RADAR CROSS SECTION OF A CONDUCTING FLAT PLATE
BY THE METHOD OF
MODIFIED THEORY OF PHYSICAL OPTICS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
CANKAYA UNIVERSITY

BY

AYSE TiLA CINAR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
ELECTRONIC & COMMUNICATION ENGINEERING

SEPTEMBER 2010



Title of the Thesis  : Radar Cross Section of a Conducting Flat Plate by
the Method of Modified Theory of Physical Optics
Submitted by : Ayse Tila Cnar

Approval of the Graduate School of Natural and Applied Sciences, {ankaya

University

Prof. Dr. Taner Altunok \

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree ot

Master of Science. C— \’:\[O

Assoc. Prof. Dr. Celal Zaim Cil

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.
% 7

Assoc. WYusuf Ziya Umul

Supervisor
Examination Date: ©2..09 . 2 24O
Examining Committee Members
Assoc. Prof. Dr. Halil T. Eyyiiboglu (Cankaya Univ.) s
7
Assoc. Prof. Dr. Yusuf Ziya Umul  (Cankaya Univ.) /"%

Asst. Prof. Dr. Ugur Yalgin (Uludag Univ.) ‘f/ e S




STATEMENT OF NON-PLAGIARISM

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare that,
as required by these rules and conduct, I have fully cited and referenced all material

and results that are not original to this work.

Name, Last Name : Ayse Tila Cinar

Signature 4@¢3

Date : 02.08.4010




ABSTRACT

RADAR CROSS SECTION OF A CONDUCTING FLAT PLATE BY THE
METHOD OF MODIFIED THEORY OF PHYSICAL OPTICS

Cinar, Ayse Tila
M.S.c., Department of Electronic & Communication Engineering

Supervisor  : Assoc.Prof.Dr. Yusuf Ziya Umul

September 2010, 51 pages

In this thesis, reflected scattered fields from a conducting rectangular flat
plate, and its edges and corners are observed, calculated and analyzed by using the
Method of Modified Theory of Physical Optics. In the calculations, two methods,
named “Stationary Phase Point Method” and “Edge Point Method”, are used to solve
scattering integrals manually. Numerical results of the calculations are evaluated by

plotting them in the MATLAB tool.

Keywords: Electromagnetic Fields, Electromagnetic Diffraction, Electromagnetic

Scattering, Modified Theory of Physical Optics, Conducting Rectangular Flat Plate
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FiZIKSEL OPTIGIN DEGISTIRILMIS TEORiSi METODU iLE ILETKEN DUZ
PLAKANIN RADAR KESIT ALANININ INCELENMESI

Cinar, Ayse Tila
Yiiksek Lisans, Elektronik ve Haberlesme Miihendisligi Anabilim Dali
Tez Yoneticisi : Do¢.Dr. Yusuf Ziya Umul

Eyliil 2010, 51 sayfa

Bu tezde, bir iletken dikdortgen diiz plakadan ve onun koseleri ile
kenarlarindan yansiyan sagilan alanlar, Fiziksel Optigin Degistirilmis Teorisi Metodu
kullanilarak gozlemlenmis, hesaplanmis ve incelenmistir. Bu hesaplamalarda,
sacilma integrallerini elle ¢ozmek igin “Stasyonel Faz Noktas1 Metodu” ve “Kose
Noktas1 Metodu” isimli iki metod kullanilmistir. Hesaplamalarin niimerik sonuglari

Matlab aracinda ¢izdirilerek degerlendirilmistir.

Anahtar  Kelimeler:  Elektromanyetik  Alanlar, Elektromanyetik  Kirinim,
Elektromanyetik Sacilim, Fiziksel Optigin Degistirilmis Teorisi, Iletken Dikdortgen

Diiz Plaka
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CHAPTER 1

INTRODUCTION

1.1 Background of the study

Diffraction is the process of breaking up or bending of waves (e.g. light
waves) when they encounter an aperture or an obstacle. The problem of diffraction of
a conducting half plane was first studied by Sommerfeld in 1896 [1]. Sommerfeld’s
study can be accepted as the basis of the electromagnetic scattering literature. After
his studies on the subject, many have been made about this problem since 19"
century; some examples can be given as [2, 3, 4, 5 and 19]. Sommerfeld’s exact
solution is the expression of Fresnel integrals [15, 26] and it consists of the sum of
two waves, Geometrical Optics (GO) fields and diffracted fields.

