χk, uk](x), x ∈ Ik. (3)

In sections 3 and 4 we investigate the spectral properties of the following boundary value transmission

problem (BVTP):

τ(y) = λy, y ∈ D(I,C2), x ∈ I, (4)

(a1y11(ζ0+)− a2y12(ζ0+))− λ (a′1y11(ζ0+)− a′2y12(ζ0+)) = 0, (5)

ym1(ζm−) = bmy(m+1)1(ζm+), (6)

ym2(ζm−) = b′my(m+1)2(ζm+), (7)

[yn+1, un+1](ζn+1−)− c[yn+1, zn+1](ζn+1−) = 0, (8)

where m = 1, n, λ and c are complex numbers with ℑc > 0, a1, a2, a
′
1, a

′
2, bm, b

′
m are real numbers with

bmb
′
m > 0 and

a :=

∣∣∣∣∣ a1 a2

a′1 a′2

∣∣∣∣∣ > 0.

It should be noted that without transmission conditions the 1d-Hamiltonian system has been studied in [3].

3. Dissipative operator

Let H = K ⊕ C, where K =
⊕n+1

k=1 Kk, Kk = L2(Ik,C2), be the Hilbert space equipped with the following

inner product

⟨v,w⟩H =

∫
I

vT (x)w(x)dµ(x) +
1

a
vT0 w0

for

v =

[
v(x)

v0

]
∈ H, w =

[
w(x)

w0

]
∈ H,

where
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v(x) =



v1(x), x ∈ I1

v2(x), x ∈ I2

...

vn+1(x), x ∈ In+1

, w(x) =



w1(x), x ∈ I1

w2(x), x ∈ I2

...

wn+1(x), x ∈ In+1

∈ H,

µ(x) =



x, x ∈ I1

b(1)x, x ∈ I2

...
n∏

m=1
b(m)x, x ∈ In+1

,

v0, w0 ∈ C, vk =
(
vk1

vk2

)
, wk =

(
wk1

wk2

)
, b(m) := bmb

′
m > 0. Clearly vT0 = v0, since v0 is a complex number.

However, this formulation will allow us to obtain the resolvent operator explicitly. It should be noted that such

a representation has been given in [9].

Consider the set Dom(T ) in H consisting of all functions v = [ v(x)v0
] such that vk1, vk2, k = 1, n+ 1,

are locally absolutely continuous functions on all Ik satisfying τ(v) ∈ H, B0[v] = 0, B′
0[v] = v0, Bm[v] =

0, B′
m[v] = 0, m = 1, n, and Bn+1[v] = 0, where B0[v] := a1v11(ζ0+) − a2v12(ζ0+), B′

0[v] := a′1v11(ζ0+) −
a′2v12(ζ0+), Bm[v] := vm1(ζm−) − bmv(m+1)1(ζm+), B′

m[v] := vm2(ζm−) − b′mv(m+1)2(ζm+), Bm+1[v] :=

[yn+1, zn+1](ζn+1−)− c[yn+1, un+1](ζn+1−). Then we define the operator T on Dom(T ) as

Tv = τ1(v),

where

τ1(v) =

[
τ(v)

B0[v]

]
.

Thus the BVTP (4)–(8) can be handled in H as

Tv = λv, v ∈ Dom(T ), x ∈ I.

Let

φ(x, λ) =



φ1(x, λ), x ∈ I1

φ2(x, λ), x ∈ I2

...

φn+1(x, λ), x ∈ In+1

, θ(x, λ) =



θ1(x, λ), x ∈ I1

θ2(x, λ), x ∈ I2

...

θn+1(x, λ), x ∈ In+1

be the solutions of (4) satisfying the conditions

φ11(ζ0+, λ) = α2 − λα′
2, φ12(ζ0+, λ) = α1 − λα′

1,

φ(m+1)1(ζm+, λ) = b−1
m φm1(ζm−, λ), φ(m+1)2(ζm+, λ) = b′−1

m φm2(ζm−, λ),
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m = 1, n, and

[θn+1, un+1](ζn+1−) = c, [θn+1, zn+1](ζn+1−) = 1,

θs1(ζs−, λ) = bsθ(s+1)1(ζs+, λ), θs2(ζs−, λ) = b′sθ(s+1)2(ζs+, λ),

s = n, 1.

