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Abstract

Anomalous relaxation and diffusion processes have been widely quantified
by fractional derivative models, where the definition of the fractional-order
derivative remains a historical debate due to its limitation in describing dif-
ferent kinds of non-exponential decays (e.g. stretched exponential decay).
Meanwhile, many efforts by mathematicians and engineers have been made
to overcome the singularity of power function kernel in its definition. This
study first explores physical properties of relaxation and diffusion models
where the temporal derivative was defined recently using an exponential ker-
nel. Analytical analysis shows that the Caputo type derivative model with
an exponential kernel cannot characterize non-exponential dynamics well-
documented in anomalous relaxation and diffusion. A legitimate extension
of the previous derivative is then proposed by replacing the exponential kernel
with a stretched exponential kernel. Numerical tests show that the Caputo
type derivative model with the stretched exponential kernel can describe a
much wider range of anomalous diffusion than the exponential kernel, imply-
ing the potential applicability of the new derivative in quantifying real-world,
anomalous relaxation and diffusion processes.
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1. Introduction

In physics, processes involving the basic phenomena of relaxation and
diffusion are of great relevance [1, 2]. Many non-equilibrium physical sys-
tems and processes can be characterized by relaxation and diffusion equa-
tions [3, 4]. However, anomalous relaxation and diffusion processes in various
complex systems do not usually follow classical exponential decay or Gaus-
sian statistics, but rather exhibit different relaxation or diffusion patterns.
The traditional relaxation equation or Fick’s second law therefore fails to
describe the related behaviors [5, 6, 7], motivating the development of new
mathematical or physical equation models [8, 9, 10]. Fractional derivatives,
which can contain the historical memory and global correlation information
of complex physical systems, have been considered a successful tool to char-
acterize anomalous dynamics in various physics and engineering processes
[11, 12, 13, 14]. Hereby, the fractional-derivative based relaxation equa-
tion and the corresponding diffusion equation models (which govern many
physical phenomena such as heat, mass, or electron transfer; pollutants or
liquid transport through porous media; amorphous semiconductors; colloid
or proteins moving in biosystems or even in ecosystems) have been widely in-
vestigated in multiple disciplines including physics, mathematics, mechanics,
and hydrology and control theory, among many others [7, 12, 15, 16].

From the viewpoint of mathematics, the reason that the fractional deriva-
tive model can characterize the system memory and global correlation well
is due to its standard power-law memory kernel used to define the fractional
derivative. However, the singularity of the power-law kernel is the main
problem in numerical computation and applications of fractional-order par-
tial differential equations (PDEs). Recently, a new definition of the fractional
derivative with an exponential kernel (hereinafter named Caputo type def-
inition) was recently proposed and further investigated from mathematical
and physical aspects by Caputo and Fabrizio [17]. The main advantage of
the new definition is that the singular power-law kernel is now replaced by a
non-singular exponential kernel, which is easier to use in theoretical analysis,
numerical calculations and real-world applications. The mathematical prop-
erties of the new definition such as the existence of solution [18] and Laplace
transform [19, 21] have been investigated. Potential application of fractional
derivative models with an exponential kernel was recently investigated for
electromagnetism [22], diffusion [23], and heat transfer [24].

Physical aspects of Caputo type derivative models where the memory
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kernel is an exponential function, however, have not been well documented.
It motivated this study and further yielded some new thoughts on modeling
anomalous relaxation and diffusion with stretched exponential decay. In
the following we first analyze the analytical solution and the mean squared
displacement for relaxation and diffusion governed by Caputo type derivative
models with an exponential kernel. Results show that Caputo type derivative
models with an exponential kernel cannot efficiently characterize the non-
exponential nature of anomalous relaxation and diffusion. Hereby, a new
notion of a Caputo type derivative where the memory kernel takes the form
of a stretched exponential function is proposed to overcome the limitations
of the existing exponential kernel. For the sake of simplicity, but without
the loss of generality, we consider one dimensional relaxation and diffusion
equations with a temporal derivative.