In Physics, when an object in space is assumed, its boundary conditions
become considerable. They can be taken into account by using accurate geometry of
the object. It can be accepted as an obstacle for electromagnetic waves. The observed
electromagnetic waves without any obstacle in the space are named as the “incident

waves”. When electromagnetic waves encounter an obstacle in space, “reflections”



occur from its surface, and “diffractions” occur at its edges, and more, “edge
diffraction” occurs at its tangential regions.

“Diffracted fields” appear from the interactions of discontinuities, in other
words, diffracted fields are discontinuous.

“GO fields” are the sum of all electromagnetic fields except diffracted fields,
1.e. GO fields are the sum of incident, reflected and transmitted fields. The GO
method explains that waves go ahead linearly along the rays, therefore GO fields are
discontinuous.

“Scattered fields” are the sum of GO fields and diffracted fields, and therefore
continuous. This is due to the characteristic of the Fresnel function. Diffracted fields
compensate the discontinuity of GO fields. The amplitude value of diffracted fields is
always the half of the amplitude value of GO fields in transition regions.

In the electromagnetic scattering literature, there are two types of high
frequency methods to evaluate electromagnetic diffracted fields: One is ray based
methods including Geometrical Optics (GO), Geometrical Theory of Diffraction
(GTD), Uniform Theory of Diffraction (UTD), and Uniform Asymptotic Theory
(UAT) [2, 5, 10, 11, 20]; and the other is current based methods known as Physical
Optics (PO), Physical Theory of Diffraction (PTD), and Modified Theory of Physical
Optics (MTPO) [3, 4, 6, 13, 15].

The GO method, a ray based method, can be simply shown as the amplitude
of wave multiply by an exponential term [26]. Despite this method is able to find the
fields in illuminated areas, it can not solve the fields in shadow regions. To calculate
the fields in a shaded area, diffracted waves must be considered. Keller noticed the
lack of this method when applying it to the edges, corners and boundary surfaces [5].

According to him, the GO method could not express the fields at these regions, but
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the method he developed, named GTD, does [5]. In spite of being very well-known
and usage of some successful asymptotic techniques, according to GO method, fields
become invalid in transition regions in the evaluation of scattered fields and in the
asymptotic evaluation of the diffracted fields. Since the denominator of the equation
becomes zero, fields go to the infinity. Keller in 1952 tried to clarify this point [5].
According to him, GTD coefficients are non-uniform, and therefore they become
zero in transition regions. The advantage of his clarification is that it makes easy to
understand features of scattered fields. However, GTD method can not calculate the
fields on transition regions [4, 20]. The UTD method formulated by Pathak and
Kouyoumjian in 1974 [2], and the UAT method developed by Ahluwalia, Lewis and
Boersma [10, 11] can deal with this problem. While UAT obtains uniform solution
by modifying the GO fields, UTD modifies the diffracted fields for the continuity
across shadow and reflection boundaries by multiplying the diffraction coefficient by
a Fresnel integral [16]. But the UTD and UAT methods are still insufficient to
calculate the diffracted fields at foci, caustics and shadow regions, because the
amplitude of approximate solution becomes infinity at caustics and there are no real
rays passing through shadow regions [18]. To cope with this insufficiency, the PO
and PTD methods, current based methods, are suggested by Macdonald and
Ufimtsev, respectively [27, 3].

Diffraction phenomenon has been popular for many researchers and has been
studied in many aspects for many years. Satterwhite [21], for example, obtained
diffraction from angular sector of a perfectly conducting quarter plane in spheroconal
coordinates. He firstly derived the dyadic Green’s function by using the method of
the separation of variables [22]. He used the ‘“eigenfunction expansion method” to

get the exact solution. Hansen obtained a corner diffraction coefficient based on
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exact solution of a canonical scattering problem [23]. He obtained induced surface
current density near a corner on a scatterer by calculating physical optics current,
fringe wave current and corner current. Zhang et. al. [24] dealt with the corner
diffraction formula which can be derived by evaluating the radiation integral
asymptotically by using (ordinary) equivalent edge currents. Different from ordinary
equivalent edge currents, he used the UTD method, and therefore he got the result
that was uniformly continuous through the entire far field region. Sikta et al. [25]
used the modified equivalent current concept to find corner diffraction scattering
from flat plate structures. As another example, Hill and Pathak [20] used the UTD
method to evaluate the electromagnetic diffraction in the corner of a plane angular
sector. In this study, apart from incident, reflected and edge diffracted fields, they
have defined a uniform corner diffraction term and by calculating this term, they
have found the UTD corner diffracted field term. As it is seen, the function of the
diffracted fields that all above researchers have been interested in is to compensate
the discontinuities of the GO fields at the transition regions [9].

