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Highlights

• A theorem of asymptotical stability is proposed for discrete fractional systems.

• Implicit numerical formulae are derived and numerical solutions are obtained by use of Newton’s

method.

• Asymptotical behavior is illustrated according to the stability condition.
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Abstract

This study investigates stability of Caputo delta fractional difference equations. Solutions’

monotonicity and asymptotic stability of a linear fractional difference equation are discussed. A

stability theorem for a discrete fractional Lyapunov direct method is proved. Furthermore, an

inequality is extended from the continuous case and a sufficient condition is given. Some linear,

nonlinear and time varying examples are illustrated and the results show wide prospects of the

stability theorems in fractional control systems of discrete time.

Keywords: Fractional difference equations; Monotonicity; Asymptotic stability; Caputo–like

delta difference

1 Introduction

Fractional calculus is playing a crucial role in modern control areas. Stability theory of fractional

differential equations is frequently used in fractional controllers. But due to the memory effects of

fractional operators, it’s not an easy task to directly extend the normal Lyapunov stability results to

fractional cases since the Leibniz law becomes complicated and cannot hold generally.

Matignon [1] in his seminal work gave an explicit stability condition for a linear fractional equation.

He derived a stability condition which depends on the order of a fractional derivative. Chen, Li et al. [2]

proposed a fractional Lyapunov direct method. The authors defined and discussed Mittag–Leffler sta-

bility of fractional dynamical systems. Aguila–Camacho et al. [3] gave a useful inequality for sufficient

conditions of Lyapunov stability without using the complicated Leibniz law. The methodology shows

a broad prospect in fractional calculus and some recent applications are given in [4–10].

Fractional difference equations have been paid much attention recently, for example, initial value

problem [11], boundary value problem [12–15], discrete fractional calculus of variation [16] and Laplace

∗Email: dumitru@cankaya.edu.tr (D. Baleanu)
†Corresponding author, email: wuguocheng@gmail.com (G.C. Wu)
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transform [17]. Some results of stability and other applications have been provided in [18–32]. In this

paper, we use the idea [3] and give a direct method to analyze stability of the following discrete

fractional systems
C
h ∆ν

ax(t) = f(t+ νh, x(t+ νh)), 0 < ν ≤ 1, (1)

where C
h ∆ν

ax(t) denotes the Caputo–like delta fractional h–difference of x(t) on sets of discrete time

(hN)a+(1−ν)h = {a+ (1− ν)h, a+ (2− ν)h, ...}.

2 Preliminaries

The following definitions for the discrete fractional calculus are introduced.

Definition 2.1. (Fractional sum [11, 33]) Let x : (hN)a → R and 0 < ν be given. a is a starting

point. The ν–th order h–sum is given by

h∆−νa x(t) :=
h

Γ(ν)

t
h−ν∑

s= a
h

(t− σ(sh))
(ν−1)
h x(sh), σ(sh) = (s+ 1)h, a ∈ R, t ∈ (hN)a+νh (2)

where the h–falling factorial function is defined as

t
(ν)
h = hν

Γ( th + 1)

Γ( th + 1− ν)
, t, ν ∈ R. (3)

Definition 2.2. (Caputo delta difference [34–36]) For x(t) defined on (hN)a and 0 < α,α /∈ N, the

Caputo–like difference is defined by

C
h ∆α

ax(t) := ∆−(m−α)
a ∆mx(t), t ∈ (hN)a+(m−α)h, (4)

where ∆x(t) = x(t+h)−x(t)
h and m = [α] + 1.

If the fractional order α is a positive integer m, then we have the following definition

C
h ∆α

ax(t) := ∆mx(t), t ∈ (hN)a.

