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We prove some fixed point results for new type of contractive mappings using the notion of cyclic admissible mappings in the
framework of metric spaces. Our results extend, generalize, and improve some well-known results from literature. Some examples
are given to support our main results.

1. Introduction

In the fixed point theory, a well-known theorem of Banach [1]
states that if 𝑇 is a self-mapping on a complete metric space
(𝑋, 𝑑) and satisfies 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑑(𝑥, 𝑦), for some 𝑘 ∈ [0, 1)

and all 𝑥, 𝑦 ∈ 𝑋, then 𝑇 has a unique fixed point. Thereafter,
various researchers generalized this result for different type of
nonlinear contractive mappings and prove some interesting
fixed point results (see [2–27] and references cited therein).

Recently, Samet et al. [23] introduced the concept of 𝛼-
𝜓-contractive type mappings and established various fixed
point theorems for suchmappings in complete metric spaces.
Thereafter, a lot of researchers worked on it and generalized
the results under certain contractive conditions (see [5, 9, 14,
18, 22] and references cited therein).

Using the concept of Samet et al. [23], we prove somefixed
point results for a new type of contractive mappings. Our
results extend, generalize, and improve some well-known
results from literature. Some examples are given to support
our main results.

2. Preliminaries

Let 𝑋 be a nonempty set and let 𝑇 : 𝑋 → 𝑋 be an arbitrary
mapping. We say that 𝑥 ∈ 𝑋 is a fixed point for 𝑇, if 𝑥 = 𝑇𝑥.
We denote Fix (𝑇) the set of all fixed points of 𝑇.

Definition 1 (see [18]). Let 𝑇 : 𝑋 → 𝑋 be a mapping and let
𝛼, 𝛽 : 𝑋 → R+ be two functions. One can say that𝑇 is a cyclic
(𝛼, 𝛽)-admissible mapping if

(i) 𝛼(𝑥) ≥ 1 for some 𝑥 ∈ 𝑋 implies 𝛽(𝑇𝑥) ≥ 1,
(ii) 𝛽(𝑥) ≥ 1 for some 𝑥 ∈ 𝑋 implies 𝛼(𝑇𝑥) ≥ 1.

Example 2 (see [18]). Let 𝑇 : R → R be defined by 𝑇(−𝑥) =

−𝑇(𝑥). Suppose that 𝛼, 𝛽 : R → R+ are given by 𝛽(𝑥) = 5
𝑥,

for all 𝑥 ∈ R, and 𝛼(𝑦) = 5
−𝑦, for all 𝑦 ∈ R.Then, 𝑇 is a cyclic

(𝛼, 𝛽)-admissible mapping.

Let Ψ denote the set of all monotone increasing continu-
ous functions 𝜓 : [0,∞) → [0,∞), with 𝜓

−1
({0}) = 0.

Let Φ denote the set of all continuous functions 𝜙 :

[0,∞) → [0,∞), with lim
𝑛→∞

𝜙(𝑡
𝑛
) = 0 ⇒ lim

𝑛→∞
𝑡
𝑛
= 0.

Lemma 3 (see [19]). Suppose that (𝑋, 𝑑) is a metric space. Let
{𝑥
𝑛
} be a sequence in 𝑋 such that 𝑑(𝑥

𝑛
, 𝑥
𝑛+1

) → 0 as 𝑛 → ∞.
If {𝑥
𝑛
} is not a Cauchy sequence, then there exist an 𝜖 > 0 and

sequences of positive integers {𝑚(𝑘)} and {𝑛(𝑘)} with 𝑚(𝑘) >

𝑛(𝑘) > 𝑘 such that 𝑑(𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

) ≥ 𝜖, 𝑑(𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)

) ≤ 𝜖,
and

(i) lim
𝑘→∞

𝑑(𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)+1

) = 𝜖,
(ii) lim

𝑘→∞
𝑑(𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

) = 𝜖,
(iii) lim

𝑘→∞
𝑑(𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)

) = 𝜖.
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Remark 4. In the same way as the proof of Lemma 3, we get
lim
𝑘→∞

𝑑(𝑥
𝑛(𝑘)+1

, 𝑥
𝑚(𝑘)+1

) = 𝜖.

3. Main Results

In 2014, the concept of 𝐶-class functions (see Definition 5)
was introduced by Ansari in [6] and is important; for
example, see numbers (1), (2) from Example 6. Also, see
[7, 8, 12, 13].