Two different edge diffracted waves occur in a diffraction problem of a
conducting surface [26]: One of them is incident diffracted waves compensating the
discontinuities of the incident fields at the shadow boundary. The other is the
reflected diffracted fields compensating the discontinuities of the reflected fields at
the reflection boundary.

According to the PO method, incident fields form a surface current on surface
body and this current is integrated over the surface body. The current on the surface
body acts as a secondary source of electromagnetic fields and this results a current on
lit sides, but not on shaded sides. The PO method is defined for perfectly conducting

surfaces, but it does not give the exact solution for diffraction problems [3]. An
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enhanced version of the PO method, named as PTD, is firstly discussed by Ufimtsev
[3], and is able to evaluate the fields at foci, caustics and shadow boundaries and to
give the asymptotic solution of diffraction. To calculate and evaluate diffraction
effects on the fields, a non-uniform current, called fringe current, is added to the
ordinary uniform current. The PTD method uses fringe current (a non-uniform
current) addition to real physical optics current (an ordinary uniform current)
appearing on the surface of a scatterer.

MTPO, developed by Umul [4], is a method capable of finding the exact
diffracted waves for scattering problems caused by conducting geometries. The
MTPO method eliminates the erroneous edge effect on the scattering integral [4].
Since a complementary aperture surface is taken into account in addition to the
surface of the scatterer, the MTPO method can evaluate the total scattered fields.

Radar Cross Section (RCS) is a reflecting factor of electromagnetic radar
waves of a body [8]. The o term is the RCS which is equal to

. S, LIE|
o =]im4# S—th‘W

2
AT s T g

(1.1)

where §;, S,, E;, E, and r are the incident power density, scattered power density,

incident electric field, scattered field and the distance from target to observation

point, respectively [8].

1.2 Objectives of the thesis

The aim of this thesis is to obtain the electromagnetic scattered fields at all
points of a conducting rectangular flat plate by using the MTPO method. The
reflected scattered fields at the edges, corners and at the surface of the plate are

firstly observed, then by using Matlab tool, these fields are plotted and evaluated.



1.3 Organization of the thesis

This thesis contains five chapters and is organized as follows:

Chapter 1 provides the introduction of the thesis. It consists of three subparts;
a background of the study, objectives of the thesis and organization of the thesis.

Chapter 2 is an overview of the study. It has three subparts. The first
mentions about the PO method and the second is the MTPO method used in this
thesis, and the third is about the geometry of this study; the fields, the angles etc.

Chapter 3 discusses the reflected scattered fields. It is composed of four
subparts. The first three parts mention about the reflected scattered fields at the
surface of the plate, at the edges and at the corners, respectively. The last subpart is a
comparison of this study with literature.

Chapter 4 contains numerical results. This chapter evaluates the results given
in Chapter 3. In other words, it has Matlab results and comments on the figures.

Chapter 5 is a conclusion part. This chapter summarizes the main points and

results of the study together.



CHAPTER 2

OVERVIEW

2.1 Physical optics
According to the PO method, incident fields form a surface current on surface

body and this current J »o 18 integrated over the surface body. Figure 1 gives the PO

structure. H, is the incident magnetic field at the surface.

> /%
» /
-
H,
Lit Fegion Shadow Fegion

0

ra
Perfectly
Electric

\ Conductor
o \

T

=

Figure 1 Physical optics

The current on the surface body acts as a secondary source of electromagnetic

fields and this results a current on lit sides, but not on shaded sides.



The first condition is given as

ixE| =0 2.1)

N

where 7 is the unit vector of the surface and inside the conductor there is neither

magnetic fields nor electric fields, so

H . =E =0 (2.2)

inside inside

Since this is a perfectly electric conductor, reflection occurs. The fields reflect
to space as if the source is this perfectly electric conductor. This reflection fields can
be found by using this method. In the perfectly electric conductor there is no charge

density, but there is current density. This current density is evaluated, because this is

the reason of radiation. For perfectly electric conductor second boundary condition is

7,y = ixH, (2.3)

where

Hy=H +H (2.4)

which gives the total magnetic fields.

(2.5)




where H . is the reflected field at the surface. According to Eqn. (2.4), one obtains

(2.6)

which means that total magnetic fields are twice of magnetic fields’ tangential

component at the surface. Eqn. (2.3) can be rewritten as

J o = 2iixH, .- (2.7)

In the shadow region, there are no fields. But in the lit region, the current given in

Eqn. (2.7) is considered. The physical optics integral can be written as

A Il'l() T e_ij '
A=—|||J av 2.8
Mji ()= 2.8)

— jkR

where J (r") is the induced current on the surface, and is Green’s function.

