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Abstract: In this manuscript, we prove the existence and uniqueness of solutions for local fractional
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1. Introduction

Differential equations (DEs) with fractional order are generalizations of ordinary differential
equations to non-integer order. Indeed, fractional differential equations have been subjected to
many studies due to their frequent occurrence in different applications in physics, fluid mechanics,
physiology, engineering, electrochemistry, and signals [1–8]. Therefore, numerical and analytical
techniques have been developed to deal with fractional differential equations [9–11].

The existence and uniqueness of solutions of differential equations with the Riemann-Liouville
fractional derivative and the Caputo fractional derivative using the Schauder fixed point theorem,
the lower and upper solution method, the contracting mapping principle and the Leray-Schauder
theory have been investigated in some papers [12–15].

Very recently in [16], the author studied the existence and uniqueness of solutions of some classes
of differential equations with local fractional derivative operators. In this paper, we are interested in
the existence and uniqueness of DEs with LFDOs of the form:

D2α
χ γ(χ) = Ω(χ,γ) , γ(υ) = y0 , Dαχγ(υ) = γ1 (1)

D3α
χ γ(χ) = Ω(χ,γ) , γ(υ) = y0 , Dαχγ(υ) = γ1 , D2α

χ γ(υ) = γ2 (2)

and a system of DEs with LFDOs of the form

DατX = Φ(τ, X) , X(µ) = X0 (3)
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where

X =


χ1
χ2
...
χn

, Φ(τ, X) =


Φ1(τ,χ1,χ2, ... , χn)

Φ2(τ,χ1,χ2, ... ,χn)
...

Φn(τ,χ1,χ2, ... , χn)

, X0 =


χ10
χ20

...
χn0


and Dα, D2α, and D3α are the LFDOs of order α , 2α, and 3α respectively and υ, µ ∈ [σ,ω]. By using
a variety of tools including the (CMT) and (IDT), existence and uniqueness results are obtained.

The rest of this paper is organized as follows. In Section 2, we give some necessary notations,
definitions, and theorems. In Section 3, we study the existence and uniqueness of solutions of local
fractional differential Equations (1)–(3) by using the contracting mapping theorem. Examples are given
to illustrate our results in Section 4. Finally, in Section 5 we outline the main conclusions.

2. Basic Definitions and Preliminaries

In this section, we present some basic definitions and theorems that are used to prove our new
results (see [16]).

Definition 1. Let us consider that Ψ : [σ,ω]× Rα → Rα is LF continuous. We say that Ψ(χ,γ) satisfies a
Lipschitz continuous (LC) if exists 0 < η < 1 such that for all χ ∈ [σ,ω]

|Ψ(χ,γ1)−Ψ(χ,γ2)| ≤ ηα |γ1 − γ2| , 0 < α ≤ 1

Definition 2. A generalized normed linear space on Λ of fractional dimension α , is a mapping
|| · ||α : Λ→ Rα , if it satisfies the following properties:

1. ||χα||α ≥ 0 & ||χα||α = 0 if and only if χα = 0α

2. ||καχα||α = |κα| ||χα||α
3. ||χα + γα||α ≤ ||χα||α + ||γα||α, for χα , γα ∈ Λ and κ ∈ R

Definition 3. Let (X, || · ||α) be a generalized Banach space (GBS), and let T : X → X be a map. If a number
βα ∈ (0α, 1α) and

||T(χα)− T(γα)||α ≤ β
α||χα − γα||α

for χα , γα ∈ X. Then T is called contraction mapping (CM) on GBS (X, || · ||α).

Definition 4. Let (X, || · ||α) be a GBS and let T : X → X . If χα ∈ X and ||Tχα − χα||α = 0, then χα

is called a fixed point (FP) of T.

Theorem 1. (CMT): A contracting mapping T defined on a complete GBS (X, || · ||α) has a unique FP.

Proof. See [14].

Theorem 2. Assume that Ω ∈ Cα[σ,ω] (Cα is called a LF continuous set) and Ω ∈ Dα(σ,ω) (Dα is called
a LF derivative set). Then a point τ ∈ (σ,ω) with

Ω(ω)−Ω(σ) = Ω(α)(τ)(ω− σ)α , 0 < α ≤ 1

Proof. See [14].

Theorem 3. (Increasing and Decreasing Theorem)
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1. If Ω(α)(χ) > 0 on [σ,ω], then Ω(χ) is an increasing on that interval.