2. Caputo type derivative with non-singular kernels

The standard Caputo type fractional derivative contains a singular power-
law kernel [25, 26]:

CDα
t f(t) =

1

Γ(1− α)

∫ t

0

f
′
(τ)dτ

(t− τ)α
, 0 < α < 1, (1)

in which α is the order of the fractional derivative, and Γ(·) denotes the
Gamma function.

To overcome the complexity caused by using a singular memory kernel
(t− τ)−α, Caputo and Fabrizio [17] recently proposed a derivative using the
non-singular exponential function:

CF1Dαf(t) =
M(α)

(1− α)

∫ t

a

f ′(τ)exp[−α(t− τ)

1− α ]dτ, (2)

where the super-script “CF1” denotes the Caputo and Fabrizio type deriva-
tive, a ∈ (−∞, t) is the initial time in the history, and M(α) is a normal-
ization function such that M(0) = M(1) = 1. For simplicity, we choose
M(α) = 1 in the following sections.

Caputo and Fabrizio [22] also investigated the potential expression of
new derivative with a Gaussian-function kernel for gradient and Laplacian
operators:

CF2Dαf(t) =
1 + α2

√
πα(1− α)

∫ t

a

f ′(τ)exp[−α(t− τ)2

1− α ]dτ, (3)
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which will be briefly analyzed in the following.
In addition, another interesting definition with a Mittag-Leffler function

kernel has been proposed and further discussed by Atangana and Baleanu
[20, 27]. The expression is stated as

ABCDαf(t) =
B(α)

(1− α)

∫ t

a

f ′(τ)Eα[−α(t− τ)α

1− α ]dτ, (4)

in which B(α) is a normalization function, and Eα(·) denotes the Mittag-
Leffler function. In this paper, we focus our attention on the definition with
an exponential function kernel.

3. Power-law and exponential function kernels in characterizing
relaxation and diffusion processes

Here we explore the dynamics of relaxation and diffusion processes char-
acterized by temporal derivative models with known memory kernels.

3.1. Fractional relaxation equation model

The following fractional-order relaxation equation is a simple and typical
model used to describe various physical processes:

{
dαu(t)

dtα
= −λu(t), 0 < α ≤ 1,

u(t = 0) = U0.
(5)

The variable u(t) can represent concentration in solute transport [10, 28, 29],
the relaxation modulus in viscoelasticity [30], or input in control systems
[31]. It is well known that this equation with an integer order (α = 1) can
characterize the phenomena of exponential relaxation in physics.

(a) Fractional derivative relaxation equation with a power-law
kernel

First we consider a fractional derivative with the traditional power-law
function kernel. The Laplace transform of Eq. (5) can be stated as:

su(s)− U0s
α−1 = −λu(s), 0 < α ≤ 1, (6)

where u(s) represents the Laplace transform of u(t). Inverse Laplace trans-
form of Eq. (6) provides the analytical solution of Eq. (5) [30]:

u(t) = U0Eα(−λtα), (7)

4



where Eα(·) denotes the Mittag-Leffler function[10, 34].
(b) Relaxation equation model with an exponential kernel
To obtain the analytical solution of Eq.(5) with an exponential kernel, we

first use the Laplace transform of the fractional derivative with an exponential
kernel Eq.(2) [17, 19]

L[CF1Dαu(t)](s) =
1

1− αL(u′(t))L[exp(
−αt

1− α)]

=
su(s)− U0

s(1− α) + α
.

(8)

Then one can get the expression of Eq. (5) after Laplace transform

su(s)− U0

s(1− α) + α
= −λu(s). (9)

Finally, the analytical solution of Eq. (5) can be obtained via an inverse
Laplace transform with the initial condition defined in (5):

u(t) = U0e
− λαt

1+λ−αλ . (10)

A well-known and interesting feature of anomalous relaxation in com-
plex systems is their non-exponential nature [32]. The solution of fractional
derivative models with a power-law function kernel exhibits power-law decay
when t → ∞, while the solution of that with an exponential function ker-
nel shows an exponential decay similar to the classical integer-order model.
In fact, the integer-order relaxation equation with a relaxation coefficient
λα/(1 + λ − αλ) gives the same analytical solution (8), from mathematical
viewpoint.

