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Abstract

In this paper, we discussed the non-local derivative on the fractal
Cantor set. The scaling properties are given for both local and non-
local fractal derivatives. The local and non-local fractal dierential
equations are solved and compared and related physical models are
suggested.
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1 Introduction

Fractional calculus became an important tool which was applied successfully
in many branches of science and engineering etc [1, 2, 3, 4, 5]. The models
based on fractional derivatives are crucial for describing the processes with
memory effect [6]. Local fractional has been defined on the real-line [7]. As it
is well known the integer, fractional and complex order derivatives and inte-
grals are defined on the real-line. Analysis on the fractal has been studied by
many researchers [8, 9, 10]. The fractals curves and the functions on fractal
space are not differentiable in the sense of standard calculus. As a result, by
this motivation recently in the seminal paper the F α-calculus is suggested
as a framework on the fractal sets and fractal curves [11, 12, 13, 14]. The
F α-calculus is generalized and applied in physics as a new and useful tool for
modelling processes on the fractals. Newtonian mechanics and Schrödinger
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equation on the fractal sets and curves are given [15, 16, 17]. The gauge in-
tegral is utilized to generalized the F α-calculus for the unbound and singular
function [18]. The fractal grating is modeled by F α-calculus and correspond-
ing diffraction is presented [18]. One of the important aspects of fractional
calculus was transferred recently to the fractal derivatives. Namely, the con-
cept of non-local fractal derivatives was introduced in [20]. In this manuscript
our main aim is to define the fractal non-local derivatives and study their
properties.
The plane of this work is as follows:
In Section 2 we summarize the basic definitions and properties of the the
local fractional derivatives. In Section 3 the scaling properties of local and
non-local derivatives are derived. More, in Section 4 we develop the the-
ory of fractal local and non-local Laplace transformations. In Section 5 the
comparison of local and non-local linear fractal differential equations are
presented. In Section 6 we indicate some illustrative applications. Section 7
contains our conclusion.

2 Preliminaries

In this section we recall some basic definitions and properties of the local
fractal calculus (LFC) and non-local fractal calculus (NLFC) [11, 20].

2.1 Local fractal calculus

In the seminal paper local F α-calculus is built on fractal Cantor set which is
shown in Figure [1] [11].

Figure 1: We present triadic Cantor set by iteration.

The integral staircase function Sα
F (x) of order α for the triadic Cantor set

F is defined in [11] by

Sα
F (x) =

{

γα(F, a0, x) if x ≥ a0

−γα(F, a0, x) otherwise,
(1)

where a0 is an arbitrary real number. The graph of the integral staircase
function is depicted in Figure [2].
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Figure 2: We indicate the integral staircase function for a triadic Cantor set F .

Then F α-derivative is defined for a function with this support as follows
[11]

Dα
Ff(x) =

{

F− limy→x
f(y)−f(x)

Sα
F
(y)−Sα

F
(x)

if x ∈ F,

0, otherwise,
(2)

if the limit exists. For more details we refer the reader to [11].

2.2 Non-local fractal calculus

In this section, we review the non-local derivatives and basic definitions [20].
Definition 1. A function f(Sα

F (x)), x > 0 is in the space CF,ρ, ρ ∈ ℜ if
there exists a real number p > ρ, such f(Sα

F (x)) = Sα
F (x)

pf1(S
α
F (x)), where

f1(S
α
F (x)) ∈ Cα

F [a, b], and it is in the Cnα
F,ρ[a, b] if and only if

(Dα
F )

nf(Sα
F (x)) ∈ CF,ρ, n ∈ N. (3)

Here and subsequently, we define the fractal left-sided Riemann-Liouville
integral as follows

aI
β
x f(x)

:=
1

Γα
F (β)

∫ Sα
F
(x)

Sα
F
(a)

f(t)

(Sα
F (x)− Sα

F (t))
α−β

dαF t. (4)

where Sα
F (x) > Sα

F (a).
Definition 2. The fractal left-sided Riemann-Liouville derivative is defined
as

aD
β
xf(x)

:=
1

Γα
F (n− β)

(Dα
F )

n

∫ Sα
F (x)

Sα
F
(a)

f(t)

(Sα
F (x)− Sα

F (t))
−nα+β+α

dαF t. (5)