2. If Ω(α)(x) < 0 on [σ,ω], then Ω(χ) is a decreasing on that interval.

Proof. See in [14].

3. Main Results

Here, we investigate the existence and uniqueness of solutions of the LFDEs (1), (2) and (3). First,
we prove the existence and uniqueness of solutions of the LFDEs by applying (the CMT).

Theorem 4. Let us consider that T : X → X is a map on the complete GBS (X, || · ||α) such that for some
m ≥ 1 , Tm is contracting. Then T has a unique FP.

Proof. Since Tm is CM on X, then we have Tm has a unique FP ξα.

||Tξα − ξα||α = ||Tm+1ξα − Tmξα||α
= ||Tm(Tξα)− Tm(ξα)||α
≤ βα||Tξα − ξα||α

Moreover, since βα ∈ (0α, 1α), then ||Tξα − ξα||α = 0 , in other words, Tξα = ξα. Therefore, ξα

is FP of T. For uniqueness, assume that ξα1 , ξα2 are FPs of T such that Tξα1 = ξα1 , Tξα2 = ξα2 then
ξα1 , ξα2 FPs of Tm. Therefore ξα1 = ξα2 .

Theorem 5. Assume that Ω : [σ,ω]× Rα → Rα is LF continuous map. Then Ω is LC.

Proof. Since ∂αΩ
∂γα is LF continuous, then it attains a maximum value, denoted by

ηα = max
(χ,γ)∈Dom Ω

∣∣∣∣∂αΩ(χ,γ)
∂γα

∣∣∣∣
Now, let us consider (χ,γ1) , (χ,γ2) ∈ Dom Ω.
Using Theorem 2, there is a point (χ, τ) ∈ Dom Ω such that:

|Ω(χ,γ1)−Ω(χ,γ2)| =
∣∣∣∣∂αΩ(χ, τ)

∂γα

∣∣∣∣ |γ1 − γ2| ≤ ηα |γ1 − γ2|

Theorem 6. If υ ∈ [σ,ω] closed interval, β0 , β1 ∈ Rα and Ω : [σ,ω]× Rα → Rα is an LF continuous
function and satisfies a LC, then the LFDE:

D2α
χ γ(χ) = Ω(χ,γ) (4)

subject to the initial conditions
γ(υ) = β0 , γ(α)(υ) = β1 (5)

has a unique solution in Cα[σ,ω] .

Proof. Let the map T : Cα[σ,ω]→ Cα[σ,ω] be defined by

T ζ(χ) = β0 +
(χ− υ)α

Γ(1 + α)
β1 +

1
Γ(1 + α)

χ∫
υ

(χ− τ)α

Γ(1 + α)
Ω(τ, ζ(τ)) (dτ)α (6)
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and ζ1 (χ), ζ2(χ) ∈ Cα[σ,ω].
We first prove by induction that

||Tnζ1(χ)− Tnζ2(χ)||α ≤ ηnα |χ−υ|2nα

Γn(1+2α) ||ζ1(χ)− ζ2(χ)||α

≤ ηnα |ω−σ|2nα

Γn(1+2α) ||ζ1(χ)− ζ2(χ)||α , n = 1 , 2 , ......
(7)

In fact, for n = 1, we obtain

||Tζ1(χ)− Tζ2(χ)||α = |Tζ1(χ)− Tζ2(χ)|

=

∣∣∣∣ 1
Γ(1+α)

χ∫
υ

(χ−τ)α
Γ(1+α) [Ω(τ, ζ1(τ))−Ω(τ, ζ2(τ))] (dτ)

α

∣∣∣∣
≤
∣∣∣∣ 1

Γ(1+α)

χ∫
υ

(χ−τ)α
Γ(1+α) η

α |ζ1(χ)− ζ2(χ)| (dτ)α
∣∣∣∣

≤ ηα||ζ1(χ)− ζ2(χ)||α

∣∣∣∣ 1
Γ(1+α)

χ∫
υ

(χ−τ)α
Γ(1+α) (dτ)

α

∣∣∣∣
≤ ηα |χ−υ|2α

Γ(1+2α) ||ζ1(χ)− ζ2(χ)||α

≤ ηα |ω−σ|2α
Γ(1+2α) ||ζ1(χ)− ζ2(χ)||α

For n = 2,

||T2ζ1(χ)− T2ζ2(χ)||α =
∣∣T2ζ1(χ)− T2ζ2(χ)

∣∣
=

∣∣∣∣ 1
Γ(1+α)