By using Eqn. (2.7) one can rearrange Eqn. (2.8) as

—jkR
e J

A:’;l—;jﬂﬁxﬁi‘s V. 2.9)

In PO method, stationary phase of the scattering integrals gives exact
geometrical optics fields. But at the edges, EP method gives the edge diffracted fields
incorrectly [7]. Also, in the scattering integral only the perfectly conducting surface

is considered and the aperture part is neglected. Besides, when reflected and
9



reflected diffracted fields are evaluated, there will not be any information about

incident and incident diffracted fields [4].

2.2 Modified theory of physical optics

The MTPO has been proposed by Umul [4] as a new method to find the exact
diffracted waves for scattering problems by conducting geometries. It has the
advantage of the eliminating of the erroneous edge effect of the PO method on the
scattering integral. So, it can be said that the MTPO method is an improved version
of the PO method.

By using the MTPO method, one can directly derive the exact scattered fields
from the asymptotic evaluation of the surface integral of the PO method [4]. It
directly gives the exact edge-diffracted waves. This method was also applied to
wedge diffraction problems by Umul [13]. The MTPO integrals which are uniform
asymptotic evaluation techniques are divided into two integrals according two their
boundaries: Exact diffracted fields and geometrical optics fields constitute the
asymptotic evaluation of the MTPO integrals. This method helps to express the
integrals in terms of the GO fields and Fresnel functions [12]. Umul has defined
three assumptions in this method [4]: One of them is that the reflection angle is a
function of integral variables, i.e., it is calculated inside the integral as a variable
function. Secondly, he has defined a new unit vector which is not constant and
divides the angles between the incident and reflected fields into two equal parts. This
variable unit vector does not affect geometrical optics fields since this unit vector is
equal to the actual normal vector at the stationary phase point. MTPO gives the exact
diffracted fields at the edge point [7]. Finally, he has considered the perfectly

conducting surface with an aperture part together.
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2.3 Rectangular plate geometry

The reflected scattered fields from a rectangular plate can be calculated and
evaluated by using the method of the MTPO. The 3-dimensional geometry of the
rectangular plate is given in Figure 2. As it is seen in the figure, the rectangular plate
lies down on z axis. Its height in the z axis is assumed as negligible. It has a length
from —a to +a in x axis, and similarly width from —b to +b in y axis. A is the
wavelength and there is a condition that the lengths of the rectangular plate which are
2a and 2b should be greater than the value of this wavelength, 4. Also, the distance

to the observation point should be greater than the wavelength, 4.

*z

Figure 2 Geometry of rectangular flat plate

In this study, the surface of the rectangular plate is assumed as “soft surface”
(providing Dirichlet Condition; the condition that the total of fields over a surface is
zero). For a soft surface, a minus sign (-) can be put in front of the scattering integral.

If a surface was accepted as “hard surface” (providing Neumann Condition; the

11



condition that the derivative of the total fields with respect to unit vector over the

surface is zero), a plus sign (+) would be put in front of the scattering integral.

Figure 3 Geometry of incident and reflected scattered fields

Here, 6, is the incident angle, 7 is the angle between x and z axis, and

similarly, f is the angle between y and z axis. From the geometry we can calculate

R as

R=(y—y)cosf+R, sinf (2.10)

depends on R,, which is

R, =(x—x")cosn + zsin7y (2.11)

in terms of angles that will be explained in Chapter 3 Section 3.1. In Figure 3,
P(x,y,z) is the observation point, and U, is the incident field. It encounters x-y plane

at x=x’ and y=y’. This point is called Q as shown in Figure 3. The Q point changes

on the surface. When R projects to x-y plane, & can be easily found between
12



this projection and y axis which is depicted in Figure 3. The incident electric field is

E = EXElejk(ycost90+zsin«90) (212)

1 1

and the reflected electric field is

- —_ — k z‘w‘ XCOS oS — v S A"
Er =€pEre Jk(zsin f+xcos ffcosa—y cos fsin &) (213)

where

€,=¢€,cosa+e sina. (2.14)

The incident field’s direction is

§; =—cos@,e, —singye. (2.15)

1

and the reflected field’s direction is

§, =sin fcosne, —cos fe, +sin Bsinre, (2.16)

It is mentioned in [4, 6] that the defect of the PO method consists of a constant
normal vector between the incident field and the diffracted field. The MTPO method
eliminates this defect by using a variable normal vector7,, dividing the directions of

incident and reflected fields into two equal angles. It is defined as

n,=ae +be, +ce.. (2.17)

13
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Stationary Point Edge

Figure 4 Reflection geometry

The geometry about those directions is depicted in Figure 4 [7]. By using the

following cosine equations

2cos’u—1=cos2u=1-2sin’u, (2.18)

and also considering Figure 5, some equations are found.

