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Abstract.
In this manuscript we define the right fractional derivative and its corresponding right fractional

integral for the recently introduced nonlocal fractional derivative with Mittag-Leffler kernel. Then,
we obtain the related integration by parts formula. We use the Q−operator to confirm our results.
The corresponding Euler-Lagrange equations are obtained and one illustrative example is discussed.
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1 Introduction

Fractional calculus is developing faster during the last few years and many phenomena possessing
the power law effect were described accurately with fractional models [1, 2, 3, 4, 5, 6, 7, 8]. Many
excellent results of the fractional models were reported in various fields of science and engineering.
One of the specificity of the fractional calculus is that we have many fractional derivatives which
gives the researcher the opportunity to choose the specific fractional derivative which corresponds
better to a given real world problem. The description of phenomena with memory effect is still
a big challenge for the researchers, therefore new tools and methods should be created to be able
to get better description of the real world phenomena and the existing models. In this respect it
seems that there is a need of new fractional derivatives with nonsingular kernel. One of the best
candidates among the existing kernels is the one based on Mittag-Leffler(ML) functions [10]. Based
on this, very recently a new fractional derivative [10] was constructed and applied to several real
world problems [11, 12]. For the nonlocal fractional derivatives with nonsingular exponential kernel
we refer to [19, 20] and for other local approaches of the fractional derivatives we refer to the recent
manuscripts [21, 22]. In this paper we would like to present several important properties of the new
derivative introduced in [10] in order to see the advantages of it as well as in order to start to apply
it in fractional variational principles and optimal control problems. Having above mentioned thinks
in mind we present in the first chapter the fundamental integration by parts formula. Integration by
parts is of great importance in fractional calculus [4] and discrete fractional calculus [9, 16, 17, 18].
In the third chapter we developed the corresponding fractional Euler-Lagrange equations and we
give an illustrative example of it.

From the classical fractional calculus, we recall

• The left Riemann-Liouville fractional of order α > 0 starting from a is defined by

( aI
αf)(t) =

1

Γ(α)

∫ t

a
(t− s)α−1f(s)ds.

• The right Riemann-Liouville fractional of order α > 0 ending at b > a is defined by

(Iαb f)(t) =
1

Γ(α)

∫ b

t
(s− t)α−1f(s)ds.

• The left Riemann-Liouville fractional derivative of order 0 < α < 1 starting at a is defined by

( aD
αf)(t) =

d

dt
( aI

1−αf)(t).
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• The right Rieemann-Liouville fractional derivative of order 0 < α < 1 ending at b is defined
by

(Dα
b f)(t) =

−d
dt

(I1−α
b f)(t).

2 The right fractional derivative and integration by

parts formula

If f is defined on an interval [a, b], then the action of the Q−operator is defined as (Qf)(t) =
f(a + b− t).

Definition 2.1. [10] Let f ∈ H1(a, b), a < b, α ∈ [0, 1], then the definition of the new (left
Caputo) fractional derivative in the sense of Abdon and Baleanu is defined by:

( ABC
aD

αf)(t) =
B(α)

1− α

∫ t

a
f ′(x)Eα[−α

(t − x)α

1− α
]dx (1)

and in the left Riemann-Liouville sense by:

( ABR
aD

αf)(t) =
B(α)

1− α

d

dt

∫ t

a
f(x)Eα[−α

(t − x)α

1− α
]dx. (2)

The associated fractional integral by

( AB
a Iαf)(t) =

1− α

B(α)
f(t) +

α

B(α)
( aI

αf)(t). (3)

Let’s denote the new right Riemann-Liouville fractional derivative that we wish to propose by
ABRDα

b and its corresponding integral by ABIαb . From classical fractional calculus it is known that
(aIαQf)(t) = Q(Iαb f)(t) and (aDαQf)(t) = Q(Dα

b f)(t). We wish this relation to be satisfied for
the new left and right fractional derivatives and integrals.

( a
ABRDαQf)(t) =

B(α)

1− α

d

dt

∫ t

a
f(a + b− x)Eα[−α

(t − x)α

1− α
]dx

=
B(α)

1− α

d

dt

∫ b

a+b−t
f(u)Eα[−α

(u− (a+ b− t))α

1− α
]dx,

(4)

where the change of variable u = a+ b− x is used. The relation (4) suggests the following definition
for the new right fractional derivative:

Definition 2.2. The right fractional new derivative with ML kernel of order α ∈ [0, 1] is defined by

( ABRDα
b f)(t) = −B(α)

1− α

d

dt

∫ b

t
f(x)Eα[−α

(x− t)α

1− α
]dx.