χ∫
υ

(χ−τ)α
Γ(1+α) [Ω(τ, Tζ1(τ)−Ω(τ, Tζ2(τ))] (dτ)

α

∣∣∣∣
≤
∣∣∣∣ 1

Γ(1+α)

χ∫
υ

(χ−τ)α
Γ(1+α) η

α |Tζ1(χ)− Tζ2(χ)| (dτ)α
∣∣∣∣

≤ η2α |χ−υ|2α
Γ(1+2α) ||ζ1(χ)− ζ2(χ)||α

∣∣∣∣ 1
Γ(1+α)

χ∫
υ

(χ−τ)α
Γ(1+α) (dτ)

α

∣∣∣∣
≤ η2α |χ−υ|4α

Γ2(1+2α)
||ζ1(χ)− ζ2(χ)||α

≤ η2α |ω−σ|4α

Γ2(1+2α)
||ζ1(χ)− ζ2(χ)||α

We suppose the desired inequality holds for n = k.

||Tkζ1(χ)− Tkζ2(χ)||α ≤ ηkα |χ−υ|2kα

Γn(1+2α) ||ζ1(χ)− ζ2(χ)||α

≤ ηkα |ω−σ|2kα

Γn(1+2α) ||ζ1(χ)− ζ2(χ)||α

Then,

||Tk+1ζ1(χ)− Tk+1ζ2(χ)||α =
∣∣∣Tk+1ζ1(χ)− Tk+1ζ2(χ)

∣∣∣
=

∣∣∣∣ 1
Γ(1+α)

χ∫
υ

(χ−τ)α
Γ(1+α)

[
Ω(τ, Tkζ1(τ)−Ω(τ, Tkζ2(τ))

]
(dτ)α

∣∣∣∣
≤
∣∣∣∣ 1

Γ(1+α)

χ∫
υ

(χ−τ)α
Γ(1+α) η

α
∣∣∣Tkζ1(χ)− Tkζ2(χ)

∣∣∣ (dτ)α∣∣∣∣
≤
∣∣∣∣ 1

Γ(1+α)

χ∫
υ

(χ−τ)α
Γ(1+α) η

α||Tkζ1(χ)− Tkζ2(χ)||α (dτ)α
∣∣∣∣

≤ η(k+1)α |χ−υ|2kα

Γk(1+2α)
||ζ1(χ)− ζ2(χ)||α

∣∣∣∣ 1
Γ(1+α)

χ∫
υ

(χ−τ)α
Γ(1+α) (dτ)

α

∣∣∣∣
≤ η(k+1)α |χ−υ|2(k+1)α

Γk+1(1+2α)
||ζ1(χ)− ζ2(χ)||α

≤ η(k+1)α |ω−σ|2(k+1)α

Γk+1(1+2α)
||ζ1(χ)− ζ2(χ)||α



Entropy 2016, 18, 420 5 of 9

Hence, the estimates (7) hold.
Now, we have

ηnα |ω− σ|2nα

Γn(1 + 2α)
||ζ1(χ)− ζ2(χ)||α → 0 as n→ ∞

So far n sufficiently large

0 <
ηnα |ω− σ|2nα

Γn(1 + 2α)
< 1

and Tn is a contraction on Cα[σ,ω] .
Therefore T has a unique fixed point in Cα[σ,ω] , which gives a unique solution to the local

fractional differential.

Theorem 7. If υ ∈ [σ,ω], β0, β1, β2 ∈ Rα and Ω : [σ,ω]× Rα → Rα is a local fractional continuous
function and satisfies a Lipschitz continuous, then the local fractional differential equation:

D3α
χ γ(χ) = Ω(χ,γ) (8)

γ(υ) = β0, γ(α)(υ) = β1, γ(2α)(υ) = β2 (9)

has a unique solution in [σ,ω] .