Definition 5 (see [6]). One can say that 𝑓 : [0,∞)
2

→ R

is called 𝐶-class function if it is continuous and satisfies the
following axioms:

(1) 𝑓(𝑠, 𝑡) ≤ 𝑠.
(2) 𝑓(𝑠, 𝑡) = 𝑠 implies that either 𝑠 = 0 or 𝑡 = 0.

for all 𝑠, 𝑡 ∈ [0,∞).

Note that 𝑓(0, 0) = 0.
One can denote 𝐶-class functions asC.

Example 6 (see [6]). The following functions 𝑓 : [0,∞)
2

→

R are elements ofC:

(1) 𝑓(𝑠, 𝑡) = 𝑠 − 𝑡, 𝑓(𝑠, 𝑡) = 𝑠 ⇒ 𝑡 = 0.
(2) 𝑓(𝑠, 𝑡) = 𝑘𝑠, 𝑘 ∈ (0, 1), 𝑓(𝑠, 𝑡) = 𝑠 ⇒ 𝑠 = 0.
(3) 𝑓(𝑠, 𝑡) = 𝑠/(1 + 𝑡), 𝑓(𝑠, 𝑡) = 𝑠 ⇒ 𝑠 = 0 or 𝑡 = 0.
(4) 𝑓(𝑠, 𝑡) = log(𝑡 + 𝑎

𝑠
)/(1 + 𝑡), 𝑎 > 1, 𝑓(𝑠, 𝑡) = 𝑠 ⇒ 𝑠 = 0

or 𝑡 = 0.
(5) 𝑓(𝑠, 𝑡) = ln(1 + 𝑎

𝑠
)/2, 𝑎 > 𝑒, 𝑓(𝑠, 𝑡) = 𝑠 ⇒ 𝑠 = 0.

(6) 𝑓(𝑠, 𝑡) = (𝑠 + 𝑙)
(1/(1+𝑡))

− 𝑙, 𝑙 > 1, 𝑓(𝑠, 𝑡) = 𝑠 ⇒ 𝑡 = 0.

Definition 7. Let (𝑋, 𝑑) be a metric space and let 𝛼, 𝛽 : 𝑋 →

R+ be two functions. One can say that 𝑇 : 𝑋 → 𝑋 is a 𝑇𝐴𝐶-
contractive mapping if

𝛼 (𝑥) 𝛽 (𝑦) ≥ 1 󳨐⇒

𝜓 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ 𝑓 (𝜓 (𝑑 (𝑥, 𝑦)) , 𝜙 (𝑑 (𝑥, 𝑦)))

(1)

for 𝑥, 𝑦 ∈ 𝑋, where 𝑓 ∈ C, 𝜓 ∈ Ψ, and 𝜙 ∈ Φ.

Now, we are ready to prove our first theorem.

Theorem 8. Let (𝑋, 𝑑) be a complete metric space and let 𝑇 :

𝑋 → 𝑋 be a cyclic (𝛼, 𝛽)-admissiblemapping. Assume that𝑇 is
a 𝑇𝐴𝐶-contractive mapping. Suppose that there exists 𝑥

0
∈ 𝑋

such that 𝛼(𝑥
0
) ≥ 1 and 𝛽(𝑥

0
) ≥ 1 and either of the following

conditions hold:

(a) 𝑇 is continuous.
(b) if {𝑥

𝑛
} is a sequence in𝑋 such that 𝑥

𝑛
→ 𝑥 and𝛽(𝑥

𝑛
) ≥

1, for all 𝑛, then 𝛽(𝑥) ≥ 1.

Then, 𝑇 has a fixed point.
Moreover, if 𝛼(𝑥) ≥ 1 and 𝛽(𝑦) ≥ 1, for all 𝑥, 𝑦 ∈ Fix (𝑇),

then 𝑇 has a unique fixed point.

Proof. Define a sequence {𝑥
𝑛
} by 𝑥

𝑛
= 𝑇
𝑛
𝑥
0

= 𝑇𝑥
𝑛−1

, for
all 𝑛 ∈ N. Since 𝑇 is a cyclic (𝛼, 𝛽)-admissible mapping and
𝛼(𝑥
0
) ≥ 1, then 𝛽(𝑥

1
) = 𝛽(𝑇𝑥

0
) ≥ 1 which implies 𝛼(𝑥

2
) =

𝛼(𝑇𝑥
1
) ≥ 1. By continuing this process, we get 𝛼(𝑥

2𝑛
) ≥ 1 and

𝛽(𝑥
2𝑛−1

) ≥ 1, for all 𝑛 ∈ N. Again, since 𝑇 is a cyclic (𝛼, 𝛽)-
admissible mapping and 𝛽(𝑥

0
) ≥ 1, by the similar method,

we have 𝛽(𝑥
2𝑛
) ≥ 1 and 𝛼(𝑥

2𝑛−1
) ≥ 1, for all 𝑛 ∈ N. That is,

𝛼(𝑥
𝑛
) ≥ 1 and 𝛽(𝑥

𝑛
) ≥ 1, for all 𝑛 ∈ N ∪ {0}. Equivalently,

𝛼(𝑥
𝑛−1

)𝛽(𝑥
𝑛
) ≥ 1, for all 𝑛 ∈ N. From (1), we have

𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

))

≤ 𝑓 (𝜓 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)) , 𝜙 (𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
)))

≤ 𝜓 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
)) .