On the other hand,

( AB
aI

αQf)(t) =
1− α

B(α
f(a + b− t) +

α

B(α)
( aI

αQf)(t)

=
1− α

B(α
f(a + b− t) +

α

B(α)
Q(Iαb f)(t)

= Q[
1− α

B(α
f(t) +

α

B(α)
(Iαb f)(t)]. (5)

Moreover, we solve the equation ( ABDα
b f)(t) = u(t). Indeed,

( ABDα
b f)(t) = ( ABDα

b QQf)(t) = (Q AB
aD

αQf)(t) = u(t),

(6)

or
( AB

aD
αQf)(t) = Qu(t),

2



and hence,

Qf(t) =
1− α

B(α)
Qu(t) +

α

B(α)
aI

αQu(t) =
1− α

B(α)
Qu(t) +

α

B(α)
QIαb u(t).

Applying Q to both sides above, we have

f(t) =
1− α

B(α)
u(t) +

α

B(α)
Iαb u(t). (7)

Now, relations (5) and (7) suggest the following definition for the new right fractional integral:

Definition 2.3. The right fractional new integral with ML kernel of order α ∈ [0, 1] is defined by

( ABIαb f)(t) =
1− α

B(α)
f(t) +

α

B(α)
Iαb f(t)

Before we present an integration by part formula for the new proposed fractional derivatives and
integrals we introduce the following function spaces: For p ≥ 1 and α > 0, we define

( AB
aI

α(Lp) = {f : f = AB
aI

αϕ, ϕ ∈ Lp(a, b)}. (8)

and
( ABIαb (Lp) = {f : f = ABIαb φ, φ ∈ Lp(a, b)}. (9)

In [10] it was shown that the left fractional operator ABR
aDα and its associate fractional integral

AB
aIα satisfy ( ABR

aDαAB aIαf)(t) = f(t) and above we have shown that ( ABRDα
b

ABIαb f)(t) =

f(t) . On the other we next prove that ( AB
aIα ABR

aDαf)(t) = f(t) and ( ABIαb
ABRDα

b f)(t) =

f(t) and hence the function spaces ( AB
aIα(Lp) and ( ABIαb (Lp) are nonempty.

Theorem 2.1. The functions ( ABR
aDαf)(t) and ( ABRDα

b f)(t) satisfy the equations

( AB
aI

αg)(t) = f(t), ( ABIαb g)(t) = f(t),

respectively.

Proof. We just prove the left case. The right case can be proved by means of the Q−operator. From,
the definition the first equation is equivalent to

1− α

B(α)
g(t) +

α

B(α)
( aI

αg)(t) = f(t).

Apply the Laplace transform to see that

1− α

B(α)
G(s) +

α

B(α)
s−αG(s) = F (s).

From which it follows that

G(s) =
B(α)

1− α

F (s)sα

sα + α
1−α

.

Finally, the Laplace inverse will lead to that g(t) = ( ABR
aDαf)(t).

Theorem 2.2. (Integration by parts) Let α > 0, p ≥ 1, q ≥ 1, and 1
p
+ 1

q
≤ 1+α (p 6= 1 and q 6= 1

in the case 1
p
+ 1

q
= 1 + α ). Then

• If ϕ(x) ∈ Lp(a, b) and ψ(x) ∈ Lq(a, b) , then
∫ b

a
ϕ(x)( AB

aI
αψ)(x)dx =

1− α

B(α)

∫ b

a
ψ(x)ϕ(x)dx +

α

B(α)

∫ b

a
(Iαb ϕ)(x)ψ(x)dx

=

∫ b

a
ψ(x)( ABIαb ϕ(x)dx (10)

and similarly,
∫ b

a
ϕ(x)( ABIαb ψ)(x)dx =

1− α

B(α)

∫ b

a
ψ(x)ϕ(x)dx +

α

B(α)

∫ b

a
( aI

αϕ)(x)ψ(x)dx (11)

=

∫ b

a
ψ(x)( AB

aI
αϕ)(x)dx (12)