Figure 5 Variable unit vector

14



These equations consist of the dot product and the cross product of incident and

reflected rays with the variable unit vector. These are

n, -8, =cosu (2.19)
and

n, s, =—cosu (2.20)
and also

s, -5, =—cos2u (2.21)

which are the dot product equations. Also the cross product can be written as

i, X(5,—5,)=0. (2.22)

By solving the Eqns. (2.18), (2.19), (2.20), (2.21) and (2.22) together, a, b and c

coefficients in the 7, unit vector can be found as

4 —é (sin Scosn) ’ (2.23)
\/2(1 —cos fcos @, +sin Ssinnsiné,)
and
_z 0. —
é,(cos g, —cos ) (2.24)

b=
\/2(1 —cos fAcos @, +sin fBsinnsin ;)

15



and

—é_(sin g, +sin7sin )

(2.25)
\/2(1 cos fcos @, +sin Bsin7sin 6, )
By inserting Eqns. (2.23), (2.24) and (2.25) inton,, we can clearly get 7, as
e ,(sin Bcosn) +é (cos @, —cos B) +é_(sin g, +sin7sin ,6)
| (2.26)

\/2(1 cos fcos 8, +sin Bsinnsin b))

Exact diffraction coefficients can be found from the asymptotic evaluation of the

MTPO integrals. The general formula of reflected scattered fields given in [15] is

U, (P)=-U, Jk j j 1B, 77,9) " et gy g (2.27)

x '=—ay'=—b

Eqn. (2.27) is a double integral and depends on the angles given in Figure 3 and

variable R. Beside of Eqn. (2.10), R can be expressed as

R=y(x=x) +(y—y) +2° (2.28)

which has a dependency of Cartesian coordinates. By using the Eqn. (1.1), one can
easily find the RCS of the fields given in Eqn. (2.27).

In the Eqn. (2.27), f(B.n,6,) isequalto f(5,n,6,)=s5, -1, when Figure 3
and Figure 4 are observed. The crucial point of the MTPO method is this scalar

product [15] given in Eqn. (2.29). Finally, f(f5,7,6,) becomes

16



1—cos@, cos [ +sin @, sin £sin
f(ﬁvn700):_\/ ° ﬁﬁ bsin f iy (2.29)

The calculation of the integral given in Eqn. (2.27) gives us 9 separate
integrals’ solution. One of them is taken into account for the surface of the
rectangular plate whose height is too small to consider. Two integrals are taken into
account for two edges of this rectangular plate and other two integrals are considered
for its other two edges. The remaining four integrals are measured for the corners
which are the points of (a, b), (a,-b), (-a, b) and (-a,-b).

In these calculations, we deal with two types of integral solving method. First,

named Stationary Phase Point (SPP) method, is

2_7[ f(x)) o k()

b
I= j F(x)e™ W dx = (2.30)

where f(x) and g(x) are the real-valued amplitude and phase function, respectively.
Also, f(x) indicates the surface current induced on the surface and g(x) is the ray path
of the scattered fields [17]. x can be found when derivative of g(x) is equal to 0.
This method is used to measure the GO fields.

Second method, used in this study, is Edge Point (EP) method equal to

L f(x,) o ke

2.31
Jk g'(x,) (23D

II = If(x)ejkg(x)dxz

and it is used for edge points or corners. The EP method gives us the contribution of

the edges and corners to the total fields.

17



According to the Figure 6 ;

(1) can be found by the SPP method twice, it gives the GO fields of the plate
(since when the PO fields are evaluated by using the SPP method, the GO fields
are obtained);

(2) is the corner point of (-a,-b) and it can be found by using the EP method
twice;

(3) is the corner point of (-a,b) and it can be found by using the EP method twice;
(4) is the corner point of (a,-b) and it can be found by using the EP method
twice;

(5) is the corner point of (a,b) and it can be found by using the EP method twice;

Figure 6 Separation each of the diffraction parts

(6) is the edge of “-a”, it can be found by applying the SPP method to y’

>

integrand, and by applying the EP method to x’ integrand (at x’=-a point),

respectively;
18



(7) is the edge of “a”, it can be found by applying the SPP method to y’
integrand, and by applying the EP method to x’ integrand (at x’=a point),
respectively;

(8) is the edge of “-b”, it can be found by applying the SPP method to x’
integrand, and by applying the EP method to y’ integrand (at y’=-b point),
respectively and

(9) is the edge of “b”, it can be found by applying the SPP method to x’

’

integrand, and by applying the EP method to y’ integrand (at y’=-b point),

respectively.
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CHAPTER 3

REFLECTED SCATTERED FIELDS

3.1 Reflected scattered fields at the surface the rectangular plate

For the surface of the rectangular plate, the double integral is solved in Eqn.