Define the function ∆k(λ) = W [θk, φk](x), x ∈ Ik, k = 1, n+ 1. Constant of Wronskians on each Ik

and transmission conditions give the following equalities:

∆(λ) := ∆1(λ) = b(1)∆2(λ) = . . . =
n∏

m=1

b(m)∆n+1(λ). (9)

It is clear that the zeros of ∆ coincide with the eigenvalues of T (see [15]) and ∆ is an entire function.

We shall recall that a linear operator L with dense domain D(L) acting on some Hilbert space H is

called dissipative if for all y ∈ D(L) the inequality

ℑ⟨Ly, y⟩H ≥ 0

holds and is called maximal dissipative if it does not have any proper dissipative extension [7].

Theorem 3.1 T is dissipative in H.

Proof For

v =

[
v(x)

v0

]
=

[
v(x)

B′
0[v]

]
∈ Dom(T )

a direct calculation gives

⟨Tv,v⟩H − ⟨v, Tv⟩H = [v, v]ζ1−ζ0+
+ b(1)[v, v]

ζ2−
ζ1+

+ · · ·+
n∏

m=1
b(m)[v, v]

ζn+1−
ζn+

+a−1
(
B0[v]B′

0[v]−B′
0[v]B0[v]

)
.

(10)

One can obtain the equation

B0[v]B′
0[v]−B′

0[v]B0[v] = a[v, v](ζ0+). (11)

The conditions Bm[v] = 0, B′
m[v] = 0, m = 1, n, give

[v, v](ζ1−) = b(1)[v, v](ζ1+), . . . , [v, v](ζn−) = b(n)[v, v](ζn+). (12)

Using (3) and the condition Bn+1[v] = 0, the following equality is obtained:

[v, v](ζn+1−) = 2iℑc |[v, z](ζn+1−)|2 . (13)

Substituting (11)–(13) in (10) we have

ℑ⟨Tv,v⟩H =
n∏

m=1

b(m)ℑc |[v, z](ζn+1−)|2
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and this completes the proof. 2

Corollary 3.2 All eigenvalues of T lie in the closed upper half-plane.

Theorem 3.3 T is maximal dissipative in H.

Proof To prove that T is maximal dissipative in H , it is sufficient to show that the equality

(T − λI)Dom(T ) = H, ℑλ < 0, (14)

is true (see [7]).

Let

v =

[
v(x)

v0

]
∈ Dom(T ), g =

[
g(x)

g0

]
∈ H.

Then the equation

(T − λI)v = g, x ∈ I, ℑλ < 0,

is equivalent to the nonhomogeneous differential equation

τ [v]− λv = g(x), x ∈ I, (15)

subject to the conditions

B0[v]− λB′
0[v] = g0,

Bm[v] = 0,

B′
m[v] = 0, m = 1, n,

Bn+1[v] = 0.

We may represent the general solution of the homogeneous differential equation as

v(x, λ) =



s1φ1(x, λ) + l1θ1(x, λ), x ∈ I1

s2φ2(x, λ) + l2θ2(x, λ), x ∈ I2

...

sn+1φn+1(x, λ) + ln+1θn+1(x, λ), x ∈ In+1

in which all sk and lk, k = 1, n+ 1, are arbitrary constants. Using the method of variation of constants and
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the conditions Bm[v] = 0, B′
m[v] = 0, m = 1, n, (see [2]) v(x, λ) is found as

v(x, λ) =



−φ1(x, λ)

(
1

∆1(λ)

ζ1∫
x

θT1 g1dt+
1

∆2(λ)

∫
I2

θT2 g2dt+ · · ·+ 1
∆n+1(λ)

∫
In+1

θTn+1gn+1dt

)

−θ1(x, λ)

(
1

∆1(λ)

x∫
ζ0

θT2 g1dt−
g0

∆1(λ)

)
, x ∈ I1

−φ2(x, λ)

(
1

∆2(λ)

ζ2∫
x

θT2 g2dt+
1

∆3(λ)

∫
I3

θT3 g3dt+ · · ·+ 1
∆n+1(λ)

∫
In+1

θTn+1gn+1dt

)

−θ2(x, λ)

(
1

∆1(λ)

∫
I1

φT1 g1dt+
1

∆2(λ)

x∫
ζ1

φT2 g2dt−
g0

∆1(λ)

)
, x ∈ I2

...