Proof. Let the map T : Cα[σ,ω]→ Cα[σ,ω] be defined by

T ζ(χ) = β0 +
(χ− υ)α

Γ(1 + α)
β1 +

(χ− υ)2α

Γ(1 + 2α)
β2 +

1
Γ(1 + α)

χ∫
υ

(χ− τ)2α

Γ(1 + 2α)
Ω(τ, ζ(τ)) (dτ)α (10)

and ζ1 (χ), ζ2(χ) ∈ Cα[σ,ω].
We claim that for all n,

||Tnζ1(χ)− Tnζ2(χ)||α ≤ ηnα |χ−υ|3nα

Γn(1+3α) ||ζ1(χ)− ζ2(χ)||α

≤ ηnα |ω−σ|3nα

Γn(1+3α) ||ζ1(χ)− ζ2(χ)||α , n = 1 , 2 , ......
(11)

The case is n = 1 has already shown. The induction step is as follows:

||Tn+1ζ1(χ)− Tn+1ζ2(χ)||α =
∣∣Tn+1ζ1(χ)− Tn+1ζ2(χ)

∣∣
=

∣∣∣∣ 1
Γ(1+α)

χ∫
υ

(χ−τ)2α

Γ(1+2α) [Ω(τ, Tnζ1(τ)−Ω(τ, Tnζ2(τ))] (dτ)
α

∣∣∣∣
≤
∣∣∣∣ 1

Γ(1+α)

χ∫
υ

(χ−τ)2α

Γ(1+2α)η
α |Tnζ1(χ)− Tnζ2(χ)| (dτ)α

∣∣∣∣
≤
∣∣∣∣ 1

Γ(1+α)

χ∫
υ

(χ−τ)2α

Γ(1+2α)η
α||Tnζ1(χ)− Tnζ2(χ)||α (dτ)α

∣∣∣∣
≤ η(n+1)α |χ−υ|3nα

Γn(1+3α) ||ζ1(χ)− ζ2(χ)||α

∣∣∣∣ 1
Γ(1+α)

χ∫
υ

(χ−τ)2α

Γ(1+2α) (dτ)
α

∣∣∣∣
≤ η(n+1)α |χ−υ|3(n+1)α

Γn+1(1+3α)
||ζ1(χ)− ζ2(χ)||α

≤ η(k+1)α |ω−σ|3(n+1)α

Γn+1(1+3α)
||ζ1(χ)− ζ2(χ)||α

Hence, the estimates (11) hold.
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Now, we have

ηnα |ω− σ|3nα

Γn(1 + 3α)
||ζ1(χ)− ζ2(χ)||α → 0 as n→ ∞

So far n is sufficiently large

0 <
ηnα |ω− σ|3nα

Γn(1 + 3α)
< 1

and Tn is a contraction on Cα[σ,ω] .
Therefore T has a unique fixed point in Cα[σ,ω] . This gives an unique solution to the local

fractional differential.
Next, we apply the increasing and decreasing test to prove the uniqueness of the solution of the

system of LFDEs.

Theorem 8. If µ ∈ [σ,ω], and Φ : [σ,ω]× Rαn → Rαn is LF continuous and satisfies a Lipschitz continuous,
then there is at most one solution X(τ) of the local fractional differential system

Dατ X = Φ(τ, X) (12)

that satisfies a given initial condition X(µ) = X0 ∈ Rαn .

Proof. Suppose that Φ(τ, X) satisfies the LC.

||Φ(τ, X)−Φ(τ, Y)||α ≤ η
α||X−Y||α

For any (τ, X), (τ, Y) ∈ Dom Φ. Let X(τ) = [χ1(τ) , χ2(τ) , ... , χn(τ)] and Y(τ) =

[γ1(τ) , γ2(τ) , ... , γn(τ)] be two solutions of (12) such that X(µ) = Y(µ) = X0 .

Let ϑ(τ) = ||X(τ)−Y(τ)||2
α =

n
∑

i=1
[χi(τ)− γi(τ)]

2 , then

dα
dτα ϑ(τ) =

n
∑

i=1
2 [χi(τ)− γi(τ)]

[
χ
(α)
i (τ)− γ(α)i (τ)

]
=

n
∑

i=1
2 [χi(τ)− γi(τ)] [Φi(τ, X(τ)−Φi(τ, Y(τ)]

= 2 [X(τ)−Y(τ)] [Φ(τ, X(τ)−Φ(τ, Y(τ)]

Since dα
dτα ϑ(τ) ≤

∣∣∣ dα
dτα ϑ(τ)

∣∣∣ , we obtain

dα
dτα ϑ(τ) ≤ 2 |Φ(τ, X(τ)−Φ(τ, Y(τ)| |X−Y|

≤ 2||Φ(τ, X)−Φ(τ, Y)||α ||X−Y||α
≤ 2ηα ||X−Y||2

α = 2ηαϑ(τ) .