Property 2.3. The following properties are useful in this paper:

Fractional Caputo difference of a constant x [35]

C
h ∆ν

ax(t) = 0, 0 < ν ≤ 1; (5)

Delta difference of the h–falling factorial function [36]

∆s(t− sh)
(ν)
h = −ν(t− σ(sh))

(ν−1)
h ; (6)

Discrete Leibniz integral law [35, 36]

h∆−νa+(1−ν)h
C
h ∆

ν

ax(t) = x(t)− x(a), 0 < ν ≤ 1, t ∈ (hN)a+h; (7)

Summation by parts

t
h+ν−1∑

s= a
h

g(sh+ h)∆f(sh) = −
t
h+ν−1∑

s= a
h

f(sh)∆g(sh) +
1

h
(f(sh)g(sh)) |

t
h+ν

s= a
h
, t ∈ (hN)a+(1−ν)h. (8)
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For the following fractional difference equation

C
h ∆ν

ax(t) = f(t+ (ν − 1)h, x(t+ (ν − 1)h)), t ∈ (hN)a+(1−ν)h, (9)

some results have been obtained, for example, the definition of the Lyapunov stability in [37], existence

and asymptotic results in [21, 22], asymptotic stability of discrete time varying systems [23] and

applications of stability results [26]. Eq. (1) is a new fractional difference equation which is distinct

from (9). See the numerical examples in Section 3. It’s evident that Eq. (1) is an implicit relationship

with respect to x(n+ 1). To the best of our knowledge, few work has been done. In this section, we

give some basics and stability results of the discrete fractional equations.

Definition 2.4. Let x = 0 be an equilibrium point of Eq. (1) and t0 = a is the initial time. The

equilibrium point is said to be stable if for all ε > 0 there exits a δ = δ(t0, ε) > 0 such that if

‖x(t0)‖ < δ then ‖x(t)‖ < ε, ∀t > t0, t ∈ (hN)t0 .

Remark 2.5. In this paper, we state that all the results are considered when the equilibrium point is

x = 0. If the equilibrium point is x∗ 6= 0, we can use a change of variable y = x− x∗ and derive the

Caputo difference of y as

C
h ∆ν

ay = C
h ∆ν

a(x− x∗) = f(t,x) = f(t,y + x∗) = m(t,y), 0 < ν ≤ 1, (10)

and we can see m(t, 0) = f(t,x∗) = 0. The newly obtained system (10) has the equilibrium point

y = 0. As a result, we only need to consider the case of the equilibrium point x = 0 in the original

system.

Definition 2.6. An equilibrium point is asymptotically stable if there exits a δ = δ(t0) > 0 such that

‖x(t0)‖ < δ implies lim
t→∞

x(t) = 0, t ∈ (hN)t0 .

Existence results of Riemann–Liouville (R–L) fractional difference equations were given in [22] by

use of fixed point theorems. Considering the relationship between the R–L difference and the Caputo

difference, we do not give the proof here. Readers are suggested to consult [21,22] and the references

therein. We can say, the following linear fractional difference equation

C
h ∆ν

au(t) = λu(t+ νh), u(a) = ua, 0 < ν ≤ 1, t ∈ (hN)a+(1−ν)h (11)

has a unique solution.

Lemma 2.7. If u(t) is a solution of Eq. (11) and λ < 0, then ∆u(t) < 0 for all t ∈ (hN)a.

Proof. Arguing by the contradiction, we assume that there exists a first point t1 such that ∆u(t) ≥ 0

in the set [t1, t2]
⋂

(hN)a+h, where t1, t2 ∈ (hN)a and ∆u(t) < 0 in the set [a, t1]
⋂

(hN)a+h.

4



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Let t∗2 = t2 − νh and t∗1 = t1 − νh. We can calculate that

C
h ∆ν

au(t∗2)− C
h ∆ν

au(t∗1)

=
h

Γ(1− ν)

t∗2
h +ν−1∑

s= a
h

(t∗2 − σ(sh))
(−ν)
h ∆su(sh)− h

Γ(1− ν)

t∗1
h +ν−1∑

s= a
h

(t∗1 − σ(sh))
(−ν)
h ∆su(sh)

=
h

Γ(1− ν)

t∗1
h +ν−1∑

s= a
h

((t∗2 − σ(sh))
(−ν)
h − (t∗1 − σ(sh))

(−ν)
h )∆su(sh)

+
h

Γ(1− ν)

t∗2
h +ν−1∑

s=
t∗1
h +ν

(t∗2 − σ(sh))
(−ν)
h ∆su(sh).

