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Abstract. This paper addresses the new general fractional derivatives (GFDs)
involving the kernels of the extended Mittag-Leffler type functions (MLFs). With the
aid of the GFDs in the MLF kernels, the mathematical models for the anomalous dif-
fusion of fractional order are analyzed and discussed. The proposed formulations are
also used to describe complex phenomena that occur in heat transfer.
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1. INTRODUCTION

Fractional derivatives (FDs) in the sense of the Liouville-Caputo and Riemann-
Liouville definitions [1-9] have played an important role in applied and engineering
sciences, such as in economy [10], mathematical biology [11], geosciences [12] and
physics [13-15]. The general fractional derivatives (GFDs) were considered in [16—
19] and other formulations in the Riemann-Liouville sense were proposed in [20, 21].
Recently, a fractional derivative in Caputo-Liouville sense involving the exponential
function was suggested in [22] and further discussed in [23-25]. Moreover, the gen-
eralized versions of the above FDs were proposed in [26]. They were successfully
adopted in the anomalous diffusion models in complex media [21, 25].

The Mittag-Leffler function (MLF) was first proposed by Swedish mathemati-
cian Gosta Mittag-Leffler in 1903 [27]. The extended MLFs were formulated later.
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For example, the two-parametric MLF was reported by Wiman in 1905 [28]. The
three-parametric MLF was considered by Prabhakar in 1971 [29]. The four-parametric
MLF was proposed more recently by the Shukla et al. [30], and Shivastava et
al. [31]. The multiple MLFs were presented in [32-34]. The Liouville-Caputo
and Riemann-Liouville FDs involving the normalized process were proposed with
a negative-parametric MLF kernel (in the MLF kernel there exist a constant from
the normalized process) in [24], and the variable-order FDs in the Liouville-Caputo
sense were further developed in [26]. The generalized versions of the GFDs in the
extended MLF kernels were reported in [27-38]. The extended MLFs were adopted
in the different areas of the mathematical physics and mechanics (see [35-38]).

Motivated by studies of physical phenomena with complex behaviors following
exponential laws (see, for example, [35]), this paper proposes the Liouville-Caputo
and Riemann-Liouville types GFDs in kernels of the extended MLFs and discusses
the anomalous diffusion models of fractional order.

The paper is organized as follows. Section 2 introduces the extended MLFs
and the concept of GFDs. Section 3 analyzes the anomalous diffusion models of
fractional order and their solutions. Finally, section 4 outlines the main conclusions.

2. GFDS IN THE KERNELS OF EXTENDED MLFS

In this section, we will present the extended MLFs and propose the general
fractional calculus (GFC) in the extended MLFs kernels.

2.1. EXTENDED MLFS

Suppose that C, R, R}, N, and Ny are the sets of complex numbers, real num-
bers, non-negative real numbers, positive integers, and Ny = {0} UN, respectively.
The MLF is defined by [27]:

N
E”(”)_;r(wm’ (1

where n,v € C, R(v) € R, k €N, and T'(+) is the Gamma function [3].
The extended two-parametrical MLF is defined by the expression [28]:

o0 7’]’4’
E, = _—, 2
w(m) HZ:;]F(I{V-}-U) @
where 1,v,v € C, R(v),R(v) € RT, and k € N,
The extended three-parametrical MLF is given by [29]:

o (9), n*
EV7U(77)_I;]F(HV+U)F(K+1)’ (3)
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where 1,v,v,0 € C, R(v),R(v),R () € RS, k € N, and the Pochhammer symbol
is [2]:

1, k=0, 4
(‘10)5 = F(gcz—l—)n) cN. 4)
The extended four-parametrical MLF is given as follows [31]:

o

) . (So)nqb n
A0 _I;)F(/-w—i—v) I'(k+1)’

K

&)

where 7,v,v,¢,¢ € C, R(v) > max{0,R(¢) —1},R(¢) € R, k € N, with a spe-
cial version that follows the conditions [30]:

¢=m(m e (0,1)UN) and min{R (v),R(¢)} > 0. (6)
An extended MLF is given by [32]:

K

n
ZH] ) nuj—i—vj)f‘(/i—i—l)’ )

E%(b((ul,vl) l/n,Un

where 1,v;,v;,¢,6 € C, j,k € N, R (1), R (v;),R(¢) € R],

and ) R(vj) > max{0,R(¢) —1}. The special cases for expression (7) are when
j=1

[33]