(2)

Using monotonicity of 𝜓, we get

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) , (3)

for all 𝑛 ∈ N. Hence, the sequence {𝑑(𝑥
𝑛
, 𝑥
𝑛+1

)} is a decreas-
ing sequence. So for the nonnegative decreasing sequence
{𝑑(𝑥
𝑛
, 𝑥
𝑛+1

)}, there exists some 𝑟 ≥ 0, such that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 𝑟. (4)

Assume that 𝑟 > 0. On letting 𝑛 → ∞ in (2), using the
continuity of 𝜓 and 𝑓 and (4), we obtain

𝜓 (𝑟) ≤ 𝑓 (𝜓 (𝑟) , 𝜙 (𝑟)) ≤ 𝜓 (𝑟) , (5)

and thus𝑓(𝜓(𝑟), 𝜙(𝑟)) = 𝜓(𝑟). Now, by usingDefinition 5, we
get that either 𝜓(𝑟) = 0 or 𝜙(𝑟) = 0; in both cases, it follows
that 𝑟 = 0, which implies

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 0. (6)

Now, we shall prove that {𝑥
𝑛
} is a Cauchy sequence.

If possible, let {𝑥
𝑛
} not be a Cauchy sequence. Then, by

Lemma 3 and Remark 4, there exist a 𝛿 > 0 and two
sequences of positive integers {𝑚(𝑘)} and {𝑛(𝑘)} with 𝑛(𝑘) >

𝑚(𝑘) > 𝑘 such that

lim
𝑛→∞

𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

) = lim
𝑛→∞

𝑑 (𝑥
𝑚(𝑘)+1

, 𝑥
𝑛(𝑘)+1

) = 𝛿. (7)

Now, by setting 𝑥 = 𝑥
𝑚𝑘

and 𝑦 = 𝑥
𝑛𝑘

in (1), and using
𝛼(𝑥
𝑛(𝑘)

)𝛽(𝑥
𝑚(𝑘)

) ≥ 1, we obtain

𝜓 (𝑑 (𝑥
𝑚(𝑘)+1

, 𝑥
𝑛(𝑘)+1

))

≤ 𝑓 (𝜓 (𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

)) , 𝜙 (𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

))) .

(8)

On letting 𝑘 → ∞, using (7), we obtain

𝜓 (𝛿) ≤ 𝑓 (𝜓 (𝛿) , 𝜙 (𝛿)) ≤ 𝜓 (𝛿) , (9)

𝜓(𝛿) = 0, or 𝜙(𝛿) = 0; that is, 𝛿 = 0, which is a contradiction.
This shows that {𝑥

𝑛
} is a Cauchy sequence. Since (𝑋, 𝑑) is a

complete metric space, then there is 𝑧 ∈ 𝑋 such that 𝑥
𝑛
→ 𝑧

as 𝑛 → ∞.
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Now, first we suppose that 𝑇 is continuous. Hence,

𝑇𝑧 = lim
𝑛→∞

𝑇𝑥
𝑛
= lim
𝑛→∞

𝑥
𝑛+1

= 𝑧. (10)

So 𝑧 is a fixed point of 𝑇.
In the second part, we suppose that condition (b) holds;

that is, 𝛼(𝑥
𝑛
)𝛽(𝑧) ≥ 1. So, we have

𝜓 (𝑑 (𝑥
𝑛+1

, 𝑇𝑧)) ≤ 𝑓 (𝜓 (𝑑 (𝑥
𝑛
, 𝑧)) , 𝜙 (𝑑 (𝑥

𝑛
, 𝑧)))

≤ 𝜓 (𝑑 (𝑥
𝑛
, 𝑧)) .

(11)

By taking the limit 𝑛 → ∞ and using the properties of 𝜓, we
obtain 𝑑(𝑧, 𝑇𝑧) = 0. Hence, 𝑧 is a fixed point of 𝑇.