3



• If f(x) ∈ ABIαb (Lp) and g(x) ∈ AB
aIα(Lq), then

∫ b

a
f(x)( ABR

aD
αg)(x)dx =

∫ b

a
( ABRDα

b f)(x)g(x)dx

Proof. • From the definition and the integration by parts for( classical) Riemann-Liouville frac-
tional integrals we have

∫ b

a
ϕ(x)( AB

aI
αψ)(x)dx =

∫ b

a
ϕ(x)[

1− α

B(α)
ψ(x) +

α

B(α)
aI

αψ(x)]dx

=
1− α

B(α)

∫ b

a
ϕ(x)ψ(x)dx +

α

B(α)

∫ b

a
ψ(x)Iαb ϕ(x)dx

=

∫ b

a
ψ(x)[

1 − α

B(α)
ϕ(x) +

α

B(α)
Iαb ϕ(x)]dx

=

∫ b

a
ψ(x)( ABIαb ϕ(x)dx. (13)

The other case follows similarly by Definition 2.3 and the integration by parts for( classical)
Riemann-Liouville fractional integrals.

• From definition and the first part we have

∫ b

a
f(x)( ABR

aD
αg)(x)dx =

∫ b

a
( ABIαb φ)(x).(

ABR
aD

α ◦ ABR
aI

αϕ)(x)dx

=

∫ b

a
( ABIαb φ)(x).ϕ(x)dx

=
1− α

B(α)

∫ b

a
φ(x)ϕ(x)dx +

α

B(α)

∫ b

a
φ(x)( aI

αϕ)(x)dx

=
1− α

B(α)

∫ b

a
( ABRDα

b f)(x)(
ABR

aD
αg)dx+

+
α

B(α)

∫ b

a
( ABRDα

b f)(x)[
B(α)

α
g(x)− 1− α

α
( ABR

aD
αg)]dx

=

∫ b

a
( ABRDα

b f)(x)g(x)dx.

In the proof, the identity ( aIαϕ)(x) = B(α)
α

( AB
aIαϕ)(x) − 1−α

α
ϕ(x) derived from (3) is

used.

Example 2.4. This example is a numerical application of Theorem 2.2.

• To verify (10), let ψ(x) = x, ϕ(x) = 1− x, α = 1
2
, [a, b] = [0, 1] and B(α) = 1. Then,

AB
0I

1/2x =
x

2
+

1

2

Γ(2)x3/2

Γ(5/2)
=
x

2
+

2x3/2

3
√
π
,

and

ABI
1/2
1 (1− x) =

1− x

2
+

2(1 − x)3/2

3
√
π

.

Hence, the left hand side of (10) results in

∫ b

a
ϕ(x)( AB

aI
αψ)(x)dx =

∫ 1

0
(1−x) AB

0I
1/2x =

∫ 1

0
(1−x)[x

2
+

2x3/2

3
√
π

]dx =
1

12
+

8

105
√
π
,

(14)
and
∫ b

a
ψ(x)( ABIαb ϕ(x)dx =

∫ 1

0
x( ABI

1/2
1 (1−x)dx =

∫ 1

0
x[

1− x

2
+
2(1 − x)3/2

3
√
π

]dx =
1

12
+

8

105
√
π
.

(15)
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• To verify the second part of Theorem 2.2, let f(x) = 1−x
2

+
2(1−x)3/2

3
√

π
and g(x) = x

2
+ 2x3/2

3
√

π
,

with α = 1
2
, [a, b] = [0, 1] and B(α) = 1. Then,

∫ b

a
f(x)( ABR

aD
αg)(x)dx =

∫ 1

0
[
1− x

2
+

2(1− x)3/2

3
√
π

]xdx =
1

12
+

8

105
√
π
,

and ∫ b

a
( ABRDα

b f)(x)g(x)dx =

∫ 1

0
(1− x)[

x

2
+

2x3/2

3
√
π

]dx =
1

12
+

8

105
√
π
.