−φn+1(x,λ)
∆n+1(λ)

ζn+1∫
x

θTn+1gn+1dt− θn+1(x, λ)

(
1

∆1(λ)

∫
I1

φT1 g1dt+ · · ·+

1
∆n(λ)

∫
In

φTngndt+
1

∆n+1(λ)

x∫
ζn

φTn+1gn+1dt− g0
∆1(λ)

)
, x ∈ In+1

, (16)

Using the equalities given in (9) and setting the kernel

G(x, t, λ) =

 − 1
∆(λ)θ(x, λ)φ

T (x, λ); ζ0 ≤ t ≤ x ≤ ζn+1;x, t ̸= ζm,m = 1, n

− 1
∆(λ)φ(x, λ)θ

T (x, λ); ζ0 ≤ x ≤ t ≤ ζn+1;x, t ̸= ζm,m = 1, n

we reduce (16) to

v(x, λ) =

∫
I

G(x, t, λ)g(t)dµ(t) +
1

∆(λ)
θ(x, λ)g0. (17)

On the other hand, the equality

B′
0[G

T (x, t, λ)] =
a

∆(λ)
θT (x, λ) (18)

holds.

Let

Gx,t,λ =

[
GT (x, t, λ)

B′
0[G

T ]

]
.

Then from (17) and (18) one gets that

v = ⟨Gx,t,λ, g(t)⟩H .

Therefore the equality

Kg := ⟨Gx,t,λ, g(t)⟩H = v

holds for arbitrary g ∈ H. Therefore (14) is satisfied and the theorem is proved. 2
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4. Scattering function

We shall add the incoming and outgoing channels to the Hilbert space H and form the main Hilbert space as

follows:

H = L2(R−)⊕H ⊕ L2(R+),

where R− := (−∞, 0] and R+ := [0,∞).

Let Dom(S) be the set in H consisting of all vectors

V = (χ−,v, χ+) ,

where χ∓ ∈W 1
2 (R∓) (W 1

2 is the Sobolev space), v = [v(x)v0
] ∈ H, v0 = B′

0[v], satisfying

Bl[v] = 0, (19)

B′
l[v] = 0, (20)

[v, u](ζn+1−)− c[v, z](ζn+1−) =

(
n∏

m=1

b(m)

)−1/2

σχ−(0), (21)

[v, u](ζn+1−)− c[v, z](ζn+1−) =

(
n∏

m=1

b(m)

)−1/2

σχ+(0), (22)

where l = 1, n, σ2 := 2ℑc, σ > 0. We define the operator S on Dom(S) as

SV = S̃V,

where

S̃V = S̃ (χ−,v, χ+) =

(
i
dχ−

dr
, τ1[v], i

dχ+

ds

)
.

Theorem 4.1 S is selfadjoint in H.

Proof Let V = (χ−,v, χ+) ,W = (ψ−,w, ψ+) ∈ Dom(S). Then with the help of the conditions (19)–(22) we

get that

(SV,W )H − (V, SW )H = [v, w]ζ1−ζ0+
+ b(1)[v, w]

ζ2−
ζ1+

+ ...+
n∏

m=1
b(m)[v, w]

ζn+1−
ζn+

+a−1
(
B0[v]B′

0[w]−B′
0[v]B0[w]

)
+ iχ−(0)ψ−(0)− iχ+(0)ψ+(0)

=
n∏

m=1
b(m)[v, w](ζn+1−) + iχ−(0)ψ−(0)− iχ+(0)ψ+(0) = 0.

This implies that Dom(S) ⊆ Dom(S∗), where Dom(S∗) is the domain of the adjoint operator S∗ of S.
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Let us consider the vector V = (χ−, 0, χ+) ∈ Dom(S) such that χ∓(0) = 0 and arbitrary vector

W = (ψ−,w, ψ+) ∈ Dom(S∗). Then we obtain that

(SV,W )H =
⟨(
idχ−
dr , 0, i

dχ+

ds

)
, (ψ−,w, ψ+)

⟩
H

=
⟨
(χ−, 0, χ+) ,

(
idψ−
dr ,w

∗, idψ+

ds

)⟩
H
,

where ψ∓ ∈W 1
2 (R∓), w∗ = [w

∗(x)
w∗

0
] ∈ Dom(T ). Considering

Bl[w] = 0, B′
l[w] = 0, l = 1, n, (23)

we have for arbitrary V ∈ Dom(S) that (SV,W )H = (V, SW )H . Therefore using (21) and (22) we have

(
n∏

m=1
b(m)

)1/2 {
χ−(0)

[(
σ + ic

σ

)
[w, z](ζn+1−)− i

σ [w, u](ζn+1−)
]
−

−χ+(0)
[
ic
σ [w, z](ζn+1−)− i

σ [w, u](ζn+1−)
]}

= iχ+(0)ψ+(0)− iχ−(0)ψ−(0).