3



Definition 3. For A f(x) ∈ Cαn[a, b], nα−α ≤ β < αn the fractal left-sided
Caputo derivative is defined as

C
a D

β
xf(x)

:=
1

Γα
F (n− β)

∫ Sα
F (x)

Sα
F
(a)

(Sα
F (x)− Sα

F (t))
nα−β−α(Dα

F )
nf(t)dαF t. (6)

Definition 4. The fractal Grünwald and Marchaud derivative of a function
f(x) with support of fractal sets is defined as

GDβf(x0) =

F − lim
n→∞

1

Γα
F (−β)

(

Sα
F (x0)

n

)−β n−1
∑

k=0

Γα
F (k − β)

Γα
F (k + 1)

f

(

Sα
F (x0)− k

Sα
F (x0)

n

)

.

Definition 5. The generalized fractal standard Mittag-Leffler functions is
defined as [20]

Eα
F,η(x) =

∞
∑

k=0

Sα
F (x)

k

Γα
F (ηk + 1)

, η > 0, ν ∈ ℜ. (7)

The fractal two parameter η, ν Mittag-Liffler function is defined as

Eα
F,η,ν(x) =

∞
∑

k=0

Sα
F (x)

k

Γα
F (ηk + ν)

, η > 0, ν ∈ ℜ. (8)

Definition 6. For a given function f(Sα
F (x)) the fractal Laplace transform

is denoted by F (s) and defined as [20]

Fα
F (S

α
F (s)) = Lα

F [f(x)] =

∫ Sα
F (∞)

Sα
F
(0)

f(x)e−Sα
F (s)Sα

F (x)dαFx, (9)

where Sα
F (s) is limited by the values that the integral converges. The function

f(Sα
F (x)) is F -continuous and has following condition

sup
|f(Sα

F (x))|

eS
α
F
(c)Sα

F
(x)

< ∞, Sα
F (c) ∈ ℜ, Sα

F (x) > 0. (10)

In view of the above conditions the fractal Laplace transform exists for
all Sα

F (s) > Sα
F (c). We follow the notation as Lα

F [f(x)] = Fα
F (S

α
F (s)) and

Lα
F [g(x)] = Gα

F (S
α
F (s)).

Remark 1. We denote that if we choose β = α then we have

aD
α
xf(x) = Dα

F,xf(x)|x=Sα
F
(a). (11)
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3 Scale properties of fractal local and non-

local fractal calculus

In this section we study the scale properties of the LFC and NLFC.

3.1 Scale change on the local fractal derivatives

A function f(Sα
F (x)) is called fractal homogenous of degree-mα or invariant

under fractal rescalings if we have

f(Sα
F (λx)) = λmαf(Sα

F (x)), (12)

where for some m and for all λ. The fractals have self-similar properties,
namely for the case of function with the fractal Cantor set support we choose
m = 1 and λ = 1/3n, n = 1, 2, ... then

f(Sα
F (

1

3n
x)) = (

1

3n
)αf(Sα

F (x)), (13)

where α = 0.6 is the dimension of triadic Cantor set. The fractal derivative
of the fractal homogenous function f(Sα

F (x)) rescaling as follows

Dα
Ff(S

α
F (λx)) = λmα−αf(Sα

F (x)). (14)

3.2 Scale change on the non-local fractal derivatives

By a scale change of the fractal function f(Sα
F (x)), we mean converts

x → λx ⇒ Sα
F (λx) = λαSα

F (x), (15)

and using Eq. (5) and choosing a = 0 we derive

0D
β
x(f(S

α
F (λx))) = λβα

0D
β
λx(f(S

α
F (λx))), (16)

which is called scale change on the non-local fractal derivatives.