From [10] we recall the relation between the Riemann-Liouville and Caputo new derivatives as

( ABC
0D

αf)(t) = ( ABR
0D

αf)(t) − B(α)

1− α
f(0)Eα(−

α

1− α
tα) (16)

From [13] recall the (left) generalized fractional integral operator

( E
γ

ρ,µ,ω,a+ϕ)(x) =

∫ x

a
(x− t)µ−1Eγ

ρ,µ[ω(x− t)ρ]ϕ(t)dt, x > a. (17)

Analogously, the (right) generalized fractional integral operator can be defined by

( E
γ

ρ,µ,ω,b−
ϕ)(x) =

∫ b

x
(t− x)µ−1Eγ

ρ,µ[ω(t− x)ρ]ϕ(t)dt, x < b, (18)

where Eγ
ρ,µ(z) =

∑∞
k=0

(γ)kzk

Γ(ρk+µ)k!
, is the generalized Mittag-Leffler function which is defined for

complex ρ, µ, γ (Re(ρ) > 0) [13, 4].

Definition 2.5. The new (right) Caputo fractional derivative of order 0 < α < 1 is defined by

( ABCDα
b f)(t) = −B(α)

1− α

∫ b

t
f ′(x)Eα[−α

(x− t)α

1− α
]dx,

Next, we prove the right version of (16) by making use of the Q−operator.

Proposition 2.3. The right new Riemann-Liouville fractional derivative and the new right Caputo
fractional derivative are related by the identity:

( ABC Dα
b f)(t) = ( ABRDα

b f)(t) −
B(α)

1− α
f(b)Eα(−

α

1 − α
(b− t)α) (19)

Proof. Apply the Q−operator to the identity (16) and make use of the dual facts Q( ABR
0Dαf)(t) =

( ABRDα
b Qf)(t) and Q( ABC

0Dαf)(t) = ( ABCDα
b Qf)(t), to obtain that

( ABC Dα
b Qf)(t) = ( ABRDα

b Qf)(t) −
B(α)

1− α
f(0)Eα(−

α

1− α
(b− t)α).

Now replace f(t) by (Qf)(t) = f(b− t) to conclude our claim.

Proposition 2.4. (Integration by parts for the Caputo fractional derivative ”( ABC
aDα), a = 0”)

•
∫ b
0
( ABC

aDαf)(t)g(t) =
∫ b
0
f(t)( ABRDα

b g)(t) +
B(α)
1−α

f(t) E
1

α,1, −α
1−α

,b−
g)(t)|b0.

•
∫ b
0
( ABCDα

b f)(t)g(t) =
∫ b
0
f(t)( ABR

0Dαg)(t) − B(α)
1−α

f(t) E
1

α,1, −α
1−α

,0+
g)(t)|b0.

Proof. The proof of the first part follows by Theorem 2.2 and (16) and the proof of the second
part follows by Theorem 2.2 and (19).
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3 Fractional Euler-Lagrange Equations

We prove the Euler-Lagrange equations for a Lagrangian containing the left new Caputo derivative.

Theorem 3.1. Let 0 < α ≤ 1 be non-integer, b ∈ R, 0 < b, Assume that the functional J :
C2[0, b] → R of the form

J(f) =

∫ b

0
L(t, f(t), ABC

0D
αf(t))dt

has a local extremum in S = {y ∈ C2[0, b] : y(0) = A, y(b) = B} at some f ∈ S, where L :
[0, b]× R× R → R. Then,

[L1(s) +
ABRDα

b L2(s)] = 0, for all s ∈ [0, b], (20)

where L1(s) =
∂L
∂f

(s) and L2(s) =
∂L

∂ ABC
0Dαf

(s).

Proof. Without loss of generality, assume that J has local maximum in S at f . Hence, there exists
an ǫ > 0 such that J(f̂) − J(f) ≤ 0 for all f̂ ∈ S with ‖f̂ − f‖ = supt∈Na∩ bN

|f̂(t) − f(t)| < ǫ. For

any f̂ ∈ S there is an η ∈ H = {y ∈ C2[0, b], y(0) = y(b) = 0} such that f̂ = f + ǫη. Then, the
ǫ−Taylor’s theorem implies that

L(t, f, f̂) = L(t, f+ǫη, ABC
0D

αf+ǫ ABC
0D

αη) = L(t, f, ABC
0D

αf)+ǫ[ηL1+
ABC

0D
αηL2]+O(ǫ2).