(2.27) by using the SPP method twice.

¥

Figure 7 First triangle inside the geometry

As depicted in Figure 7, the equality of

R g7 (3.1)
sin cos 8
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can be found from sine theorem. Similarly, from Figure 8, it can be seen that

R=—"—=2"% (3.2)
sin7]  cos7

¥

Figure 8 Second triangle inside the geometry

In order to use the SPP method for x’ integral, the sine theorem gives us R as

R=(y—y")cosf+R,sinf (3.3)

and

R, =(x—x")cosn + zsinn (3.4)

as mentioned in Chapter 2.3. According to Eqn. (2.27),

g(x)=—R=—(y—y'")cos B+ (x—x")cosmsin B+ zsin7sin fB]. (3.5)

By equalizing the derivative of g (x’) to zero we get 77 as %.Then the double
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integral given in Eqn. (2.27) turns into a single integral which is

—JkR(x)

. b
U, (P) 2—%1{% J\/l—cosﬁo cos 3 +sin @, sin B e gy (3.6)

e
R(x,)

where

R(x,)=(y—y")cosf+zsinf. (3.7

The SPP method is applied to remaining y’ integral given in Eqn. (3.6) after the first

integral is solved. In this calculation, we get
g(y")=—zsinB—ycosB—y'(cos B—cosb,). (3.8)

When we make equal Eqn. (3.8) to zero, it gives S =6, . By using Eqn. (2.27), we

find U, as

UGO — _Uiejk(ycosﬁo—zsin 6y) (39)

where

rcos@

f = arcsin[— (3.10)

r’+ 7y’ +2yrsin@

according to Figure 9 given below. Both the incident and the reflected fields are

plane waves in this situation.
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Ay

Figure 9 Angles for GO fields for the geometry

3.2 Reflected scattered fields at the edges of the rectangular plate

For the edge of the rectangular plate, the double integral in Eqn. (2.27) is
solved by using both the SPP and EP methods, respectively. By following the same

way in Section 3.1, using the SPP method to find the fields in the “-b” edge of the

rectangular plate, we can find 7 as % In the second integral, we use the EP method,

since g'(y,) =cosf, —cos f3,, in this case [, # 6,. As a result, the fields at the edge

6‘_b’7 iS
o R
U,P)=U/(Q,)D,—— (3.11)
VKR,
where
R, =(ycos B, +zsin B,)+bcos 3, (3.12)
and
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. rcos @
B, = arcsin[—

3.13
r> +b* +2brsiné ( )

as shown in Figure 10.

Pxyzn)

roosd

Figure 10 Edge diffraction geometry

In Egn. (3.11),
Ui (Qe) — _Uiejkbcosgo (3.14)
and D, is a coefficient

b - cos(8, + 5,) -1
© 2(cos@, —cos B,)4 jxll —cos(8, - B,)]

(3.15)
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—JKkR,
kR,

incident plane wave is scattered as a cylindrical wave causing Keller’s Cone [5] in a

and the remaining coefficient is cylindrical wave factor. It means that the

Q, point in this situation. Edge diffracted fields exist for the line discontinuities;

while corner diffracted fields exist for a point discontinuity [26]. The main reason of
Keller’s Cone formed from the edge diffracted fields is these two types of
discontinuities [5].

In order to find the fields at “+b” edge, the same procedure is applied; firstly
SPP method to first integral and EP method to the second at “+b” edge. The reflected

scattered fields become

—JkR,

U,P)=U,(Q,)D, . (3.16)
\ KR,

In Eqn. (3.16),

U.(Q,)=-U,e"% (3.17)
and D, is a coefficient

D, = cos(@, +5,)—1 ‘ (3.18)
2(cos @, —cos f, )\/jfr[l —cos(8, — B,)]

In this case,

R, =(y—b)cos B, + zsin f3, (3.19)
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and

rcos@
r*+b*—2brsiné

B, = arcsin| (3.20)

o e
JKkR,

incident plane wave is scattered as a cylindrical wave.