To prove the uniqueness of fixed point, suppose that 𝑧
1

and 𝑧
2
are two fixed points of 𝑇. Since 𝛼(𝑧

1
)𝛽(𝑧
2
) ≥ 1, from

(1), we have

𝜓 (𝑑 (𝑧
1
, 𝑧
2
)) = 𝜓 (𝑑 (𝑇𝑧

1
, 𝑇𝑧
2
))

≤ 𝑓 (𝜓 (𝑑 (𝑧
1
, 𝑧
2
)) , 𝜙 (𝑑 (𝑧

1
, 𝑧
2
)))

≤ 𝜓 (𝑑 (𝑧
1
, 𝑧
2
)) .

(12)

Hence, by using the properties of 𝑓, we have 𝑧
1
= 𝑧
2
.

Example 9. Let 𝑋 = R be endowed with the usual metric
𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|, for all 𝑥, 𝑦 ∈ 𝑋, and let 𝑇 : 𝑋 → 𝑋 be
defined by

𝑇 (𝑥) =
{

{

{

−
𝑥

4
, 𝑥 ∈ [−2, 1]

3𝑥, R \ [−2, 1]

(13)

and let 𝛼, 𝛽 : 𝑋 → R+ be given by

𝛼 (𝑥) =
{

{

{

2 𝑥 ∈ [−2, 0] ,

0 R \ [−2, 0] ,

𝛽 (𝑥) =
{

{

{

1, 𝑥 ∈ [0, 1] ,

0, R \ [0, 1] .

(14)

Also, define 𝜓 ∈ Ψ as 𝜓(𝑡) = 𝑡, 𝜙 ∈ Φ as 𝜙(𝑡) = 1/3, and
𝐹 ∈ C as 𝐹(𝑠, 𝑡) = 𝑠/(1 + 𝑡).

Now, first we prove that 𝑇 is a cyclic (𝛼, 𝛽)-admissible
mapping.

If 𝛼(𝑥) ≥ 1, then 𝑥 ∈ [−2, 0] and 𝑇𝑥 ∈ [0, 1]. Therefore,
𝛽(𝑇𝑥) ≥ 1. Similarly, if 𝛽(𝑥) ≥ 1, then 𝛼(𝑇𝑥) ≥ 1. Then, 𝑇 is
a cyclic (𝛼, 𝛽)-admissible mapping.

Now, we check the hypotheses (b) of Theorem 8.
Let {𝑥

𝑛
} ⊆ 𝑋 such that 𝛽(𝑥

𝑛
) ≥ 1 and 𝑥

𝑛
→ 𝑥. Therefore,

𝑥
𝑛
∈ [0, 1]. Hence, 𝑥 ∈ [0, 1],
Let 𝛼(𝑥)𝛽(𝑦) ≥ 1. Then, 𝑥 ∈ [−2, 0] and 𝑦 ∈ [0, 1] and so

we have 𝜓(𝑑(𝑇𝑥, 𝑇𝑦)) = |𝑇𝑥 − 𝑇𝑦| = (1/4)|𝑥 − 𝑦| ≤ (3/4)|𝑥 −

𝑦| = |𝑥 − 𝑦|/(1 + 1/3) = 𝜓(𝑑(𝑥, 𝑦))/(1 + 𝜙(𝑑(𝑥, 𝑦))). Hence,
inequality (1) is satisfied. Therefore, by Theorem 8, 𝑇 has a
fixed point.

Corollary 10. Let (𝑋, 𝑑) be a complete metric space and let
𝑇 : 𝑋 → 𝑋 be a cyclic (𝛼, 𝛽)-admissible mapping. Assume that
𝑇 is an (𝛼, 𝛽)-contractive mapping; that is, for all 𝑥, 𝑦 ∈ 𝑋,

𝛼 (𝑥) 𝛽 (𝑦) 𝜓 (𝑑 (𝑇𝑥, 𝑇𝑦))

≤ 𝑓 (𝜓 (𝑑 (𝑥, 𝑦)) , 𝜙 (𝑑 (𝑥, 𝑦))) .

(15)

Suppose that there exists 𝑥
0
∈ 𝑋 such that 𝛼(𝑥

0
) ≥ 1 and

𝛽(𝑥
0
) ≥ 1 and either of the following conditions hold:

(a) 𝑇 is continuous.
(b) if {𝑥

𝑛
} is a sequence in𝑋 such that 𝑥

𝑛
→ 𝑥 and𝛽(𝑥

𝑛
) ≥

1, for all 𝑛, then 𝛽(𝑥) ≥ 1.

Then, 𝑇 has a fixed point.
Moreover, if 𝛼(𝑥) ≥ 1 and 𝛽(𝑦) ≥ 1, for all 𝑥, 𝑦 ∈ Fix (𝑇),

then 𝑇 has a unique fixed point.