Then,

J(f̂)− J(f) =

∫ b

0
L(t, f̂(t), ABC

0D
αf̂(t)) −

∫ b

0
L(t, f(t), ABC

0D
αf(t))

= ǫ

∫ b

0
[η(t)L1(t) + ( ABC

0D
αη)(t)L2(t)] + O(ǫ2). (21)

Let the quantity δJ(η, y) =
∫ b
0
[η(t)L1(t) + ( ABC

0Dαη)(t)L2(t)]dt denote the first variation of J .

Evidently, if η ∈ H then −η ∈ H, and δJ(η, y) = −δJ(−η, y). For ǫ small, the sign of J(f̂)−J(f)
is determined by the sign of first variation, unless δJ(η, y) = 0 for all η ∈ H. To make the parameter
η free, we use the integration by part formula in Proposition 2.4, to reach

δJ(η, y) =

∫ b

0
η(s)[L1(s) +

ABRDα
b L2(s)] + η(t)

B(α)

1 − α
( E1

α,1, −α
1−α

,b−
L2)(t)|b0 = 0,

for all η ∈ H, and hence the result follows by the fundamental Lemma of calculus of variation.

The term ( E1

α,1, −α
1−α

,b−
L2)(t)|b0 = 0 above is called the natural boundary condition.

Similarly, if we allow the Lagrangian to depend on the right Caputo fractional derivative, we can
state:

Theorem 3.2. Let 0 < α ≤ 1 be non-integer, b ∈ R, 0 < b, Assume that the functional J :
C2[0, b] → R of the form

J(f) =

∫ b

0
L(t, f(t), ABCDα

b f(t))dt

has a local extremum in S = {y ∈ C2[0, b] : y(0) = A, y(b) = B} at some f ∈ S, where L :
[0, b]× R× R → R. Then,

[L1(s) +
ABR

0D
αL2(s)] = 0, for all s ∈ [0, b], (22)

where L1(s) =
∂L
∂f

(s) and L2(s) =
∂L

∂ ABCDα
b
f
(s).

Proof. The proof is similar to Theorem 3.1 by applying the second integration by parts in Proposition
2.4 to get the natural boundary condition of the form ( E1

α,1, −α
1−α

,0+
L2)(t)|b0 = 0.

Theorem 3.3. [13] Let ρ, µ, γ, ν, σ, λ ∈ C (Re(ρ), Re(µ), Re(ν) > 0), then
∫ x

0
(x− t)µ−1Eγ

ρ,µ(λ[x− t]ρ)tν−1Eσ
ρ,ν(λt

ρ)dt = xµ+ν−1Eγ+σ
ρ,µ+ν(λx

ρ). (23)

In particular, if γ = 1, µ = 1 and ρ = α, we have
∫ x

0
Eα(λ[x− t]α)tν−1Eσ

α,ν(λt
α)dt = xνE1+σ

α,1+ν(λx
α). (24)

6



From [4] we recall also the following differentiation formula that will be helpful
For α, µ, γ, λ ∈ C (Re(α > 0) and n ∈ N we have

(
d

dz
)n[zµ−1Eγ

α,µ(λz
α)] = zµ−n−1Eγ

α,µ−n(λz
α), (25)

Now, by the help of (24) and (25), we have

ABR
0D

α[xν−1Eσ
α,ν(λx

α)] =
B(α)

1− α

d

dx
[xνE1+σ

α,1+ν(λx
α)] =

B(α)

1− α
xν−1E1+σ

α,ν (λxα) (26)

Similarly, by the help of (25) and (24), we have

ABC
0D

α[xν−1Eσ
α,ν(λx

α)] =
B(α)

1− α

∫ x

0
xνEα(λ(x− t)α)

d

dt
[tν−1Eσ

α,ν(λx
α)]dt

=
B(α)

1− α
xν−1E1+σ

α,ν (λxα). (27)

Remark 3.1. An interesting observation of (26) and (27) is that the function

g(x) = lim
ν→0+

1− α

B(α)
xν−1E−1

α,ν(λx
α) (28)

=
αxα−1

B(α)Γ(α)
, (29)

is a nonzero function whose fractional ABR and ABC derivative is zero. This can be seen since
(−1)0 = 1, (−1)1 = −1 and (−1)k = 0 for k = 2, 3, 4, ... and since

E0
α,ν(λ, x) =

xν−1

Γ(ν)
→ 0, ν → 0+.