(12)

Since (t∗2 − σ(sh))
(−ν)
h > 0 and (t∗2 − σ(sh))

(−ν)
h − (t∗1 − σ(sh))

(−ν)
h < 0, we can derive that

C
h ∆ν

au(t∗2)− C
h ∆ν

au(t∗1) ≥ 0.

On the other hand, due to λ < 0 and u(t1) < u(t2), we have

C
h ∆ν

au(t∗2)− C
h ∆ν

au(t∗1) = λ(u(t∗2 + νh)− u(t∗1 + νh)) = λ(u(t2)− u(t1)) < 0,

which results a contradiction and we conclude that the lemma holds.

Lemma 2.8. If λ < 0 and u(a) > 0, the solution u(t) of Eq. (11) holds that u(t) > 0 for all t ∈ (hN)a.

Proof. From Lemma 2.7, we can see that ∆u(t) < 0 leads to

C
h ∆ν

au(t) < 0, 0 < ν ≤ 1, ∀t ∈ (hN)a+(1−ν)h.

As a result, u(t) of the r.h.s of (11) should be positive when λ < 0.

Lemma 2.9. If λ < 0 and u(a) > 0, the solution u(t) of Eq. (11) has the limit as

lim
t→∞

u(t) = 0, t ∈ (hN)a.

Proof. From Lemma 2.7 and Lemma 2.8, we can see the limit exists. Arguing by the contradiction,

we assume limt→∞ u(t) = c > 0 for t ∈ (hN)a.

Taking the fractional sum to both sides of (11), we have

u(t)− u(a) =
λh

Γ(ν)

t
h−ν∑

s= a
h+1−ν

(t− σ(sh))
(ν−1)
h u(sh+ νh), t ∈ (hN)a+h (13)

Considering each u(sh+ νh) ≥ u(t) > 0, s = a
h + 1− ν, ..., th − ν and λ < 0, we get

u(t)− u(a) ≤ u(t)
λh

Γ(ν)

t
h−ν∑

s= a
h+1−ν

(t− σ(sh))
(ν−1)
h = λ

u(t)(t+ (ν − 1)h− a)
(ν)
h

Γ(1 + ν)
, t ∈ (hN)a+h. (14)
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Let t tend to infinity. The l.h.s. of Eq. (14) becomes

lim
t→∞

(u(t)− u(a)) = c− u(a) < 0, (15)

while the r.h.s. results

lim
t→∞

u(t)
λ(t+ (ν − 1)h− a)

(ν)
h

Γ(1 + ν)
= −∞. (16)

This yields a contradiction and we conclude that limt→∞ u(t) = 0.

Lemma 2.10. Let u(t) and g(t) satisfy

C
h ∆ν

au(t) = λu(t+ νh), 0 < ν ≤ 1 (17)

and the inequality
C
h ∆ν

ag(t) ≤ λg(t+ νh), (18)

respectively. If λ < 0 and g(a) = u(a), then g(t) ≤ u(t) for all t ∈ (hN)a.

Proof. Using the discrete Leibniz integral law (7), we can equivalently derive that

u(t) = u(a) +
λhν

Γ(ν)

t
h−ν∑

s= a
h+1−ν

Γ( th − s)
Γ( th − s+ ν + 1)

u(sh), t ∈ (hN)a+h (19)

and

g(t) ≤ g(a) +
λhν

Γ(ν)

t
h−ν∑

s= a
h+1−ν

Γ( th − s)
Γ( th − s+ ν + 1)

g(sh), t ∈ (hN)a+h. (20)

Let t = a + nh, 1 ≤ n and u(a + n) = u(a + nh) for simplicity in the rest of the paper. We have

numerical formulae of the equations as

u(a+ n) = u(a) +
λhν

Γ(ν)

n−1∑

j=0

Γ(n− 1− j + ν)

Γ(n− j) u(a+ j + 1) (21)

and

g(a+ n) ≤ g(a) +
λhν

Γ(ν)

n−1∑

j=0

Γ(n− 1− j + ν)

Γ(n− j) g(a+ j + 1), (22)

respectively.