(24)

The coefficients of χ−(0) and χ+(0) in (24) give

[w, u](ζn+1−)− c[w, z](ζn+1−) =

(
n∏

m=1

b(m)

)−1/2

σψ−(0), (25)

and

[w, u](ζn+1−)− c[w, z](ζn+1−) =

(
n∏

m=1

b(m)

)−1/2

σψ+(0). (26)

(23), (25), and (26) show that Dom(S∗) ⊆ Dom(S) and this completes the proof. 2

Consider the mappings

PH : H → H,

(χ−,v, χ+) → v,

PH : H → H,

v → (0,v, 0) .

It is known that U(t) = exp(iSt), t ∈ (−∞,∞), is an unitary group. Using this unitary group and

mappings PH and PH we can construct a strongly continuous semigroup of completely nonunitary contractions

on H as [13]

Z(t) = PHU(t)PH, t ∈ [0,∞).

S is called the selfadjoint dilation of the generator A of Z(t) [17], which is defined by

A = lim
t→0+

Z(t)− I

it
.

Note that A is maximal dissipative in H [13,17].

Theorem 4.2 S is selfadjoint dilation of T.
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Proof Let us consider the equality

(S − λI)
−1
PHv =W := (ψ−,w, ψ+) ,

where v ∈ H, W ∈ Dom(S), and ℑλ < 0. Then we have

τ1[w]− λw = v,

ψ−(r) = ψ−(0) exp(−iλr),
ψ+(s) = ψ+(0) exp(−iλs).

Since ψ− ∈ L2(R−) and T is dissipative, one can write

(S − λI)
−1
PHv =(

0, (T − λI)
−1

v,

(
n∏

m=1
b(m)

)1/2

σ−1 ([w, u](ζn+1−)− c[w, z](ζn+1−)) exp(−iλs)

)
.

Therefore we have

PH (S − λI)
−1
PHv =(T − λI)

−1
v. (27)

On the other side we get for ℑλ < 0 that

PH (S − λI)
−1
PH = −iPH

∞∫
0

U(t) exp(−iλt)dtPH = −i
∞∫
0

Z(t) exp(−iλt)dt

= (A− λI)
−1

(28)

Hence (27) and (28) complete the proof. 2

Let us consider the subspaces D− = (L2(R−), 0, 0) and D+ = (0, 0, L2(R+)) of H.

Lemma 4.3 The subspaces D− and D+ with the unitary group U(t), t ∈ (−∞,∞), have the following

properties:

(i) U(t)D− ⊂ D−, t ≤ 0; U(t)D+ ⊂ D+, t ≥ 0,

(ii)
∩
t≤0

U(t)D− =
∩
t≥0

U(t)D+ = {0} ,

(iii)
∪
t≥0

U(t)D− =
∪
t≤0

U(t)D+ = H,

(iv) D− ⊥ D+.

Proof Let V = (0, 0, χ+) ∈ D+. Then for ℑλ < 0 we get that

(S − λI)
−1
V =

0, 0,−i exp(−iλx)
x∫

0

exp(iλt)χ+(t)dt

 ∈ D+.

Hence for W ⊥ D+ and ℑλ < 0 we have

0 =
⟨
(S − λI)

−1
V,W

⟩
H

= −i
∞∫
0

exp(−iλt) ⟨U(t)V,W ⟩H dt
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and therefore ⟨U(t)V,W ⟩H = 0, t ≥ 0. This implies for t ≥ 0 that U(t)D+ ⊂ D+. This proves the property

(i) for D+. A similar proof can be done for D−.

Now consider the semigroup of isometries U+(t) = PL2
+
U(t)PH, t ≥ 0, where

PL2
+
: H → L2(R+),

(χ−,v, χ+) → χ+,

PH : L2(R+) → H,
χ+ → (0, 0, χ+) .