4 Laplace transformation on fractals

Let us give some important lemmas which are useful for finding the fractal
Laplace transforms of function f(Sα

F (x)).
Lemma 1. The fractal Laplace transform of the non-local fractal Caputo
derivative of order mα− α < β ≤ mα, m ∈ N is

Lα
F{

C
0 D

β
xf(x)} =

(Sα
F (s))

mαFα
F (s)− (Sα

F (s))
mα−αf(Sα

F (0))

Sα
F (s)

mα−β

×
−(Sα

F (s))
mα−2αDα

xf(x)|x=Sα
F
(0) − . . .−Dmα−α

x f(x)|x=Sα
F
(0)

1
. (17)
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Proof: We first compute the Laplace fractal transform of the fractal Caputo
fractional derivative of order β as follows

Lα
F{

C
0 D

β
xf(x)}

= Lα
F{0I

mα−β
x (Dα

x )
mf(x)}

=
Lα

F [(D
α
x )

mf(x)]

smα−β
(18)

In view of Eq. (28) which completes the proof.
Lemma 2. For a given ζ, µ > 0, Sα

F (a) ∈ ℜ and Sα
F (s)

ζ > |Sα
F (a)| the fractal

Laplace transform is

Lα,−1
F

[

Sα
F (s)

ζ−µ

Sα
F (s)

ζ + Sα
F (a)

]

= Sα
F (x)

µ−1Eα
F,ζ,µ(−Sα

F (a)S
α
F (x)

ζ). (19)

Proof: Using the series expansion we have

Sα
F (s)

ζ−µ

Sα
F (s)

ζ + Sα
F (a)

=
1

Sα
F (s)

µ

1

1 +
Sα
F
(a)

Sα
F
(s)ζ

(20)

=
1

Sα
F (s)

µ

∞
∑

n=0

(

−Sα
F (a)

Sα
F (s)

ζ

)n

=

∞
∑

n=0

(−Sα
F (a))

n

Sα
F (s)

nζ+µ
(21)

The inverse fractal Laplace transform of Eq. (20) leads to

∞
∑

n=0

(−Sα
F (a))

n Sα
F (x)

nζ+µ−1

Γα
F (nζ + µ)

= Sα
F (x)

µ−1

∞
∑

n=0

(−Sα
F (a) S

α
F (x)

ζ)n

Γα
F (nζ + µ)

= Sα
F (x)

µ−1Eα
F,ζ,µ(−Sα

F (a)S
α
F (x)

ζ). (22)

Lemma 3. Suppose ζ ≥ µ > 0, Sα
F (a) ∈ ℜ and Sα

F (s)
ζ−µ > |Sα

F (a)| then we
have

Lα,−1
F

[

1

(Sα
F (s)

ζ + Sα
F (a)S

α
F (s)

µ)n+1

]

= Sα
F (x)

ζ(n+1)−1
∞
∑

k=0

−(Sα
F (a))

k

Γα
F (k(ζ − µ) + (n + 1)ζ)

(

n + k

k

)

Sα
F (x)

k(ζ−µ). (23)
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Proof: Let us use following expression

1

(1 + Sα
F (x))

n+1
=

∞
∑

k=0

(

k + n

k

)

(−Sα
F (x))

k. (24)

Therefore we can write

1

(Sα
F (s)

ζ + Sα
F (a)S

α
F (s)

µ)n+1

=
1

(Sα
F (s)

ζ)n+1

1

(1 +
Sα
F
(a)

Sα
F
(s)ζ−µ )n+1

=
1

(Sα
F (s))

n+1

∞
∑

k=0

(

n+ k

k

)(

−Sα
F (a)

Sα
F (s)

ζ−µ

)k

.

The proof is complete.
Lemma 4. For ζ ≥ µ, ζ > ξ, Sα

F (a) ∈ ℜ, Sα
F (s)

ζ−µ > |Sα
F (a)| and |Sα

F (s)
ζ +

Sα
F (a)S

α
F (s)

µ| we have

Lα,−1
F

[

Sα
F (s)

ξ

Sα
F (s)

ζ + Sα
F (a)S

α
F (s)

µ + Sα
F (b)

]

=

Sα
F (x)

ζ−ξ−1
∞
∑

n=0

∞
∑

k=0

(−Sα
F (b))

n(−Sα
F (a))

k

Γα
F (k(ζ − µ) + (n+ 1)ζ − ξ)

(

n+ k

k

)

Sα
F (x)

k(ζ−µ)+nζ . (25)

Proof: Since we can write

Sα
F (s)

ξ

Sα
F (s)

ζ + Sα
F (a)S

α
F (s)

µ + Sα
F (b)

=
Sα
F (s)

ξ

Sα
F (s)

ζ + Sα
F (a)S

α
F (s)

µ

1

1 +
Sα
F
(b)

Sα
F
(s)ζ+Sα

F
(a)Sα

F
(s)µ

=

∞
∑

n=0

Sα
F (s)

ξ(−Sα
F (b))

n

Sα
F (s)

ζ + Sα
F (a)S

α
F (s)

µ
, (26)

according to the Lemma 3. the proof is complete.