Since both sides appear u(a+ n) and g(a+ n), we solve Eq. (21) and (22) to obtain

u(a+ n) =
u(a)

1− λhν +
λhν

1− λhν
1

Γ(ν)

n−2∑

j=0

Γ(n− 1− j + ν)

Γ(n− j) u(a+ j + 1),

and

g(a+ n) ≤ g(a)

1− λhν +
λhν

1− λhν
1

Γ(ν)

n−2∑

j=0

Γ(n− 1− j + ν)

Γ(n− j) g(a+ j + 1).

(23)
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Let n = 1 in (23). We can obtain u(a+ 1) and g(a+ 1) as

u(a+ 1) =
u(a)

1− λhν , g(a+ 1) ≤ g(a)

1− λhν (24)

which lead to g(a+ 1) ≤ u(a+ 1) due to the fact g(a) = u(a).

We assume for n = k, the inequality holds g(a + k) ≤ u(a + k), 1 < k. For n = k + 1, from Eq.

(23), we have

u(a+ k + 1) =
u(a)

1− λhν +
λhν

1− λhν
1

Γ(ν)

k−1∑

j=0

Γ(k − j + ν)

Γ(k + 1− j)u(a+ j + 1),

and

g(a+ k + 1) ≤ g(a)

1− λhν +
λhν

1− λhν
1

Γ(ν)

k−1∑

j=0

Γ(k − j + ν)

Γ(k + 1− j) g(a+ j + 1).

(25)

We compare each term of the r.h.s. of (25). Since g(a) = u(a), g(a + 1) ≤ u(a + 1), ..., g(a + k) ≤
u(a+ k), we get g(a+ k + 1) ≤ u(a+ k + 1). This completes the proof.

Discrete class K functions, positive definite and decrescent functions were defined as Definition 3.3

and Definition 3.4 in [37]. Lemma 2.7 – Lemma 2.10 still hold for the fractional difference equation

C
h ∆ν

aU
∗(t) = −γ(U∗(t+ νh)), t ∈ (hN)a+(1−ν)h, (26)

where U∗(t) is a positive definite and decrescent scalar function and γ is a discrete class K function.

Then we present the following theorem of a discrete fractional Lyapunov direct method for Eq. (1).

Theorem 2.11. Let x = 0 be an equilibrium point of Eq. (1). If there exists a positive definite and

decrescent scalar function V (t, x(t)), discrete class–K functions γ1, γ2 and γ3 such that

γ1(‖ x(t) ‖) ≤ V (t, x(t)) ≤ γ2(‖ x(t) ‖), t ∈ (hN)a (27)

and
C
h ∆ν

aV (t, x(t)) ≤ −γ3(‖ x(t+ νh) ‖), t ∈ (hN)a+(1−ν)h, (28)

then the equilibrium point is asymptotically stable.

Proof. From Eqs. (27) and (28), we have

C
h ∆ν

aV (t, x(t)) ≤ −γ3(γ−1
2 (V (t+ νh, x(t+ νh))), t ∈ (hN)a+(1−ν)h, (29)

where γ−1
2 denotes the inverse of γ2. It is evident that γ3 ◦ γ−1

2 is a discrete class K function.

Considering a fractional difference equation

C
h ∆ν

aU(t, x(t)) = −γ3(γ−1
2 (U(t+ νh, x(t+ νh))), t ∈ (hN)a+(1−ν)h (30)

V (t, x(t)) is bounded by the solution U(t, x(t)) from Lemma 2.10. V (t, x(t)) is a positive scalar

function and we can derive limt→∞ V (t, x(t)) = 0 according to Lemma 2.9. Since γ1 is a discrete class

K function, it follows that limt→∞ x(t) = 0 due to the fact γ1(‖ x(t) ‖) ≤ V (t, x(t)), t ∈ (hN)a. This

completes the proof.
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3 Stability Analysis of Fractional Difference Equations

Theorem 2.11 can be used to analyze stability of Eq. (1). But it’s not easy to construct γi functions

directly. In this section, we present another Lemma and sufficient condition. We first introduce the

following Lemma. In the rest of the paper, we assume the initial point a = 0 for simplicity.