¢=m(m € (0,1)UN) and > R (v;) >max{0,m—1}, (8)
j=1
and when [34]
p=1and ¢ =1. ©)]

The Laplace transforms of the extended MLFs are given as follows [33, 38]:
(TD)

L[Eu(en”)]zizll'z[ o), } (10)
1)

LiB )] = 12w | DED 5 (i
(13

L) =g Ol # o w
(T4)

] b (000 <] w
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(T5)
1 1 ;
(14)

where ¢ is a constant, the generalized Wright function ¥, (ww,w € Ny) is denoted
as [33]:

(1,X1) o0y (T, X o) 5 & M Dk +X;) Tk +X;)
v =>
FEL YY) e (U Ya); ] T T T ) T 50 (15)

X F(Z-i-l)’
m m m m
(X R(X5) >0, > R(Y;)>0;1+ | > R(Y;)— > R(X;) | >0) and the Laplace
j=1 j=1 j=1 j=1
transform is denoted by [33]:
LI )= [ 15 (n) (16)
0

2.2. GFDS IN THE EXTENDED MLFS KERNELS

Here we address the GFDs in the extended MLFs types kernels.

The GFDs of the Liouville-Caputo and Riemann-Liouville types are defined
by:

(D(CO)Q> (7):/;0(7 QW ) dt (1> a), a17)
(0fre) (T):C;i/;o(r—t)fl(t)dt (r>a), (18)

respectively, where a € [—00,400), dQ(7) /dr = QW (¢), Q) ¢ Lloe (Ry). and
o(7) is the kernel function.
We obtain the relationship between Eqs. (17) and (18) as follows:

(Dg)sz) (r)= (D%Q) (1) —o(1)Q(a). (19)

For a = 0, the GFDs of the Liouville-Caputo and Riemann-Liouville types in differ-
ent kernel functions are discussed in [18, 19].

We now consider the extended MLFs as the kernel functions in Egs. (17) and
(18).

Employing the Saxena-Nishimoto type MLF, given as:

o(17)=Epg((V1,v1) s (Unyvn) 7)), (20)
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the GFDs of the Liouville-Caputo and Riemann-Liouville types are defined as:

(%,.pv2) (T)=/T s (11,01) ooy (v 00) 5 (1= £)) QD (1) dt (7> a),

2D
y d [T v
(& py0) (T)=dT/a B (41,01) 00 (v, 00) (7 = £)) Q (1)t (7 > a),
(22)
respectively, where
€ (0,1),a € [0,+00), and QW € LY (RY). (23)

From Eq. (20) we have
(gWDg’)Q) (r)= (gjquf)g) (7) = By (11,01) s oony (s 00) s 7)) Q(a) . (24)

The GFDs of the Liouville-Caputo and Riemann-Liouville types in the negative-
parametric Saxena-Nishimoto type MLF are defined as:

(%W( (V)Q /Ewb V1, 01) ooy (Uny Un) 5 — (7= 8)) QW (#) dt (7> a),
(25)
(g£,¢(—) (V) /E<P¢ 1/1,1)1 (Vnyvn);_(T—t)V)Q(t)dt (7’>CL)7
(26)

respectively, where
€ (0,1),a € [0,+00), and QW € LY (RY). (27)
From Eq. (20) we obtain

(5,..0DWQ) (1)=(EE \DBIQ) (7) = Epg (v1,01) .o (v, 00) i =7") 1 a).
(28)
Remark 1. We now give the special cases of Egs. (21) and (22) as follows:
(M1) The GFDs of the Liouville-Caputo and Riemann-Liouville types in the kernel
of the Shukla-Prajapati-Srivastava-Tomovski type MLF (5) are defined as:

(C D(”)Q /E O QW @) dt (7> a), (29)
(5p0) (=1 [ B2 (r-0)0@dt (r>0), GO

respectively, where

(E%Dé”m) (r)= (§£,¢D5V>Q) (1) — E£2 ()9 (a). 31)

v,v
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The GFDs of the Liouville-Caputo and Riemann-Liouville types in the kernel of the
negative-parametric Shukla-Prajapati-Srivastava-Tomovski type MLF (5) are defined
as:

(S D0 )= [ Bzt (-0 e (r>), ()

(ﬁg,f(,)D(”)Q) ()= dT/a ESY (—(r—t)")Qt)dt (r>a),  (33)

respectively, where

(Fee D'2) 0= (G P9) (- BE )00 G4
(M2) The GFDs of the Liouville-Caputo and Riemann-Liouville types in the kernel
of the Prabhakar type MLF (3) are defined as:

(52, D2) / B ((r =) QW (t)dt (7 > a), (35)

(25 ) / EY, H)YQE)dt (7> a), (36)
respectively, where

(5¢,09) (0= (g DY) (1) - BL, () 2(0). (37)

The GFDs of the Liouville-Caputo and Riemann-Liouville types in the kernel of the
negative-parametric Prabhakar type MLF (3) are defined as:

(gfv(f)Dé”)Q) (1)= / Ef, (- (r—t)) QW (t)dt (r > a), (38)
d [T ,
(5 p00) ()= [ Efu(--M0@d r>a), 69
respectively, where
(%, ,DVQ) ()= (B DWIQ) (1)~ B, (-7)0(a).  (40)

(M3) The GFDs of the Liouville-Caputo and Riemann-Liouville types in the kernel
of the Wiman type MLF (2) are defined as:

(4,.000) ( /Ew )W () dt (7> a), (1)

v,V

(£, Dy /Ew T—0)")Qt)dt (7> a), (42)

respectively, where

(%V UD(V)Q> ()= (guL,u szu)ﬂ) (1) —Ey (17)Q(a). (43)
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The GFDs of the Liouville-Caputo and Riemann-Liouville types in the kernel of the
negative-parametric Wiman type MLF (2) are defined as:

(%M ”)Q / E,o(—(r=t)QW (@)dt (1>a), (44
v d 7 v
(B 002) =1 [ Bul- (=092 >0), @)
respectively, where
(%V,U(_)DELV)Q> (r)= (gfm(_)Dg})Q> (1) = Euu(=7")0(a). (46)

(M4) The GFDs of the Liouville-Caputo and Riemann-Liouville types in the kernel
of the MLF (1) are defined as:

( D(”)Q /E =))W () dt (r > a), @7)

(RLD(”)Q /E T—)Q)dt (t> a), 48)
respectively, where
(5.09) (1)=(EDYQ) () - B, () 2(0). (49)

(M5) The GFDs of the Liouville-Caputo and Riemann-Liouville types in the kernel
of the stretched exponential function are defined by:

(EnD2) (0= [ can (-0 0D Wt (r>a), 50
d T
(f.000) (V=1 [ eon, (r-t)00dt (r>a), G
respectively, where
(S, DQ) ()= (BL, DYIQ) (7) = eap, () (a), (52)

and the stretched exponential function (called the exponential type function) is [19]

e}
RV
T

expy, (T7) = Z m 53)

k=0
The GFDs of the Liouville-Caputo and Riemann-Liouville types in the kernel of the
negative-parametric stretched exponential function are defined by:

(Sep D0 ()= / Ceop (- (=) W dt (r>a), (54

a
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d T
(5, PYR) ()= [ eon(==t)Q0d (r>a). 69

respectively, where

(gcpu(_)D((;’)Q> (r)= (i’;y(_)Dg”)Q) (1) —exp, (—7")Q(a). (56)

(M6) The GFDs of the Liouville-Caputo and Riemann-Liouville types in the kernel
of the exponential function are defined as:

(G,D0e) ()= / “eap(r— 1) ()t (> a), (57)
(FLp®9) (=1 [ eap(r -0 @)t (7 >a), (58)

respectively, where

(S,D02) (1= (EEDDQ) (7) — exp(r) 2 (a), (59)

and the exponential function is given by [16, 17]:

[e.e] K

exp (1) = Z ﬁ (60)

~k=0

Similarly, the corresponding general fractional integral is defined as:
T
(crld'2) (=07~ [ (7=t 200t (7> 0). (61)
0

LetteRS,ve(0,1),Z€L (Rar) and Q) ¢ Liee (]RSF). The Abel type integral
equation of the second kind

(1)— /OT (T—t)E(t)dt =Q (1), (62)

[1]

has a unique solution
(t) = / exp (r—1) QW () dt — exp (1) Q(0), (63)
0

where Q (7 = 0) = Q(0).
The GFDs of the Liouville-Caputo and Riemann-Liouville types in the kernel
of the negative-parametric exponential function are defined as:

(G P0) )= [ ean(- (- it (), 4

(1]

(B p00) (=g [ con(-r-tR@de r>a). 69
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respectively, where
(%o D0) (1)=(FL_DOQ) (7) — eap(-7)Q(a).  (66)

Similarly, the corresponding general fractional integral is defined as:
(car)1672) (1) =02(7) + / (r—8)Q(t)dt (r>0). (67)
0

Let T € RY, v € (0,1), Z€ L(RY), and Q) € Ll¢ (R}). The Abel type integral
equation of the second kind

() + /OT (T—t)2(t)dt = (1), (68)

[1]

has a unique solution
(0= [ eap (= (7= )00 (0 dt —eap (-1)2(0), (©)
0

where Q (7 =0) = Q(0).