The generator A+ of U+(t) is

A+χ = PL2
+
SPHχ = PL2

+
S

(
0, 0, i

dχ

ds

)
= i

dχ

ds
,

where χ ∈W 1
2 (R+) and χ(0) = 0. It is known that the generator of the one-sided shift, say Ũ+(t), in L

2(R+) is

the differential operator id/ds with the boundary condition χ(0) = 0. Since a semigroup is uniquely determined

by its generator, we have U+(t) = Ũ+(t). Therefore

∩
t≥0

U+D+ =

0, 0,
∩
t≥0

Ũ+(t)L
2(R+)

 = {0} .

This proves (ii) for D+. For D−, a similar proof can be given.

Let

H− =
∪
t≥0

U(t)D−, H+ =
∪
t≤0

U(t)D+.

It is better to recall that a linear operator L with domain Dom(L) acting in a Hilbert space H is called

completely nonselfadjoint if there is no invariant subspace M ⊆ Dom(L), M ̸= {0} , on which the restriction

of L on M is selfadjoint. Our assertion is that the nonselfadjoint (dissipative) operator T is completely

nonselfadjoint in H . In fact, if T1 the restriction of T on a subspace H1 of H is a selfadjoint part, then for

v ∈ Dom(T1) ∩H1 , one obtains that

0 = ⟨T1v,v⟩H − ⟨v, T1v⟩H = 2i
n∏

m=1

b(m)ℑc |[v, z](ζn+1−)|2 ,

and [v, z](ζn+1−) = 0, x ∈ In+1. This implies that [v, u](ζn+1−) = 0, x ∈ In+1 , and vn+1 ≡ 0, x ∈ In+1.

Transmission conditions Bl[v] = 0, B′
l[v] = 0, l = 1, n, give that all vl ≡ 0 and consequently

v =

[
v(x)

v0

]
≡ 0, x ∈ I.

Using the expansion theorem in eigenvectors of the selfadjoint operator T1 we have H1 = {0} . This proves the
assertion. A consequence of this assertion is that

H− +H+ = H. (29)
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Otherwise, there would be a nontrivial subspace H⊖ (H− +H+) that would be invariant relative to the group

U(t) and the restriction of U(t) to H ⊖ (H− +H+) would be unitary and therefore the restriction of T on

H⊖ (H− +H+) would be selfadjoint.

Consider the solution

η(x, λ) =



η1(x, λ), x ∈ I1

η2(x, λ), x ∈ I2

...

ηn+1(x, λ), x ∈ In+1

of equation (4) satisfying

η11(ζ0+, λ) =
a′2
a , η12(ζ0+, λ) =

a′1
a ,

η(m+1)1(ζ0+, λ) = b−1ηm1(ζm−, λ), η(m+1)2(ζ0+, λ) = b′−1ηm2(ζm−, λ),

where m = 1, n, and

ηk(x, λ) =

(
ηk1(x, λ)

ηk2(x, λ)

)
, k = 1, n+ 1.

Let

Ψ− =

exp(−iλr),

(
n∏

m=1

b(m)

)−1/2

σ
τ(λ)

(α(λ) + c)[η, z](ζn+1−))
U,Θ(λ) exp(−iλs)

 (30)

and

Ψ+ =

Θ(λ) exp(−iλr),

(
n∏

m=1

b(m)

)−1/2

σ
τ(λ)

(α(λ) + c)[η, z](ζn+1−))
U, exp(−iλs)

 , (31)

where

U =

[
φ(x, λ)

a

]
, τ(λ) = − [η,z](ζn+1−)

[φ,z](ζn+1−) , α(λ) = − [φ,u](ζn+1−)
[φ,z](ζn+1−) , (32)

and

Θ(λ) =
α(λ) + c

α(λ) + c
. (33)

Note that the vectors Ψ− and Ψ+ do not belong to H for real λ but they satisfy the equation SΨ =

λΨ and corresponding boundary-transmission conditions for S. For V = (χ−,v, χ+) we define the Fourier

transformations as follows:

F− : V → F−V =
1√
2π

⟨V,Ψ−⟩H := Ṽ−(λ)

and

F+ : V → F+V =
1√
2π

⟨V,Ψ+⟩H := Ṽ+(λ),
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where χ−, v , and χ+ are smooth, compactly supported functions.