Proof. Let 𝛼(𝑥)𝛽(𝑦) ≥ 1, for 𝑥, 𝑦 ∈ 𝑋. Hence, by using
(15), we have the fact that 𝑇 is a 𝑇𝐴𝐶-contractive mapping.
Therefore, by applyingTheorm 8, we have the result.

Definition 11. Let (𝑋, 𝑑) be a metric space and let 𝛼, 𝛽 : 𝑋 →

R+ be two functions. A mapping 𝑇 : 𝑋 → 𝑋 is called a weak
𝑇𝐴𝐶-rational contraction if 𝛼(𝑥)𝛽(𝑦) ≥ 1, for some 𝑥, 𝑦 ∈ 𝑋,
implies

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑓 (𝑀(𝑥, 𝑦) , 𝜙 (𝑀 (𝑥, 𝑦))) , (16)

where 𝑓 ∈ C, 𝜙 ∈ Φ, and

𝑀(𝑥, 𝑦)

= max{𝑑 (𝑥, 𝑦) ,
[1 + 𝑑 (𝑥, 𝑇𝑥)] 𝑑 (𝑦, 𝑇𝑦)

𝑑 (𝑥, 𝑦) + 1
} .

(17)

Theorem 12. Let (𝑋, 𝑑) be a complete metric space and let 𝑇 :

𝑋 → 𝑋 be a cyclic (𝛼, 𝛽)-admissible mapping. Suppose that 𝑇
is a weak 𝑇𝐴𝐶-rational contraction. Assume that there exists
𝑥
0

∈ 𝑋 such that 𝛼(𝑥
0
) ≥ 1 and 𝛽(𝑥

0
) ≥ 1 and one of the

following assertions holds:

(a) 𝑇 is continuous.
(b) if {𝑥

𝑛
} is a sequence in𝑋 such that 𝑥

𝑛
→ 𝑥 and𝛽(𝑥

𝑛
) ≥

1, for all 𝑛, then 𝛽(𝑥) ≥ 1.

Then, 𝑇 has a fixed point.
Moreover, if 𝛼(𝑥) ≥ 1 and 𝛽(𝑦) ≥ 1, for all 𝑥, 𝑦 ∈ Fix(𝑇),

then 𝑇 has a unique fixed point.

Proof. Define a sequence {𝑥
𝑛
} by 𝑥

𝑛
= 𝑇
𝑛
𝑥
0

= 𝑇𝑥
𝑛−1

, for
all 𝑛 ∈ 𝑁. Since 𝑇 is a cyclic (𝛼, 𝛽)-admissible mapping and
𝛼(𝑥
0
) ≥ 1, then 𝛽(𝑥

1
) = 𝛽(𝑇𝑥

0
) ≥ 1 which implies 𝛼(𝑥

2
) =

𝛼(𝑇𝑥
1
) ≥ 1. By continuing this process, we get 𝛼(𝑥

2𝑛
) ≥ 1 and

𝛽(𝑥
2𝑛−1

) ≥ 1, for all 𝑛 ∈ N. Again, since 𝑇 is a cyclic (𝛼, 𝛽)-
admissible mapping and 𝛽(𝑥

0
) ≥ 1, by the similar method,

we have 𝛽(𝑥
2𝑛
) ≥ 1 and 𝛼(𝑥

2𝑛−1
) ≥ 1, for all 𝑛 ∈ N. That is,

𝛼(𝑥
𝑛
) ≥ 1 and 𝛽(𝑥

𝑛
) ≥ 1, for all 𝑛 ∈ N ∪ {0}. Equivalently,

𝛼(𝑥
𝑛−1

)𝛽(𝑥
𝑛
) ≥ 1, for all 𝑛 ∈ N. Therefore, by (16), we have

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝑓 (𝑀(𝑥
𝑛−1

, 𝑥
𝑛
) , 𝜙 (𝑀 (𝑥

𝑛−1
, 𝑥
𝑛
))) , (18)

where 𝑀(𝑥
𝑛−1

, 𝑥
𝑛
) = {𝑑(𝑥

𝑛−1
, 𝑥
𝑛
, 𝑑(𝑥
𝑛
, 𝑥
𝑛+1

))}.
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Now, suppose that there exists 𝑛
0

∈ N such that 𝑑(𝑥
𝑛0
,

𝑥
𝑛0+1

) > 𝑑(𝑥
𝑛0−1

, 𝑥
𝑛0
). Therefore, 𝑀(𝑥

𝑛0−1
, 𝑥
𝑛0
) = 𝑑(𝑥

𝑛0
,

𝑥
𝑛0+1

) and so, from (18), we get

𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+1

) ≤ 𝑓 (𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+1

) , 𝜙 (𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+1

))) (19)