Remark 2. According to the ideas discussed in [16], the general fractional
integral, that has the relationship with Eqs. (47) and (48), is extended and defined by
the expression:

T _ -1
(n100) (T)=/ (5(7—15)—%)9@)@ (r>a),  (70)

which reduces, by using a = 0, to an equation of the form

(E,,I((]V)Q> (1)=02(7) — F(ly) /OT ; i)ii)l_y dt (r>0), (71)

iffacomod, o

where ¢ (-) represents the Dirac delta function [3].
Thus, we have two cases:
(R1) Let QM) € Ll (Ry). Then

(1]

since

(%.00"51070) (1) =), (73)
holds true, where
(%VDS”)Q) (r)= /0 "B, ((r—t")0 (1) dt (> 0). (74)
(R2) Let Q € Ly (R). Then, we have
(RO 5,172) (1) = 2(r), (75)
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where
(Rng”)Q) (ﬂ:% /O B (r— ) Q) dt (> 0). (76)

Note: Compared with the results in [24], we do not need any normalized pro-
cess in Egs. (47) and (48), and we directly select the MLF as the kernel function.
Moreover, it is convenient to model complex phenomena in sciences and engineer-
ing practices with the use of GFDs in the kernel of the parameter without MLF. The
Eqgs. (49) and (71) are different from those derived in [24, 26]. FD of variable-order
version of Eq. (47) in kernel of the negative-parametric MLF was proposed in [26].

As a direct result mentioned above, we have the following.

Let 7 € RY, v € (0,1), = € L(R{), and Q) € L (RY). The Abel type
integral equation of the second kind [38]

=(r) — 1 TOE( _Q(r
=(7) F(V)/O (T—t)lfl’dt Q(7), (77)
has a unique solution
=)= [ B(r—0) 9 0di~ B, () 92.0). 8)
where Q (7 =0) =Q(0).

Proof. Taking the Laplace transforms of Egs. (77) and (78), we have from Eq.
(72) that

L] =LIECI-L |55 [ o] ~LECI (1-5) 0
and
LIE@W)] = 5—Le@). (30)

In fact, after rewriting Eq. (80), we get Eq. (79).
This completes the proof.
Mainardi considered Eq. (78) as [38]

[1]

(t)= /OT E,(t")QW (r —t)dt — E, (r*)Q(0). (81)

Hille and Tamarkin presented Eq. (78) as follows (see [10] and references therein):

()= /0 "B, ((r— ") Q) d. (82)

Remark 3. For details of the version of Eq. (57) with the parameter in kernel of
the stretched exponential function, the readers should refer to [25, 26]. The version
of Eq. (57) with the parameter in kernel of the stretched exponential function of

(1]
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variable order was reported in [26]. The revised version of Eq. (58) was also derived
in [26].

Remark 4. The GFDs of the Liouville-Caputo and Riemann-Liouville types of
higher order in the kernel of the MLF (1) are given as:

<gy (1)) / E,((r—=t)")Qr ) ) dt (r>0), (83)
i dn+1
(BDy ™) ()= / E (r—t))Q(t)dt (1>0), (84

respectively, where v € (0,1) and n € Np.

Remark 5. For the details of fractional calculus involving extended MLFs, the
readers can refer to [1-3, 24, 31-38].