Let V = (χ−, 0, 0) ∈ D−. Then we get that

Ṽ−(λ) =
1√
2π

0∫
−∞

χ−(t) exp(iλt)dt ∈ H2
−,

where H2
− (H2

+ ) is the Hardy class in L2(R) consisting of all functions analytically extendible to the lower

(upper) half-plane. Let H̃− be a dense set in H− consisting of all vectors V such that χ− is compactly

supported in D− and V ∈ H̃− if V = U(T )V0, V0 = (χ−, 0, 0) , χ− ∈ C∞
0 (R), where T = TV is a nonnegative

number. Then for V,W ∈ H− we get that U(−T )V,U(−T )W ∈ D− and their first components are in C∞
0 (R−),

where T > TV , T > TW . Therefore

⟨V,W ⟩H = ⟨U(−T )V,U(−T )W ⟩H = ⟨F−U(−T )V,F−U(−T )W ⟩H
= ⟨exp(−iλT )U(−T )V, exp(−iλT )U(−T )W ⟩H = ⟨F−V,F−W ⟩H .

(34)

Therefore from (34) we have Parseval equality for the whole H−. Moreover, the inversion formula

V =
1√
2π

∞∫
−∞

Ṽ−(λ)Ψ−dλ

follows from the Parseval equality if all integrals are taken as limits in the mean of the intervals. Consequently

we have

F−H− =
∪
t≥0

F−U(t)D− =
∪
t≥0

exp(−iλt)H2
− = L2(R).

A similar argument can be given for H+. Hence we get that H− and H+ are isometrically identical with L2(R).
This result with (29) implies that H− = H+ = H. Therefore (iii) is proved.

Finally the inner product in H implies that D− is orthogonal to D+. 2

Remark 4.4 (i) α(λ) defined in (32) is a meromorphic function in C with a countable number of poles on

R. For all λ ∈ C except the real poles of α(λ), α(λ) = α(λ) and for all ℑλ ̸= 0, ℑλℑα(λ) < 0,

(ii) the transformations F− and F+ are the incoming and outgoing spectral representations for U(t),

respectively. Moreover, U(t) is transformed into exp(iλt),

(iii) it is clear from (33) that for λ ∈ R, |Θ(λ)| = 1. Hence (30), (31), and (33) imply for λ ∈ R that

Ψ− = Θ(λ)Ψ+

and

F−Ψ−= Θ(λ)F−Ψ+.

According to the Lax–Phillips scattering theory, the scattering function is the coefficient by which the

F+ representation must be multiplied for getting the F− representation. Therefore using Remark 4.4 we have

the following theorem.
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Theorem 4.5 Θ(λ) is the scattering function of U(t).

Unitary transformation F− allows us to obtain that

H = D− ⊕H ⊕D− → L2(R) = H2
− ⊕H ⊕Θ(λ)H2

+.

Therefore we have

H = H2
+ ⊖Θ(λ)H2

+.

Since the operator U(t)V is unitary equivalent under the transformation F− to exp(iλt)Ṽ (λ), it can be

concluded that Z̃(t)z = P [exp(iλt)z(λ)], t ≥ 0, where P is the orthogonal projection from H2
+ onto H,

is a semigroup of operators. Therefore the generator of Z̃(t)

Ã = lim
t→0+

Z̃(t)− I

it

is a maximal dissipative operator on H. Ã is called the model operator [17] and therefore Θ(λ) is the

characteristic function. Since the characteristic functions of unitary equivalent dissipative operators coincide

with each other, we have the following.

Theorem 4.6 Θ(λ) is the characteristic function of T.

Lemma 4.7 The characteristic function Θ(λ) is a Blaschke product except for a single point in the upper

half-plane.

Proof Since Θ(λ) is an inner function in the upper half-plane, it has the following form:

Θ(λ) = B(λ) exp(iλt),

where B(λ) is a Blaschke product and t ≥ 0. Therefore we have

|Θ(λ)| ≤ exp(−ℑλ.t), ℑλ ≥ 0. (35)

Moreover, from (33) one obtains that

α(λ) =
−cΘ(λ) + c

Θ(λ)− 1
.

Using (35) we get for λ = is that

lim
s→∞

α(is) = c0.

Therefore t is zero except for a single point c0. 2

Using Lemma 4.7 and all the obtained results in sections 2–4 we introduce the following theorem.

Theorem 4.8 Let ζm, m = 1, n, be the regular points and limit-circle case holds at singular point ζn+1 for

τ. Then T has purely discrete eigenvalues in the open upper half-plane. The possible limit points of these

eigenvalues occur at infinity. All eigen- and associated functions of T are complete in H except possibly for a

single point c0.
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5. First-order system with finite singular transmission conditions

In this section we consider the system (1) on the multi-interval J :=
∪n+1
k=1 Jk as

κ(y) := By′ + P (x)y = λy, (36)

where Jk = (ζk−1, ζk) and

B =

(
0 1

−1 0

)
, P (x) =

(
p(x) r(x)

r(x) q(x)

)
, y =

(
y1

y2

)
.