≤ 𝑑 (𝑥
𝑛0
, 𝑥
𝑛0+1

) . (20)

This implies that 𝑑(𝑥
𝑛0
, 𝑥
𝑛0+1

) = 0, or 𝜙(𝑑(𝑥
𝑛0
, 𝑥
𝑛0+1

)) =

0; that is, 𝑑(𝑥
𝑛0
, 𝑥
𝑛0+1

) = 0, which is a contradiction. Hence,
𝑑(𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝑑(𝑥
𝑛−1

, 𝑥
𝑛
), for all 𝑛 ∈ N. Hence, the sequence

{𝑑(𝑥
𝑛
, 𝑥
𝑛+1

)} is a decreasing sequence. So for the nonnegative
decreasing sequence {𝑑(𝑥

𝑛
, 𝑥
𝑛+1

)}, there exists some 𝑟 ≥ 0,
such that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 𝑟. (21)

Assume that 𝑟 > 0. On letting 𝑛 → ∞ in (19), using the
continuity of 𝑓 and (21), we obtain

𝑟 ≤ 𝑓 (𝑟, 𝜙 (𝑟)) ≤ 𝑟, (22)

which implies that either 𝑟 = 0 or 𝜙(𝑟) = 0; that is, in both
cases, it follows that 𝑟 = 0, which implies

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 0. (23)

Now, we shall prove that {𝑥
𝑛
} is a Cauchy sequence.

If possible, let {𝑥
𝑛
} not be a Cauchy sequence. Then, by

Lemma 3 and Remark 4, there exist 𝛿 > 0 and two sequences
of positive integers {𝑚(𝑘)} and {𝑛(𝑘)} with 𝑛(𝑘) > 𝑚(𝑘) > 𝑘

such that

lim
𝑛→∞

𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

) = lim
𝑛→∞

𝑑 (𝑥
𝑚(𝑘)+1

, 𝑥
𝑛(𝑘)+1

) = 𝛿. (24)

Now, by setting𝑥 = 𝑥
𝑛𝑘+1

and𝑦 = 𝑦
𝑚𝑘+1

in (16), and using
𝛼(𝑥
𝑛(𝑘)

)𝛽(𝑥
𝑚(𝑘)

) ≥ 1, we obtain

𝑑 (𝑥
𝑚𝑘+1

, 𝑥
𝑛𝑘+1

)

≤ 𝑓 (𝑀(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘

) , 𝜙 (𝑀(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘

))) ,

(25)

where

𝑀(𝑥
𝑛𝑘
, 𝑥
𝑚𝑘

) = max{𝑑 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘

) ,

[1 + 𝑑 (𝑥
𝑛𝑘
, 𝑥
𝑛𝑘+1

)] 𝑑 (𝑥
𝑚𝑘

, 𝑥
𝑚𝑘+1

)

𝑑 (𝑥
𝑛𝑘
, 𝑥
𝑚𝑘

) + 1

} .

(26)

On letting 𝑘 → ∞, using (24) and (25), we obtain

𝛿 ≤ 𝑓 (𝛿, 𝜙 (𝛿)) , (27)

So, 𝜙(𝛿) = 0; that is, 𝛿 = 0, which is a contradiction.
This shows that {𝑥

𝑛
} is a Cauchy sequence. Since (𝑋, 𝑑) is

a complete metric space, then there exists 𝑧 ∈ 𝑋 such that
𝑥
𝑛
→ 𝑧 as 𝑛 → ∞.

First, we consider that 𝑇 is continuous. Hence,

𝑇𝑧 = lim
𝑛→∞

𝑇𝑥
𝑛
= lim
𝑛→∞

𝑥
𝑛+1

= 𝑧. (28)

Therefore, 𝑧 is a fixed point of 𝑇.
In the second part, we suppose that condition (b) holds;

that is, 𝛼(𝑥
𝑛
)𝛽(𝑧) ≥ 1. So, we have

𝑑 (𝑥
𝑛+1

, 𝑇𝑧) ≤ 𝑓 (𝑀(𝑥
𝑛
, 𝑧) , 𝜙 (𝑀 (𝑥

𝑛
, 𝑧)))

≤ 𝑀(𝑥
𝑛
, 𝑧) ,

(29)

where

𝑀(𝑥
𝑛
, 𝑧)

= max{𝑑 (𝑥
𝑛
, 𝑧) ,

[1 + 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

)] 𝑑 (𝑧, 𝑇𝑧)

𝑑 (𝑥
𝑛
, 𝑧) + 1

} .