Hence, we have
ϑ(α)(τ)− 2ηαϑ(τ) ≤ 0(

ϑ(α)(τ)− 2ηαϑ(τ)
)

Eα(−2ηατα) ≤ 0

dα

dτα
[ ϑ(τ) Eα(−2ηατα)] ≤ 0

Thus, ϑ(τ) Eα(−2ηατα) is a decreasing function.
Therefore ϑ(τ) Eα(−2ηατα) ≤ ϑ(σ) Eα(−2ηασα) = 0 , for τ > σ.
Since ϑ(τ) ≥ 0, we obtain ϑ(τ) = 0, for τ > σ. Hence, X(τ) = Y(τ) , for τ > σ.
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Now, let us consider the case where τ < σ.
Since − dα

dτα ϑ(τ) ≤
∣∣∣ dα

dτα ϑ(τ)
∣∣∣ , we have

− dα

dτα
ϑ(τ) ≤ 2ηαϑ(τ)

ϑ(α)(τ) + 2ηαϑ(τ) ≥ 0(
ϑ(α)(τ) + 2ηαϑ(τ)

)
Eα(2ηατα) ≥ 0

dα

dτα
[ ϑ(τ) Eα(2ηατα)] ≥ 0

So ϑ(τ) Eα(2ηατα) is an increasing function.
Therefore ϑ(τ) Eα(2ηατα) ≤ ϑ(σ) Eα(2ηασα) = 0 , for τ < σ.
Since ϑ(τ) ≥ 0, we obtain ϑ(τ) = 0, for τ < σ.
Hence, X(τ) = Y(τ) , for τ < σ.

4. Applications

To illustrate the application of our results, let us consider the following examples.

Example 1. The local fractional IVP

γ(2α) + γ =
χα

Γ(1 + α)
, γ(0) = 1 , γ(α)(0) = 0 . (13)

has a unique solution.
For this initial value problem, the integral operator T is defined as

T ζ(χ) = 1 + 1
Γ(1+α)

χ∫
0

(χ−η)α
Γ(1+α)

[
ηα

Γ(1+α) − ζ(η)
]
(dη)α

= 1 + η3α

Γ(1+3α) −
1

Γ(1+α)

χ∫
0

(χ−η)α
Γ(1+α) ζ(η)(dη)

α

It is clear that T ζ(χ) is CM.
Now let ζ(χ) = cosα(χα)− sinα(χα)− χα

Γ(1+α) . Then

T ζ(χ) = 1 + χ3α

Γ(1+3α) −
1

Γ(1+α)

χ∫
0

(χ−η)α
Γ(1+α)

[
cosα(ηα)− sinα(ηα)− ηα

Γ(1+α)

]
(dη)α

= cosα(χα)− sinα(χα)− χα

Γ(1+α)

In other words, T ζ(χ) = ζ(χ), so ζ(χ) is a unique fixed point of T, which gives a unique solution to the local
fractional IVP (13).

Example 2. The LFDE

γ(3α) − γ+ χα

Γ(1 + α)
= 0 ,γ(0) = 1 , γ(α)(0) = 2 , γ(2α)(0) = 1 (14)

has a unique solution.
For this initial value problem, the integral operator T is defined as

T ζ(χ) = 1 +
2χα

Γ(1 + α)
+

χ2α

Γ(1 + 2α)
+

1
Γ(1 + α)

χ∫
0

(χ− η)2α

Γ(1 + 2α)

[
ζ(η)− ηα

Γ(1 + α)

]
(dη)α
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Then T ζ(χ) is a contracting map.
Now let ζ(χ) = Eα(χα) + χα

Γ(1+α)
Therefore,

T ζ(χ) = 1 + 2χα
Γ(1+α) +

χ2α

Γ(1+2α) +
1

Γ(1+α)

χ∫
0

(χ−η)2α

Γ(1+2α)

[
Eα(ηα) + ηα

Γ(1+α) −
ηα

Γ(1+α)

]
(dη)α

= Eα(χα) + χα

Γ(1+α)

In other words, T ζ(χ) = ζ(χ), so ζ(χ) is a unique FP of T, which gives a unique solution to the LFDE (14).

5. Conclusions

We have presented some existence and uniqueness results for an initial value problem of local
fractional differential equations (LFDEs) and a system of LFDEs with local fractional derivative
operators. The proof of the existence and uniqueness of the solutions is proved by applying the
contracting mapping theorem while the uniqueness of solutions for system of LFDEs is proved by
applying the increasing and decreasing theorem. The present work can be extended to nonlinear
differential equations with local fractional derivative operators.
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