We shall introduce the basic assumptions on (36) and the intervals Jk as follows:

(i) −∞ ≤ ζ0 < ζ1 < · · · < ζn+1 ≤ ∞,

(ii) p, q , and r are real-valued and Lebesgue measurable functions on Jk, k = 1, n+ 1,

(iii) ∫
Jk

{|p(x)|+ |r(x)|+ |q(x)|} dx = ∞, k = 1, n+ 1.

Let L2(J,C2) denote the Hilbert space consisting of all vector-valued functions y =
(
y1
y2

)
in C2 satisfying∫

J

(
|y1|2 + |y2|2

)
dx <∞ with the usual inner product.

Let D(J,C2) be a set in L2(J,C2) consisting of all vector-valued functions y =
(
y1
y2

)
in which y1 and

y2 are locally integrable functions on all Jk, k = 1, n+ 1, and κ(y) ∈ L2(J,C2). Then for arbitrary two

vector-valued functions y, χ ∈ D(J,C2) we have the following Green’s formula:

(κ(y), χ)− (y, κ(χ)) =
n+1∑
k=1

[y, χ]ζk−ζk−1+
.

Therefore we get that at all singular points ζl, l = 0, n+ 1, the values [y, χ](ζk−), k = 1, n+ 1, and [y, χ](ζs+),

= 0, n, exist and are finite.

We assume that at all singular points ζl, l = 0, n+ 1, Weyl’s limit-circle case holds for (36).

Let

u(x) =



u1(x), x ∈ J1

u2(x), x ∈ J2

...

un+1(x), x ∈ Jn+1

, z(x) =



z1(x), x ∈ J1

z2(x), x ∈ J2

...

zn+1(x), x ∈ Jn+1

be the solutions of the equation

κ(y) = 0, x ∈ J,

satisfying the conditions

208
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{
uk1(ck) = 0, uk2(ck) = 1,

zk1(ck) = 1, zk2(ck) = 0,

where ck ∈ Jk,

zk(x) =

(
zk1(x)

zk2(x)

)
, uk(x) =

(
uk1(x)

uk2(x)

)

and k = 1, n+ 1.

Green’s formula implies that for two solutions y(x, λ) and χ(x, λ) of (36) for the same value of λ the

Wronskian of y and χ does not depend on x and depends only on λ on each Jk, k = 1, n+ 1. Moreover, they

are linearly independent if and only if their Wronskian is nonzero.

Since W [zk, uk] ≡ 1 on each Jk, k = 1, n+ 1, z and u are linearly independent solutions of (36).

Moreover, they belong to D(J,C2). Therefore for arbitrary y ∈ D(J,C2) all the values [y, z](ζk−), [y, u](ζk−),

k = 1, n+ 1, and [y, z](ζs+), [y, u](ζs+), s = 0, n, exist and are finite.

Let us consider the following BVTP:

κ(y) = λy, y ∈ D(J,C2), x ∈ J, (37)

(a[y1, u1](ζ0+)− a2[y1, z1](ζ0+))− λ (a′1[y1, u1](ζ0+)− a′2[y1, z1](ζ0+)) = 0, (38)

[ym, um](ζm−) = bm[y(m+1), um+1](ζm+), (39)

[ym, zm](ζm−) = b′m[y(m+1), zm+1](ζm+), (40)

[yn+1, un+1](ζn+1−)− c[yn+1, zn+1](ζn+1−) = 0, (41)

where m = 1, n, λ and c are complex numbers with ℑc > 0, a1, a2, a
′
1, a

′
2, bm, b

′
m are real numbers with

bmb
′
m > 0 and

∣∣∣∣∣ a1 a2

a′1 a′2

∣∣∣∣∣ > 0.

Following the same method given as in sections 2–4 we arrive at the following results.

Theorem 5.1 Let ζl, m = 0, n+ 1, be singular points and limit-circle case holds at all singular points ζl for

κ. Then the BVTP (37)–(41) has purely discrete eigenvalues in the open upper half-plane. The possible limit

points of these eigenvalues occur at infinity. All eigen- and associated functions of the BVTP (37)–(41) are

complete in H except possibly for a single point c0.

209
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