(30)

By taking the limit 𝑛 → ∞ and using the properties of 𝑓, we
obtain 𝑑(𝑧, 𝑇𝑧) = 0. Hence, 𝑧 is a fixed point of 𝑇.

To prove the uniqueness of fixed point, suppose that 𝑧
1

and 𝑧
2
are two fixed points of 𝑇. Since 𝛼(𝑧

1
)𝛽(𝑧
2
) ≥ 1, from

(16), we have

𝑑 (𝑧
1
, 𝑧
2
) = 𝑑 (𝑇𝑧

1
, 𝑇𝑧
2
)

≤ 𝑓 (𝑀(𝑧
1
, 𝑧
2
) , 𝜙 (𝑀 (𝑧

1
, 𝑧
2
)))

≤ 𝑀(𝑧
1
, 𝑧
2
) ,

(31)

where

𝑀(𝑧
1
, 𝑧
2
)

= max{𝑑 (𝑧
1
, 𝑧
2
) ,

[1 + 𝑑 (𝑧
1
, 𝑇𝑧
1
)] 𝑑 (𝑧

2
, 𝑇𝑧
2
)

𝑑 (𝑧
1
, 𝑧
2
) + 1

} .

(32)

This implies that 𝑑(𝑧
1
, 𝑧
2
) = 0 or 𝜙(𝑑(𝑧

1
, 𝑧
2
)) = 0 and hence

𝑧
1
= 𝑧
2
.

Example 13. Let 𝑋 = [0, +∞) be endowed with the usual
metric 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|, for all 𝑥, 𝑦 ∈ 𝑋 and let 𝑇 : 𝑋 → 𝑋

be defined by

𝑇 (𝑥) =

{{{

{{{

{

𝑥

8
, 𝑥 ∈ [0, 1]

1

2
, 𝑥 ∈ (1, +∞)

(33)

and let 𝛼, 𝛽 : 𝑋 → R+ be given by

𝛼 (𝑥) = 𝛽 (𝑥) =
{

{

{

1 𝑥 ∈ [0, 1]

0 otherwise.
(34)

Also, define 𝜙 ∈ Φ as 𝜙(𝑡) = 𝑡/2 and 𝐹 ∈ C as 𝐹(𝑠, 𝑡) =

𝑠 − 𝑡.
It is easy to verify that 𝑇 is a cyclic (𝛼, 𝛽)-admissible

mapping.
Now, we check the hypotheses (b) of Theorem 12.
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Let {𝑥
𝑛
} ⊆ 𝑋 such that 𝛽(𝑥

𝑛
) ≥ 1 and 𝑥

𝑛
→ 𝑥. Therefore,

𝑥
𝑛
∈ [0, 1]. Hence, 𝑥 ∈ [0, 1],
Let 𝛼(𝑥)𝛽(𝑦) ≥ 1. Then, 𝑥 ∈ [0, 1] and 𝑦 ∈ [0, 1] and so

we have

𝑑 (𝑇𝑥, 𝑇𝑦) =
󵄨󵄨󵄨󵄨𝑇𝑥 − 𝑇𝑦

󵄨󵄨󵄨󵄨 =
1

8

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

≤ 2
−1max{𝑑 (𝑥, 𝑦) ,

[1 + 𝑑 (𝑥, 𝑇𝑥)] 𝑑 (𝑦, 𝑇𝑦)

𝑑 (𝑥, 𝑦) + 1
} .

(35)

Hence, inequality (16) is satisfied. Therefore, by Theorem 12,
𝑇 has a fixed point; that is, 0 is a fixed point of 𝑇.

4. Some Cyclic Contraction via Cyclic (𝛼, 𝛽)-
Admissible Mapping

In this section, in a natural way, we apply Theorem 8 for
proving a fixed point theorem involving a cyclic mapping.

Theorem 14. Let 𝐴 and 𝐵 be two closed subsets of complete
metric space (𝑋, 𝑑) such that 𝐴 ∩ 𝐵 ̸= 0 and let 𝑇 : 𝐴 ∪ 𝐵 →

𝐴 ∪ 𝐵 be a mapping such that 𝑇𝐴 ⊂ 𝐵 and 𝑇𝐵 ⊂ 𝐴. Assume
that

𝜓 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ 𝑓 (𝜓 (𝑑 (𝑥, 𝑦)) , 𝜙 (𝑑 (𝑥, 𝑦))) , (36)

for all 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵, where 𝑓 ∈ C, 𝜓 ∈ Ψ, and 𝜙 ∈ Φ.
Then, 𝑇 has a unique fixed point in 𝐴 ∩ 𝐵.