Some important formulas of the local fractal calculus are given
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below : [11, 20]:

Lα
F [S

α
F (x)

n] =
Γα
F (n+ 1)

Sα
F (s)

n+1
,

Lα
F

[

∫ Sα
F
(x)

Sα
F
(0)

f(Sα
F (t))d

α
F t

]

= Lα
F [ 0I

α
x f(S

α
F (t))]

=
Fα

F (s)

s
,

Lα
F [S

α
F (x)

nf(Sα
F (x))] = (−1)n(Dα

F )
nFα

F (s),

Lα
F

[

∫ Sα
F (x)

Sα
F
(0)

f(Sα
F (x)− Sα

F (t))g(S
α
F (t))d

α
F t

]

= Fα
F (S

α
F (s))G

α
F (S

α
F (s)), (27)

and

Lα
F [(D

α
F )

nf(Sα
F (x))]

= (Sα
F (s))

nαFα
F (s)− (Sα

F (s))
nα−1f(Sα

F (0))

− (Sα
F (s))

nα−2Dα
Ff(x)|x=Sα

F
(0) − . . .

− (Dα
F )

n−1f(x)|x=Sα
F
(0). (28)

Remark 2. If we choose α = 1 we obtain the standard result.
The important formulas of the non-local fractal calculus are as

follows [20]:

0I
β
x (S

α
F (x))

η =
Γα
F (η + 1)

Γα
F (η + β + 1)

(Sα
F (x))

η+β ,

0D
β
x(S

α
F (x))

η =
Γα
F (η + 1)

Γα
F (η − β + 1)

(Sα
F (x))

η−β .

0D
β
x(c χ

α
F ) =

c

Γα
F (1− β)

(Sα
F (x))

−β,

Lα
F [0I

β
x f(x)] =

Fα
F (S

α
F (s))

Sα
F (s)

β
. (29)

where c is constant.
Remark 3. If we choose β = α then we arrive at to the local fractal deriva-
tive whose order is equal the dimension of the fractal.

5 Comparison between the local fractal dier-

ential and non-local fractal dierential

In this section, we compare the local and non-local fractal differential equa-
tions.
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Example 1. Consider linear local fractal differential equation as

Dα
Fy(x) + y(x) = 0, (30)

with the initial-value
y(x)|x=Sα

F
(0) = 1, (31)
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0.6

0.7

0.8

0.9

1

x

y(
x)

y(x) = e−x

y(x) = e−Sα

F
(x)

Figure 3: We plot the solution of Eq. (30).

Hence the solution to Eq. (30) is

y(x) = e−Sα
F
(x), (32)

where α = 0.6309 is the γ-dimension of the triadic Cantor set [11, 20].
In Figure 3 we give the graph of Eq. (32).
Example 2. Consider linear non-local fractal differential equation as

C
0 D

β
xy(x) + y(x) = 0, (33)

with the initial condition

y(x)|x=Sα
F
(0) = 1, Dα

F y(x)|x=Sα
F
(0) = 0. (34)

In view of Eq. (17) we have

Lα
F{

C
0 D

β
xf(x)} =

(Sα
F (s))

αFα
F (s)− 1

Sα
F (s)

α−β
. (35)
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Figure 4: We draw the graph of Eq. (38).

Applying the fractal Laplace transformation on the both sides of Eq. (33)
and using Eq. (17) we obtain

(Sα
F (s))

αFα
F (s)− 1

Sα
F (s)

α−β
+ Fα

F (s) = 0. (36)

It follows that

Fα
F (s) =

Sα
F (s)

β−α

1 + Sα
F (s)

β
, (37)

using the fractal inverse Laplace transform Eq. (19) we arrive at the solution
of Eq. (33) as follows

y(x) = Sα
F (x)

α−1Eα
F,β,α

(

−Sα
F (x)

β
)

. (38)

In Figure 4 we present the graph of Eq.( 38).