and the remaining coefficient is cylindrical wave factor. It means that the

The remaining edges “-a” and “a” are calculated by using the same methods,
the SPP and EP methods. But for the edge of “-a”, the SPP method is applied to y’

integral firstly, and

g(y')=y'cosf, - R (3.21)

and also the derivative of g(y’) can be found as

g'(y")=cosf—cosb, =0 (3.22)

Eqn. (3.22) gives us S =6,. By using this result in the remaining integral, the

reflected scattered fields become

—JkRy

U,.(P)=U,Q,)D,~ (3.23)
VKR,
where
R, =(y, —y)cosf, +(x+a)cosnsinf, + zsin7nsin 6, (3.24)
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and

y, =y—cotf,\(x+a)’ +z°. (3.25)

In Eqn. (3.23), U,(Q,) term is

U, (Q,)=-U.e™ % (3.26)

and the coefficient D, is equal to

J1+sinn (3.27)

D, =-
2sin @, cosny/ jx

—JkRy
ViR,

incident plane wave is scattered as a cylindrical wave. Similarly, for the edge “a”,

and the remaining coefficient is cylindrical wave factor. It means that the

—JkR,

U, (P)=U,(0,)D, (3.28)
VKR,
and also R, y, are altered as
R, =(y, —y)cosé, +(x—a)cosnsin g, + zsinnsin b, (3.29)

and

y, =y—cotfp(x—a)’ +z°. (3.30)
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In Eqn. (3.28), U,(Q,) term is

U,(Q,)=-Ue" % (3.31)

and the coefficient D, is equal to

D A 1+sinn (3.32)

- 2sin @, cosny/ jxr

— kR,
JKR,

incident plane wave is scattered as a cylindrical wave.

and the remaining coefficient is cylindrical wave factor. It means that the

3.3 Reflected scattered fields at the corners of the rectangular plate

In order to find the reflected scattered fields at the corners of the rectangular
plate, the double integral in Eqn. (2.27) is solved by using the EP method twice. The
integrals at the corners of (a, b), (a,-b), (-a, b) and (-a,-b) should be calculated. In the

first corner, (a, b), the fields can be calculated as

—JjkRs

Urs (P) = Ui (Qe)De ¢

3.33
m (3.33)

where

U,(Q,)=-U.e"" (3.34)
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and

B \/1+sinnsinﬁsin 6, —cos fcos b,

D
272 jzsin® feos®

e

(3.35)

In Eqn. (3.33),

R, =(y—b)cos S+ (x—a)cosnsin S+ zsin Bsinn (3.36)

—JjkRs
The coefficient

in Eqn. (3.33) is spherical wave factor. The incident plane
5

wave is scattered as a spherical wave in a Q, point in this situation.

For the corner of (-a,-b), the reflected scattered fields can be expressed as

—JkRg

U,(P)=U,(Q,)D, ekR6 (337)
where
U (Q,)=-Ue (3.38)
and
- \/l+sinnsinﬁsin6’0 —cos fFcos b, ' (3.39)

272 jzsin® Beos’

In Eqn. (3.37),
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R, =(y+Db)cos B+ (x+a)cosnsin B+ zsin Bsiny (3.40)

e —JjkRg
The coefficient

in Eqn. (3.37) is spherical wave factor. The incident plane
6

wave is scattered as a spherical wave in a Q, point in this situation.

For the corner of (a,-b), the reflected scattered fields can be expressed as

— jkR
ej 7

U,P)=U,Q,)D, iR, (3.41)
where
U (Q,)=-U,e "% (3.42)
and
D - \/1+sinnsinﬂsin00 —cos fcos 6, . (3.43)
‘ 2\/5j7l'sin2,300827]
In Eqn. (3.41),
R, =(y+Db)cos S+ (x—a)cosnsin S+ zsin fBsing (3.44)

—JjkR;
The coefficient

in Eqn. (3.41) is spherical wave factor. The incident plane
7

wave is scattered as a spherical wave in a Q, point in this situation.

For the corner of (-a, b), the reflected scattered fields can be expressed as
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— jkRg

U, (P)=U,(Q,)D, ekR8 (3.45)
where

U.(Q,)=-U.e"" (3.46)
and

D - \/1+sinnsinﬂsin6?0 —cos fcos 6, . (3.47)
‘ 2\/5j7rsin2,3003277
In Eqn. (3.45),
R, = (y—b)cos S+ (x+a)cosnsin S+ zsin Bsin7 (3.48)

—JjkRg
The coefficient

in Eqn. (3.45) is spherical wave factor. The incident plane
8

wave is scattered as a spherical wave in a O, point in this situation.