Proof. Define 𝛼, 𝛽 : 𝑋 → R+ by

𝛼 (𝑥) =
{

{

{

1, 𝑥 ∈ 𝐴

0, otherwise,

𝛽 (𝑥) =
{

{

{

1, 𝑥 ∈ 𝐵

0, otherwise.

(37)

Let 𝛼(𝑥)𝛽(𝑦) ≥ 1.Then, 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵. Hence, by (36),
we have

𝜓 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ 𝑓 (𝜓 (𝑑 (𝑥, 𝑦)) , 𝜙 (𝑑 (𝑥, 𝑦))) , (38)

for all 𝑥, 𝑦 ∈ 𝐴 ∪ 𝐵.
Let 𝛼(𝑥) ≥ 1 for some 𝑥 ∈ 𝑋; then, 𝑥 ∈ 𝐴. Hence, 𝑇𝑥 ∈ 𝐵

and so 𝛽(𝑇𝑥) ≥ 1. Now, let 𝛽(𝑥) ≥ 1 for some 𝑥 ∈ 𝑋, so
𝑥 ∈ 𝐵. Hence, 𝑇𝑥 ∈ 𝐴 and then 𝛼(𝑇𝑥) ≥ 1. Therefore, 𝑇 is
a cyclic (𝛼, 𝛽)-admissible mapping. Since 𝐴 ∩ 𝐵 is nonempty,
then there exists 𝑥

0
∈ 𝐴 ∩ 𝐵 such that 𝛼(𝑥

0
) ≥ 1 and 𝛽(𝑥

0
) ≥

1.

Now, let {𝑥
𝑛
} be a sequence in 𝑋 such that 𝛽(𝑥

𝑛
) ≥ 1, for

all 𝑛 ∈ N and 𝑥
𝑛
→ 𝑥; then, 𝑥

𝑛
∈ 𝐵, for all 𝑛 ∈ N. Therefore,

𝑥 ∈ 𝐵. This implies that 𝛽(𝑥) ≥ 1. So the condition (b) of
Theorem 8 holds. Therefore, 𝑇 has a fixed point in 𝐴 ∪ 𝐵, for
example, 𝑧. Since 𝑧 ∈ 𝐴, then 𝑧 = 𝑇𝑧 ∈ 𝐵, and since 𝑧 ∈ 𝐵,
then 𝑧 = 𝑇𝑧 ∈ 𝐴. Therefore, 𝑧 ∈ 𝐴∩𝐵. The uniqueness of the
fixed point follows easily from (36).

Example 15. Let 𝑋 = R be endowed with the usual metric
𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|, for all 𝑥, 𝑦 ∈ 𝑋, and let 𝑇 : 𝐴 ∪

𝐵 → 𝐴 ∪ 𝐵 be defined by 𝑇𝑥 = −𝑥/3, where 𝐴 = [−1, 0]

and 𝐵 = [0, 1]. Also, define 𝜓, 𝜙 : [0,∞) → [0,∞) by
𝜓(𝑡) = 𝑡 and 𝜙(𝑡) = (2/3)𝑡. Indeed, for all 𝑥 ∈ 𝐴 and all
𝑦 ∈ 𝐵, we have 𝜓(𝑑(𝑇𝑥, 𝑇𝑦)) = |𝑇𝑥 − 𝑇𝑦| = (1/3)|𝑥 −

𝑦| = 𝜓(𝑑(𝑥, 𝑦)) − 𝜙(𝑑(𝑥, 𝑦)) = 𝑓(𝜓(𝑑(𝑥, 𝑦)), 𝜙(𝑑(𝑥, 𝑦))).

Therefore, the conditions of Theorem 14 hold and 𝑇 has a
unique fixed point; that is, 0 is a fixed point of 𝑇.

Corollary 16. Let 𝐴 and 𝐵 be two closed subsets of complete
metric space (𝑋, 𝑑) such that 𝐴 ∩ 𝐵 ̸= 0, and let 𝑇 : 𝐴 ∪ 𝐵 →

𝐴 ∪ 𝐵 be a mapping such that 𝑇𝐴 ⊂ 𝐵 and 𝑇𝐵 ⊂ 𝐴. Assume
that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑓 (𝑑 (𝑥, 𝑦) , 𝜙 (𝑑 (𝑥, 𝑦))) , (39)

for all 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵, where 𝑓 ∈ C, and 𝜙 ∈ Φ. Then, 𝑇 has
a unique fixed point in 𝐴 ∩ 𝐵.
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