Remark 6. For the kernel o(7) = 7177 /T'(1 —v), we can follow FDs of the
Liouville-Caputo and Riemann-Liouville types, given by [1, 18, 19]:

en®) Y AR IS0
( D! Q)( )= F(l—y)/o (T_t)Hdt (r>0), (85)
v 1 d [T Qft
respectively, where [1]
1770 (a)

(C D(fg(z) (r)= (RLD(ng) =Ty 87)

In fact, we can extend the GFDs of the Liouville-Caputo and Riemann-Liouville
types in the kernel of the MLF (1), defined as:

(%P8 2) ()= / B, (~(r-01)QW @)dt (r>0),  (88)
0

(Bropde) (=1 / E,(~(r=0)")Q)dt (r>0), (89
respectively, where

(5,-)D8"92) (1= (£)Dy"2) (1) = B, (~7)2(0). (90)
Similarly, the corresponding general fractional integral is defined as:

) _ (S AR 110
(E,,(—)Io Q) (17)=02(7) + 0 /O - _t)l_ydt (1>0). 91)

Let T € Rf, v € (0,1), E€ L(R{), and Q1) € L{* (R]). The Abel type integral
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equation of the second kind [38]

=(r)+ 1)/07( =0 _g-q(), ©92)

has a unique solution

[1]

(1) = /O By (= (r—1)") Q0 (8)dt — E,, (=) Q(0), (93)
0).

where Q (7 =0) = Q(
Proof. In a similar manner, for obtaining the Laplace transforms of Eqgs. (77)
and (78), we have from Eq. (72) that

L[Q(T)]:L[E(T)]—kL[F(ly) /OT( E(?l_ydt] —L[E(r)] <1+51V> (94)

T—1

and

= L) (95)

We get Eq. (95) after arranging Eq. (94).

Therefore, the proof is completed.

The Laplace transforms of the GFDs in the kernels of extended MLFs are as
follows:

L[(5 0F0) 0] <t [, DO |

v1,01) o (Unyn) (0,0) ;7 (96)
x(2(s) - 22),

L ng@(—)Déy)Q) m} =2¥n [ (Vl,vl()y.i-l()v(j;fi));(OW); 5w ] (97)
X (Q (s)— @) )

[ L A I el | CICRE ) N
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LK%&U(—)DSV)Q)(ﬂ]:z%[ I _;](g(s)_ﬂ@)

—~

L K% ( )Dé )Q> (T)] =2Vy [ EZ:BE%:B: -+ } (Q(S)—E(D), (105)
L[ (8 ,D{7Q) ()] =% [ (V ! fff"()ymvn) 0.0 F |06

(106)

[(gf@(—) éV)Q) (T)} =2Wnt1 [ (V 1U1(;Z) (p()yn vp) (0,) —w Q)
(107)
L [(g{: ¢D8")Q> (T)] =2\112[ E,’ji))({gg 1 }Q(s) (108)
L(5 pfe) ] =w| D69 3 Joe, o)
(o) o] =ams[ (UGS * Jee.  ao
L Kgy"jv( )Dé )Q> (7')] =Wy [ EZ:;}))((B”Z)): —s% ]Q(s), (111)
L|(B.p6"9) ()] —2\112[ EZ}}))((E?) L }Q(s) (112)
L[(8,pie) ()] =2\I/2[ (Zi))(((l)ll)) -1 }Q(s), (113)
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L [(RVLD(()V)Q> (T)} —2\1/2[ EZ’B%B L ]Q(s), (114)
L [(gf(_)D(()V)Q) (T)} =2\I/2[ EZB%’R’ -+ ]Q(s). (115)

3. ON ANOMALOUS DIFFUSION MODELS OF FRACTIONAL ORDER

In this section, we consider two examples for illustrating the general Liouville-
Caputo and Riemann-Liouville types of fractional-time derivative anomalous diffu-
sion equations.

Example 1
The general Liouville-Caputo type fractional-time derivative anomalous diffusion
equation within the Saxena-Nishimoto-type MLF can be written as:

"Xy (n,7) o aQXV (n,7)

= 116
aTV 87]2 777>077'>07 ( )
with the initial and boundary conditions:
Xy (7,0) =0, n>0, (117)
X, (0,7)=46(7),7>0, (118)
Xy (n,0) = 0, asn — o0, 7> 0, (119)

where k is the thermal diffusivity, ¢ (7) is the Dirac function [3], and the general
Liouville-Caputo fractional-time derivative is defined as:

"X, (n,1) T L0
(37'”:/0 EQO,Qﬁ((VlaUl)ww(VmUn);_(T_t) )axy(n,t)dt. (120)
Applying the Laplace transform of Eq. (116), it follows that
(1,1) (¢, 0); ) 9?X, (n, )
v, —= | X, (n,8) = h———"—, (121
’ “[ (1,00) o (vmon) (0,); o | Kvims) =r——g =, (121)

X, (0,s) =1. (122)
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Thus, we obtain