3.2. Mean squared displacement of the temporal derivative diffusion model

Mean squared displacement (MSD) offers an important information of dif-
fusive motion in physical and biophysical systems, and serves as an important
criterion in anomalous diffusion [10, 33, 34]. To investigate the physical be-
havior of fractional derivative model with an exponential function kernel, we
consider the following time fractional diffusion equation:





∂αc(x, t)

∂tα
= K

∂2c(x, t)

∂x2
, −∞ < x < +∞, t > 0,

c(x, 0) = δ(x), c(±∞, t) = 0,
∂c(±∞, t)

∂x
= 0,

(11)
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where δ(x) is the Dirac delta function, α ∈ (0, 1] denotes the order of the time
fractional derivative, K is a generalized diffusion coefficient, c(x, t) represents
the target concentration.

Previous investigations have shown that the MSD of model (11) with the
traditional Caputo fractional derivative expressed by Eq. (1) can be stated
as [10]

〈x2(t)〉 =
2Ktα

Γ(α + 1)
. (12)

We then derive the MSD for the Caputo type derivative model Eq.(11)
with an exponential kernel. At the first step, we take integration of both
sides of Eq. (11) with

∫∞
−∞ x

2dx, which leads to

∫ ∞

−∞
x2 CF1Dαc(x, t)dx =

∫ ∞

−∞
x2K

∂2c(x, t)

∂x2
dx. (13)

It can be written as the following form by changing the order of integral and
differentiation:

CF1Dα
0+
〈x2(t)〉 =

∫ ∞

−∞
x2K

∂2c(x, t)

∂x2
dx. (14)

Clearly, Eq. (14) can be simplified into the following form based on the
boundary conditions of model Eq. (11)

CF1Dα
0+
〈x2(t)〉 = 2K. (15)

The final expression of the MSD can be obtained by applying the Laplace
transform of Eq. (15) and then taking inverse Laplace transform:

〈x2(t)〉 = 2Kαt. (16)

It is obvious that the fractional derivative diffusion equation model with
an exponential kernel reduces to normal diffusion based on the criterion of
MSD.

4. Fractional derivative model with the memory kernel as a stretched
exponential function

It is clear that the Caputo-Fabrizio derivative operator with an expo-
nential kernel has obvious limitations in characterizing anomalous relaxation
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and diffusion with non-exponential nature. Meanwhile, previous literature
also showed that the memory kernel appearing in the generalized diffusion
equation has various potential forms which can describe a wide range of ex-
perimental phenomena [35, 36]. Nevertheless, the relaxation and diffusion
phenomena with the stretched exponential decay, which cannot be well char-
acterized using the fractional derivative with a power function kernel, have
been observed in various heterogeneous media or fully developed turbulence
[2, 37]. Hereby, we consider a legitimate extension of the fractional deriva-
tive by replacing the exponential function kernel by a stretched exponential
function kernel:

SEDαf(t) =
M(α)

(1− α)1/α

∫ t

a

f ′(τ)exp[−α(t− τ)α

1− α ]dτ, 0 < α < 1, (17)

in which the super-script “SE” represents the stretched exponential type
Caputo definition, and M(α) is a normalization function. For simplicity,
here we take M(α) = 1/Γ(1 + α).

Since the above temporal derivatives differ only in the functional form of
the memory kernel, we first compare the memory behavior of different ker-
nels. Figure 1 shows that the power-law kernel represents strong memory in
long time, compared to the exponential, stretched exponential, and Gaussian
function kernels. Although the Caputo type derivative defined by the expo-
nential kernel represents a process with memory, the long-time memory is
very weak, which may explain why the solutions of the corresponding relax-
ation and diffusion equations are similar to classical integer-order derivative
models. While the stretched exponential function kernel offers a relatively
strong memory in long time, the memory property in small and long-time
histories can be balanced in a wide range by changing the derivative order α.
Therefore, from this viewpoint, the stretched exponential function kernel is a
better choice to characterize the memory (time) or nonlocal (space) process
when using the Caputo type derivative with non-singular kernels.