Note here that the function g(x) tends to the constant function 1 when α tends to 1.

Using the following relation (14) in [10]

( ABC
0D

αf)(t) = ( ABR
0D

αf)(t) − B(α)

1− α
f(0)Eα(λt

α), λ =
−α
1− α

, (30)

and the identity (see [4] page 78 for example)

( 0I
αtβ−1Eµ,β [λt

µ](x) = xα+β−1Eµ,α+β [λx
µ], (31)

where the ML−function with two parameters α and β is given by

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
, (z, β ∈ C; Re(α) > 0), (32)

where Eα,1(z) = Eα(z), we can state the following result which is very useful tool to solve fractional
dynamical systems within Caputo fractional derivative with ML kernals.

Proposition 3.4. For 0 < α < 1, we have

( AB
aI

α ABC
aD

αf)(x) = f(x)− f(a)Eα(λ(x − a)α) − α

1− α
f(a)xαEα,α+1(λ(x − a)α)

= f(x)− f(a). (33)

Similarly,

( ABIαb
ABCDα

b f)(x) = f(x) − f(b) (34)

Example 3.1. In order to exemplify our results we study an example of physical interest under
Theorem 3.1. Namely, let us consider the following fractional action,

J(y) =
∫ b
0
[ 1
2
( ABC

0Dαy(t))2 − V (y(t))], where 0 < α < 1 and with y(0), y(b) are assigned

or with the natural boundary condition ( E
1

α,1, −α
1−α

,b−
ABC

0Dαy(t))(t)|b0 = 0. Then, the Euler-

Lagrange equation by applying Theorem 3.1 is

( ABRDα
b o ABC

0D
αy)(s) − dV

dy
(s) = 0 for all s ∈ [0, b].

7



Here, we remark that it is of interest to deal with the above Euler- Lagrange equations obtained in
the above example, where we have composition of right and left type fractional derivatives. For such
a composition in the classical fractional case together with the action of the Q−operator we refer to
[15].

Finally, we solve the above fractional Euler-Lagrange equations for certain potential functions
with α = 1

2
, and B(α) = 1.

• We consider the free particle case V ≡ 0: The Euler-Lagrange equations will be reduced to
( ABRDα

b
ABC

0Dαy)(t) = 0. By applying ABIαb to both sides we reach at

( ABC
0D

αy)(t) = 0.

Then, by Remark 3.1 with B(α) = 1 for simplicity (otherwise B(α) → 1 as α → 1) , we
conclude that

y(t) = c1 +
αtα−1

B(α)Γ(α)
, (35)

and hence using y(0) = A, the solution becomes

y(t) = y(0) +
αtα−1

B(α)Γ(α)
, (36)

We remark here that as α→ 1, we get the classical case.

• Let V (y) = cy2/2. Then, the fractional Euler-Lagrange equations are become ( ABRDα
b

ABC
0Dαy)(t) =

cy(t). Then, applying ABIαb and AB
0Iα respectively together with use of (33), we reach at

the integral equation
y(t) = y(0) + c( AB

0I
α ABIαb y)(t). (37)

Notice that, when α tends to 1 we get the classical result.

4 Conclusions

The fractional derivatives introduced in [10] are of interest for real world problems since they contain
nonsingular Mittag-Leffler kernels. They, obey the calculations done by the Q−operator to introduce
the right fractional operators. We show that the Q−operator is an effective tool that helped in defin-
ing the right fractional integrals and derivatives and it helps to confirm some identities by using its
dual action. The obtained integration by parts formula, in case of the Caputo derivative in the sense
of Atangana-Baleanu, contains terms expressed by means of the integral operators studied in [13]
whose kernels are generalized Mittag-Leffler functions. The integration by parts formulas produced
the corresponding Euler-Lagrange equations under the existence of natural boundary conditions ex-
pressed by means of integral operators. The obtained formulas such as the integration by parts for
the Caputo derivatives in the left case with a = 0 and the variational fractional problem with lower
limit 0, all can be generalized by using the Laplace transform starting at a and then applying the
Q−operator in its general version (Qf)(t) = f(a+ b− t) where a can be different from 0. In order to
illustrate our results we provided an illustrative example. The results presented in this manuscript
can be used successfully for the fractional variational principles and their applications in Physics and
Engineering as well as for control theory.
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