Lemma 3.1. (Discrete comparison principle) For 0 < ν ≤ 1, if Ch ∆ν
ax(t) ≥ C

h ∆
ν

ay(t), ∀t ∈ (hN)a+(1−ν)h

and x(a) = y(a), then

x(t+ νh) ≥ y(t+ νh). (31)

Proof. Let F (t) = x(t)− y(t). Due to C
h ∆ν

ax ≥ C
h ∆

ν

ay, we have

C
h ∆ν

aF (t) ≥ 0, (32)

which can be written explicitly

h

Γ(1− ν)

t
h+ν−1∑

s= a
h

(t− σ(sh))
(−ν)
h ∆sF (sh) ≥ 0, t ∈ (hN)a+(1−ν)h. (33)

Using the summation by parts (8), let g(sh) =
(t−sh)

(−ν)
h

Γ(1−ν) and f(sh) = F (sh). We derive

(t− sh)
(−ν)
h

Γ(1− ν)
F (sh) |

t
h+ν

s= a
h
− h

Γ(1− ν)

t
h+ν−1∑

s= a
h

(t− σ(sh))
(−ν−1)
h F (sh) ≥ 0. (34)

Considering F (sh) |s= a
h

= x(a)− y(a) = 0 and
(t−sh)

(−ν)
h

Γ(1−ν) |s= t
h+ν= h−ν , we can obtain

F (t+ νh) ≥ 1

Γ(1− ν)

t
h+ν−1∑

s= a
h

Γ( th − s)
Γ( th − s+ ν + 1)

F (sh). (35)

For t = a+ (1− ν)h, we have F (t+ νh) = F (a+ h) ≥ F (a)
Γ(2) = 0. Since the discrete kernel holds

Γ( th − s)
Γ(1− ν)Γ( th − s+ ν + 1)

> 0, t ∈ (hN)a+(1−ν)h,

it successively follows that

x(t+ νh)− y(t+ νh) = F (t+ νh) ≥ 1

Γ(1− ν)

t
h+ν−1∑

s= a
h

Γ( th − s)
Γ( th − s+ ν + 1)

F (sh) ≥ 0

and this completes the proof.

In the fractional calculus, Aguila–Camacho et al. [3] proposed a useful inequality for Lyapunov

functions. we extend this result to the following discrete case.

Lemma 3.2. For any discrete time t ∈ (hN)a+(1−ν)h, the following inequality holds

C
h ∆ν

ax
2(t) ≤ 2x(t+ νh)Ch ∆ν

ax(t), 0 < ν ≤ 1. (36)
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Proof. We need to equivalently prove

C
h ∆ν

ax
2(t)− 2x(t+ νh)Ch ∆ν

ax(t) ≤ 0. (37)

The l.h.s. can be rewritten explicitly as

h

Γ(1− ν)

t
h+ν−1∑

s= a
h

(t− σ(sh))
(−ν)
h ∆s(x

2(s)− 2x(t+ νh)x(sh)). (38)

Considering ∆sx
2(t+ νh) = 0, we add it into (38) such that

C
h ∆ν

ax
2(t)− 2x(t+ νh)Ch ∆ν

ax(t) =
h

Γ(1− ν)

t
h+ν−1∑

s= a
h

(t− σ(sh))
(−ν)
h ∆s(x(sh)− x(t+ νh))2. (39)

Using the summation by parts (8) again, let g(sh) = (t − sh)
(−ν)
h and f(sh) = (x(sh) − x(t + νh))2.

We obtain

C
h ∆ν

ax
2(t)− 2x(t+ νh)Ch ∆ν

ax(t)

=
−h

Γ(1− ν)

t
h+ν−1∑

s= a
h

(x(sh)− x(t+ νh))2∆s(t− sh)
(−ν)
h +

(t− sh)
(−ν)
h

Γ(1− ν)
(x(sh)− x(t+ νh))2 |

t
h+ν

s= a
h

=
−νh

Γ(1− ν)

t
h+ν−1∑

s= a
h

(x(sh)− x(t+ νh))2(t− σ(sh))
(−ν−1)
h − (t− a)

(−ν)
h

Γ(1− ν)
(x(a)− x(t+ νh))2 ≤ 0. (40)

This completes the proof.