6 Application of non-local fractal differential

equations

In this section we give the applications and new models are given to the
non-local fractal derivatives [20].
Fractal Abel’s tautochrone: As a first example we generalized Abel’s
problem which is the curve of quick descent on the fractal time-space. Using
the conservation of energy in the fractal space the differential equation of the
motion a particle is

Dα
F,ts

α
F =

dαF s
α
F

dαF t
= −

√

2gαF (S
α
F (y)− Sα

F (y0)), (39)
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where s
α
F is fractal arc length, and gαF fractal space gravitational constant,

and y is the high particle from the reference of potential. As a result we have

Sα
F (T ) = −

1
√

2gαF

∫ Sα
F
(B)

Sα
F
(A)

1
√

(Sα
F (y)− Sα

F (η))
dαF s

α
F . (40)

Let us consider
s
α
F = hα

F (S
α
F (η)), (41)

so that we have

Sα
F (T ) = −

1
√

2gαF

∫ Sα
F
(0)

Sα
F
(y)

(Sα
F (y)− Sα

F (η))
−1/2Dα

F,ηh
α
F (η)d

α
Fη. (42)

Utilizing Dα
F,ηh

α
F (S

α
F (y)) = f(Sα

F (y)) we arrive at

Sα
F (T ) = −

1
√

2gαF

∫ Sα
F
(0)

Sα
F
(y)

(Sα
F (y)− Sα

F (η))
−1/2f(Sα

F (y))d
α
Fη. (43)

It follows
√

2gαF
Γ(1

2
)
Sα
F (T ) = 0D

1/2
y f(y). (44)

The solution of Eq.(44) is called the fractal cycloid.
Fractal models for the viscoelasticity: We generalize the viscoelastic-
ity models to the fractal mediums in the case of ideal solids and ideal liq-
uids. Namely, the fractal ideal solids describe by

σα
F (t) = Eα

F ǫ
α
F (t), (45)

which is called Hooke’s Law of fractal elasticity. Where σα
F is fractal stress,

ǫαF is fractal strain which occurs under the applied stress and Eα
F is the elastic

modulus of the fractal material.
The fractal ideal fluid can model and describe by Newton’s Law of fractal
viscosity as follows

σα
F (t) = λα

F Dα
F ǫ

α
F (t), (46)

where λα
F is the viscosity of the fractal material. But in the nature we have

real martials which have properties between the ideal solids and ideal liquids.
It is clear that in the Hooke’s Law of fractal elasticity Eq. (45) fractal stress is
proportional to the 0-order derivative of the fractal strain and in the Newton’s
Law of fractal viscosity the stress is proportional to the α-order derivative of
the fractal strain. Therefore, more general model is

σα
F (t) = Eα

F (χ
α
F )

β
0D

β
xǫ

α
F (t), χα

F =
λα
F

Eα
F

, (47)
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which is called fractal Blair’s model. Here, we suggest the fractional non-
local order fractal derivative β as an index of memory. Namely, if we choose
β = 0 in the process is nothing forgotten and the case of β = α the process
is memoryless. Hence if we choose 0 < β < α it shows the processes with
memory on the fractals.
If we choose

ǫαF (t) = χα
F , (48)

where χα
F is characteristic function of the triadic Cantor set. In Figure 5 we

plot the ǫαF (t).
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Figure 5: We sketch ǫαF (t) = χα
F which is characteristic function of the triadic

Cantor set.

Utilizing Eq. (47) we obtain the fractal stress as follows

σα
F (t) = Eα

F (χ
α
F )

β 1

Γα
F (1− β)

(Sα
F (t))

−β. (49)
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Figure 6: We sketch σα
F (t) for the fractal stress substituting β = 0.5
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In Figure 6 we show the graph of σα
F (t) fractal stress.

Remark 4. If we choose β = 0 and β = α in Eq. (47) we will have the
fractal stress and the fractal strain relations for the cases of fractal ideal
solids and the fractal ideal fluids, respectively.

7 Conclusion

In this paper we generalized the fractal calculus involving the non-local
derivatives. The scaling properties of the local and non-local derivatives
are studied because they are important in physical applications. Using an
illustrative example we compared the local and non-local linear fractal differ-
ential equations. We also suggested some applications for the new non-local
fractal differential equations.
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