3.4 Comparison with literature

In a similar study, published in 2010 by Moschovitis et. al. [14], the fields
scattered from a rectangular plate by using Stationary Phase method approximation
are considered.

In this three-dimensional scattering electromagnetic problem, ‘“‘vector

potential A” and “electric field E” are found. In this study, far field, Fresnel
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field and near field, which can be changed according to the observation distance, are
examined. Similar to this thesis, they used the SPP and EP methods. But it is
different from this thesis, because they find the fields by subtracting the areas which
are not a part of this geometry from the whole space. Moreover, they do not take
into account the effect of all angles of the rectangular plate during the double integral
calculation. In this thesis, all angles are considered to calculate the reflected scattered

fields at all corners and edges, and at the surface of the rectangular plate.
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CHAPTER 4

NUMERICAL RESULTS

In this chapter, numerical analysis is evaluated. The total reflected scattered
fields are plotted by using MATLAB tool.

In the numerical analysis in Figure 11 the incident angle is taken as 7z /6, and
r=6 A, where A is the wavelength of the diffracted wave. The limits of the

rectangular plate are taken as 4.

reflected scattered fields

180

Figure 11 Reflected scattered fields for tetaQ=pi./6
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The plotting is considered for the quarter of the plate, at the region of

% <@<0. As itis seen in Figure 11, incident angle is taken as 7 /6, the reflected

scattered field is also formed at vicinity of 7 /6 at the forth region.

In the numerical analysis in Figure 12, the incident angle is taken as 7z /3,

and r=6 1, where A is the wavelength of the diffracted wave. The limits of the

rectangular plate are taken as A. The plotting is considered for the quarter of the

plate, at the region of % <6 <0. As itis seen in Figure 12, incident angle is taken

as 7z /3, the reflected scattered field is also formed at vicinity of 7 /3 at the forth

region.

reflected scattered fields

180

Figure 12 Reflected scattered fields for teta0=pi./3;

In the numerical analysis in Figure 13, the incident angle is taken as 7z /4,

and r=6 A4, where A is the wavelength of the diffracted wave. The limits of the

34



rectangular plate are taken as A. The plotting is considered for the quarter of the
plate, at the region of % <60 <0. Asitis seen in Figure 13, incident angle is taken

as 7z /4, the reflected scattered field is also formed at vicinity of z/4 at the forth

region.

reflected scattered fields

180

270

Figure 13 Reflected scattered fields for teta0=pi./4;

We finally evaluated that the numerical analysis results are harmonious with the

physical behaviors of the fields.
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CHAPTER 5

CONCLUSIONS

In this study, we obtained the solution of the reflected scattered fields from a
rectangular flat plate by using the MTPO method. As we have discussed in Section
3.1, at the surface of the plate, we obtained Geometrical Optics field. At the edges
given in Section 3.2, we faced with cylindrical waves, and at the corners given in
Section 3.3, we obtained spherical waves as expected. Then, these waves are plotted
by using MATLAB tool and the reflected scattered fields are analyzed numerically.
According to the MATLAB plotting, we finally observed that the results of the

numerical analysis are harmonious with the physical behaviors of the fields above.
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APPENDIX

The Matlab code used for the plot of reflected scattered fields is given below;

clc

clear all;

1=0.1;

k=2.*pi./1;
teta=-pi./2:pi./100:0;
tetal=pi./6;
fi=-pi./2;

r=6*1;

Xx=r.*sin(teta).*cos (fi);
y=r.*sin(teta).*sin(fi);

z=r.*cos (teta);

N=100;

suml=0;

asinirl=-1;

usinirl=1l;
deltal=(usinirl-asinirl) ./N;
sum2=0;

asinir2=-1./2;

usinir2=1./2;

delta2=(usinir2-asinir?) ./N;

for p=1:N
xl=asinirl+ (p.*deltal);
for g=1:N
x2=asinir2+ (q.*delta2);

R=sqgrt (((x-x1).72)+((y—-x2) ."2)+(z.72));
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Rl=sqgrt (((x-x1).72)+(z."2));
beta=asin(R1l./R);
eta=asin(z./R1);
A=(-j.*k)./(2.*%pl);

K=sqgrt ((1-

cos (beta) . *cos (tetal) +sin(beta) .*sin(eta).*sin(tetal))./2);
G=exp(-j.*k.*R)./R;
T=exp(j.*k.*x2.*cos (tetal));
m=A.*G.*T.*K;

suml=suml+m;

sum2=sum2+suml;

end

end

f=sum2.*deltal.*delta2;
polar (teta,abs(f))

title('reflected scattered fields')
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