(v, 1) (¢, 9); 1
ﬂnH[ (v1,01) - (¥, 0n) (0,0) ki

Xy (n,s) =exp | —n p

(123)
We can rewrite Eq. (123) as the series:
2 Uit (Va 1) (¢7 90) ) 1
; (v1,01) . (n,00) (0,0)5
n "
[e.9] o0
Xzz(nas):le/,i(nas):z F(Z+1>
=0 =0
(124)
where ¢ € Nj.
From Eq. (124) we get the equations of the series form:
Xy0(n,s)=1, (125)
1
Q\Ijn—&-l |: (I/,l) (QS,(P), 1 :
(v1,01) . (Vn,0n) (0,0)5 %
Xy (n,8) = =1 — (126)
) 2\1/ 41 |: (U,l)(¢,g0)7 1 :| 2
X ( S)_ (_77)1 " (Vlavl)"‘(VTHU’n) (O,QO), 8" (127)
vi\h S =P (1 44) K
and so on.
Therefore, we obtain the following solutions in the series form:
Xy0(n,7)=1, (128)
(129)

Xy (n,7) =101 (1),
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R
XV,Z (7777') - F(l +Z)®% (T)’ (130)
where
2\I’n+1 [ (V’ 1) (¢7¢); _% i
L [@% (7')] = (’/1’“1)~--(7:L,Un)(0’¢); | "
Example 2

The general Riemann-Liouville type fractional-time derivative anomalous diffusion
equation within the Saxena-Nishimoto-type MLF can be presented as:

8V)<l/ (777 T) — I{82XV (77’ T)
orv On?

with the initial and boundary conditions:

,n>0,7>0, (132)

[/ B (71,01) s o (s 00)s (= )Xo (0 8) ] [ =0, >0, (133)
0
X, (0,7)=m (1), 7 >0, (134)

X, (n,0) = 0, for n — oo, T >0, (135)

where « is the thermal diffusivity, and the general Riemann-Liouville type fractional-
time derivative operator is defined as:
0"X, (n, 7 o (7
Xy (n,7) = / Epo((v1,01) .0 (Un,vn)s— (1 —1)") Xy (9, t) dt.  (136)
87’” 81; 0

Taking the Laplace transform of Eq. (132), we obtain the following equations of the
form:

(v,1) (¢, 0); 1 _ Xy (n,s)
I R AT LR
which leads to
" v1,01) ... (U, 0p) (0,0) s 07X, (n,s)
. Xy (ns) = =5 = (3)

Due to Eq. (134), we have
X, (0,8) =m(s) (139)
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such that

N

(1/,1) (¢790)7 1
2¥nt1 [ (v1,01) oo. (Un,y0p) (0,90); s¥

K

Xy (n,8) =m(s)exp | —n

(140)
In a similar way, we rewrite Eq. (140) as the series solution:
o0
X, (n,8) =Y Xui(n,5), (141)
i=0
where
o[ D ©.0); A
i (V17U1)~--<Vnavn) (0790); s¥
n K
oo o0
D Xuilns)=m(s)) :
i=0 i=0 P(i+1)
Thus, from Eq. (141) we get the expressions of the series form:
XI/,O (77¢ S) =7 (S) ) (142)
1
2111 +1|: (V71)(¢180)a 1 2
n v
(Vl,Ul)..-(V U )(0790)7 5
Xy1(n,s)=—m(s)n : o , (143)
. Q\IJ 11 (V>1) (¢a90), _ 1 2
Xy.i(n,s) = (s) ’ " (v1,v1) o (Unyvn) (0,0) 5 s
vl S =TT (1 44) K
(144)

and so on.
Thus, we have the following solutions in the series form

XV,U (naT) =7 (7—) ) (145)
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Xy (n,1)= —77/T7r(7'—t)@1 (t)dt, (146)
0 2
, G N
Xyi(n,7)= 7I’(1+i) ; (T t)@% (t)dt, (147)

such that

o .
(=) / T

X = — —t)0. (t)dt. 148

Snn) =M+ gy ) TD8; 0 (148)

Since the kernel functions are generalized as the other MLFs, the results are im-

portant for discussing the anomalous diffusion models within GFDs in kernels of

extended MLFs.

4. CONCLUSION

In this work, we formulated the GFDs within the kernels of the extended MLFs
from the GFC point of view. The Laplace transforms of the GFDs were proposed
and the anomalous diffusion models were considered. The reported results represent
new mathematical tools to describe the power-law behaviors of a series of complex
physical phenomena.
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