Next, we investigate the physical behavior of Caputo type derivative re-
laxation and diffusion equations with a stretched exponential kernel, where
the analytical solutions are not available. We use a finite difference numer-
ical scheme to obtain accurate solutions of considered physical quantities
[38, 39, 40].

Numerical solutions of the fractional derivative relaxation equation with
a power-law or stretched exponential kernel are depicted in Figure 2. On
the one hand, the Caputo type derivative relaxation model with a stretched
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exponential kernel exhibits much faster decay at small times and much slower
decay at large times for a small order of fractional derivative (such as α =
0.2). On the other hand, the Caputo type derivative relaxation model with a
stretched exponential kernel produces a faster decay than that with a power-
law kernel for a large α (such as 0.8). This implies that the Caputo type
derivative model with a stretched exponential kernel can describe a wider
range of relaxation phenomena, compared to that with a power-law kernel.

We further investigate the Caputo type derivative diffusion equation with
a stretched exponential kernel. Figure 3 shows truncated diffusive behavior
of the Caputo type derivative diffusion equation with a stretched exponen-
tial kernel. This truncated diffusion behavior is analogous to the result of
distributed-order or tempered fractional derivative models which may de-
scribe variations of MSD across scales [41, 42]. A nonlinear increasing of
the MSD which represents anomalous diffusion is observed at the initial time
period, while an approximately linear increasing of the MSD with time is
observed at the long time range. It should be noted that a Caputo type
derivative model with a stretched exponential or power-law kernel produces
slower diffusive motion than a model with an exponential kernel.

Figure 1 shows that the power-law kernel represents a strong memory
in long-time history, compared to non-singular kernels. To characterize the
strong memory in complex systems using the stretched exponential kernel,
we propose a modified definition by using a stretched exponential function
kernel as follows:

SE2Dαf(t) =
1

(1− α)1/αΓ(1 + α)

∫ t

a

f ′(τ)exp[− α

1− α(
t− τ
t

)α]dτ . (18)

Another advantage of definition (18) is that the fractional dimension prob-
lem in the application of fractional derivative operators can be solved by
introducing the expression of (t − τ)/t. Figure 4 shows that the stretched
exponential kernel with (t − τ)/t exhibits super-slow decay of the system’s
memory, which may be a better tool to describe relaxation or diffusion pro-
cesses with extremely strong memory.

5. Conclusions

This study found that the Caputo type derivative with an exponential
function kernel has limitations in characterizing the complex anomalous re-
laxation and diffusion processes. Here introduces an alternative notion of the
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Caputo type derivative with a stretched exponential function kernel to de-
scribe real-world complex relaxation and diffusion processes. In the limiting
case we recover the Caputo type derivative with exponential kernel.

There are still many issues which are worth further investigation. For ex-
amples, the lower limit of the integral in the Caputo type derivative definition
should be −∞ from the mathematical viewpoint, otherwise the above anal-
ysis results are not strict. The new definition therefore should be improved,
and the related mathematical analysis such as existence and uniqueness of
solutions of obtained fractional ordinary equations should be investigated in
a future study. Moreover, the applicability of Caputo type definition with
stretched exponential function kernel, should be further verified by using a
number of experimental data.
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Figure 4: Memory property represented by different kernels with α = 0.5: the power-law
function kernel (t − τ)−α, the stretched exponential function kernel exp[−α∗(t−τ)

α

1−α ], and
the stretched exponential function(V2) kernel exp[− α

1−α ( t−τt )α].
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Highlights 
 
1. Relaxation model with exponential kernel yields exponential decay. 
 
2. Mean squared displacement of Caputo type derivative diffusion model is offered. 
 
3. A legitimate extension is proposed to characterize non-exponential dynamics. 
 
4. The memory behaviors of different kernels are presented.  
 