Remark 3.3. For x = (x1(t), ...., xm(t))T , t ∈ (hN)a+(1−ν)h, Lemma 3.2 still hold. For example, we

can have Lemma 3.2 as

C
h ∆ν

a(xT (t)x(t)) ≤ 2xT (t+ νh)Ch ∆
ν

ax(t), t ∈ (hN)a+(1−ν)h. (41)

Example 3.4. Consider a discrete version of Example 2 in [3]





C
h ∆ν

ax1(t) = −x1(t+ νh) + x3
2(t+ νh), 0 < ν ≤ 1,

C
h ∆ν

ax2(t) = −x1(t+ νh)− x2(t+ νh), t ∈ (hN)a+(1−ν)h

(42)

with the initial conditions x1(0) = 0.4 and x2(0) = 0.8.

We use the Lyapunov function V = 1
2x

2
1(t) + 1

4x
4
2(t). According to Lemma 3.2, we have

C
h ∆ν

aV ≤ x1(t+ νh)Ch ∆ν
ax1(t) +

1

2
x2

2(t+ ν)Ch ∆ν
ax

2
2(t)

≤ x1(t+ νh)Ch ∆ν
ax1(t) + x3

2(t+ ν)Ch ∆ν
ax2(t)

= −x2
1(t+ νh)− x4

2(t+ νh) < 0.

(43)

As a result, the system is asymptotically stable from Theorem 2.11.
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On the other hand, the numerical formulae can be given accordingly




x1(n+ 1) = x1(0) + hν

Γ(ν)

∑n
j=0

Γ(n−j+ν)
Γ(n−j+1) (−x1(j + 1) + x3

2(j + 1)), x1(0) = 0.1,

x2(n+ 1) = x2(0) + hν

Γ(ν)

∑n
j=0

Γ(n−j+ν)
Γ(n−j+1) (−x1(j + 1)− x2(j + 1)), x2(0) = 0.2.

(44)

This is a nonlinear system and we cannot establish an explicit recurrence relationship for x1(n + 1)

and x2(n + 1) as Examples 3.6–3.8. Besides, considering the predictor–corrector method [38, 39] for

fractional differential equations, we need to design the predictors and correctors. Since it is impossible

to give a predictor formula, we also cannot apply the predictor–corrector method. We adopt the famous

Newton–iteration method for the solutions and all the calculation are performed with Maple. The

asymptotic stability of the system is shown in Figs. 1 and 2 where ν = 0.9, N = 500 and h = 0.1. We

can see the Lemma 3.2’s usefulness.

Theorem 3.5. If x = 0 is an equilibrium point of (1) and x(t + νh)f(t + νh, x(t + νh)) < 0 for

∀t ∈ (hN)a+(1−ν)h, then Eq. (1) is asymptotically stable.

Proof. Use a discrete Lyapunov candidate function V (t, x(t)) = 1
2x

2(t).

If x(t+ νh)f(t+ νh, x(t+ νh)) < 0, then we have

C
h ∆ν

aV ≤ x(t+ νh)Ch ∆ν
ax(t) = x(t+ νh)f(t+ νh, x(t+ νh)) < 0

which means the fractional difference of V (t, x(t)) is negative definite.

Considering the property (5) and the comparison principle (31), we can obtain

V (t, x(t)) < V (0, x(0)), t ∈ (hN)a (45)

or
x2(t)

2
<
x2(0)

2
. (46)

According to the definition of the stability 2.4, we can determine the origin is stable.

On the other hand, the fractional difference of the V function results negative definite. The used

Lyapunov function is positive definite. As a result, the equilibrium point is asymptotically stable from

Theorem 2.11. This completes the proof.

The following examples are used to show the convenience of Theorem 3.5.

Example 3.6. Consider the linear discrete fractional equation

C
h ∆ν

ax(t) = −x(t+ νh), x(0) = 0.1, 0 < ν ≤ 1, t ∈ (hN)a+(1−ν)h. (47)

We check that

x(t+ νh)f(t+ νh, x(t+ νh)) = −x2(t+ νh) < 0, t ∈ (hN)a+(1−ν)h. (48)

Hence, the equilibrium point x(t) = 0 is asymptotically stable according to Theorem 3.5.

Example 3.7. The linear fractional difference equations




C
h ∆ν

ax1(t) = −x1(t+ νh)− x2(t+ νh), x1(0) = 0.1, 0 < ν ≤ 1,

C
h ∆ν

ax2(t) = x1(t+ νh)− 2x2(t+ νh), x2(0) = 0.2, t ∈ (hN)a+(1−ν)h

(49)

have a trivial solution x(t) = 0.
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We calculate that

xT (t+ νh)f(t+ νh,x(t+ νh)) = −x2
1(t+ νh)− 2x2

2(t+ νh) < 0. (50)

We can conclude that the system is asymptotically stable.

We now consider numerical simulations to show Theorem 3.5’s validness. In fact, Eq. (49) can be

rewritten in an implicit numerical formula





x1(n+ 1) = x1(0)− hν

Γ(ν)

∑n
j=0

Γ(n−j+ν)
Γ(n−j+1) (x1(j + 1) + x2(j + 1)),

x2(n+ 1) = x2(0) + hν

Γ(ν)

∑n
j=0

Γ(n−j+ν)
Γ(n−j+1) (x1(j + 1)− 2x2(j + 1)).

(51)

Since both sides contain x1(n + 1) and x2(n + 1) and the system is linear, we can solve them and

obtain 
 1 hν

1+hν

− hν

1+2hν 1





 x1(n+ 1)

x2(n+ 1)




=




x1(0)
1+hν − hν

(1+hν)Γ(ν)

∑n−1
j=0

Γ(n−j+ν)
Γ(n−j+1) (x1(j + 1) + x2(j + 1))

x2(0)
1+2hν + hν

(1+2hν)Γ(ν)

∑n−1
j=0

Γ(n−j+ν)
Γ(n−j+1) (x1(j + 1)− 2x2(j + 1))


 (52)

or


 x1(n+ 1)

x2(n+ 1)




=


 1 hν

1+hν

− hν

1+2hν 1



−1 


x1(0)
1+hν − hν

(1+hν)Γ(ν)

∑n−1
j=0

Γ(n−j+ν)
Γ(n−j+1) (x1(j + 1) + x2(j + 1))

x2(0)
1+2hν + hν

(1+2hν)Γ(ν)

∑n−1
j=0

Γ(n−j+ν)
Γ(n−j+1) (x1(j + 1)− 2x2(j + 1))


 , (53)

from which we can successively derive the numerical values of x1(n) and x2(n). Set ν = 0.6, h = 1

and n = 200. Plot the solutions x1(n) and x2(n) in Figs. 3 and 4, respectively. We can see x1(n) and

x2(n) tend to zero as n→∞, respectively.

Example 3.8. Consider a discrete time varying system of fractional order





C
h ∆ν

ax1(t) = −2x1(t+ νh) + tx2(t+ νh), x1(0) = 0.4, 0 < ν ≤ 1,

C
h ∆ν

ax2(t) = −tx1(t+ νh)− x2(t+ νh), x2(0) = 0.8, t ∈ (hN)a+(1−ν)h.
(54)

We can calculate

xT (t+ νh)f(t+ νh,x(t+ νh)) = −2x2
1 − x2

2 < 0.

It is evident that the system is asymptotically stable from Theorem 3.5.

Conclusions

Fractional difference equations are a new class of discrete equations. They hold discrete memory

effects and have been used in fractional modeling. However, on the other hand, one cannot directly

use properties of normal difference equations because of the memory. This paper defines the Lyapunov
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stability for a class of implicit fractional difference equations and presents a sufficient condition to

distinguish the stable area of fractional systems. Furthermore, the fractional difference equations’

numerical formulae are given and the numerical simulation supports the theories. The result can be

further used in the fractional controlling or design of fractional controllers of discrete time, for example,

discrete fractional network, chaos synchronization of discrete time and so on. We will consider these

possible applications in our future work.
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Figure 1: Asymptotic stability of x1 for ν = 0.9. Figure 2: Asymptotic stability of x2 for ν = 0.9.

Figure 3: Asymptotic stability of x1 for ν = 0.6. Figure 4: Asymptotic stability of x2 for ν = 0.6.
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