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ABSTRACT 

 

 

RADAR CROSS SECTION OF A CONDUCTING FLAT PLATE BY THE 

METHOD OF MODIFIED THEORY OF PHYSICAL OPTICS  

 

Çınar, Ayşe Tila 

M.S.c., Department of Electronic & Communication Engineering 

Supervisor : Assoc.Prof.Dr. Yusuf Ziya Umul 

 

 

September 2010, 51 pages 

 

 

 In this thesis, reflected scattered fields from a conducting rectangular flat 

plate, and its edges and corners are observed, calculated and analyzed by using the 

Method of Modified Theory of Physical Optics. In the calculations, two methods, 

named “Stationary Phase Point Method” and “Edge Point Method”, are used to solve 

scattering integrals manually. Numerical results of the calculations are evaluated by 

plotting them in the MATLAB tool. 

   

Keywords: Electromagnetic Fields, Electromagnetic Diffraction, Electromagnetic 

Scattering, Modified Theory of Physical Optics, Conducting Rectangular Flat Plate  
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ÖZ 

 
 

 

FİZİKSEL OPTİĞİN DEĞİŞTİRİLMİŞ TEORİSİ METODU İLE İLETKEN DÜZ 

PLAKANIN RADAR KESİT ALANININ İNCELENMESİ    

 

Çınar, Ayşe Tila 

Yüksek Lisans, Elektronik ve Haberleşme Mühendisliği Anabilim Dalı 

Tez Yöneticisi  : Doç.Dr. Yusuf Ziya Umul 

 

Eylül 2010, 51 sayfa 

 

Bu tezde, bir iletken dikdörtgen düz plakadan ve onun köşeleri ile 

kenarlarından yansıyan saçılan alanlar, Fiziksel Optiğin Değiştirilmiş Teorisi Metodu 

kullanılarak gözlemlenmiş, hesaplanmış ve incelenmiştir. Bu hesaplamalarda, 

saçılma integrallerini elle çözmek için “Stasyonel Faz Noktası Metodu” ve “Köşe 

Noktası Metodu” isimli iki metod kullanılmıştır. Hesaplamaların nümerik sonuçları 

Matlab aracında çizdirilerek değerlendirilmiştir. 

 

Anahtar Kelimeler: Elektromanyetik Alanlar, Elektromanyetik Kırınım, 

Elektromanyetik Saçılım, Fiziksel Optiğin Değiştirilmiş Teorisi, İletken Dikdörtgen 

Düz Plaka 
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CHAPTERS            CHAPTER 1 
 

 

INTRODUCTION 
 

 

 

1.1 Background of the study 
 

Diffraction is the process of breaking up or bending of waves (e.g. light 

waves) when they encounter an aperture or an obstacle. The problem of diffraction of 

a conducting half plane was first studied by Sommerfeld in 1896 [1]. Sommerfeld’s 

study can be accepted as the basis of the electromagnetic scattering literature. After 

his studies on the subject, many have been made about this problem since 19th 

century; some examples can be given as [2, 3, 4, 5 and 19]. Sommerfeld’s exact 

solution is the expression of Fresnel integrals [15, 26] and it consists of the sum of 

two waves, Geometrical Optics (GO) fields and diffracted fields.  

In Physics, when an object in space is assumed, its boundary conditions 

become considerable. They can be taken into account by using accurate geometry of 

the object. It can be accepted as an obstacle for electromagnetic waves. The observed 

electromagnetic waves without any obstacle in the space are named as the “incident 

waves”. When electromagnetic waves encounter an obstacle in space, “reflections”  
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occur from its surface, and “diffractions” occur at its edges, and more, “edge 

diffraction” occurs at its tangential regions. 

“Diffracted fields” appear from the interactions of discontinuities, in other 

words, diffracted fields are discontinuous. 

“GO fields” are the sum of all electromagnetic fields except diffracted fields, 

i.e. GO fields are the sum of incident, reflected and transmitted fields. The GO 

method explains that waves go ahead linearly along the rays, therefore GO fields are 

discontinuous.  

“Scattered fields” are the sum of GO fields and diffracted fields, and therefore 

continuous. This is due to the characteristic of the Fresnel function. Diffracted fields 

compensate the discontinuity of GO fields. The amplitude value of diffracted fields is 

always the half of the amplitude value of GO fields in transition regions. 

In the electromagnetic scattering literature, there are two types of high 

frequency methods to evaluate electromagnetic diffracted fields: One is ray based 

methods including Geometrical Optics (GO), Geometrical Theory of Diffraction 

(GTD), Uniform Theory of Diffraction (UTD), and Uniform Asymptotic Theory 

(UAT) [2, 5, 10, 11, 20]; and the other is current based methods known as Physical 

Optics (PO), Physical Theory of Diffraction (PTD), and Modified Theory of Physical 

Optics (MTPO)  [3, 4, 6, 13, 15]. 

The GO method, a ray based method, can be simply shown as the amplitude 

of wave multiply by an exponential term [26]. Despite this method is able to find the 

fields in illuminated areas, it can not solve the fields in shadow regions. To calculate 

the fields in a shaded area, diffracted waves must be considered. Keller noticed the 

lack of this method when applying it to the edges, corners and boundary surfaces [5]. 

According to him, the GO method could not express the fields at these regions, but 
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the method he developed, named GTD, does [5]. In spite of being very well-known 

and usage of some successful asymptotic techniques, according to GO method, fields 

become invalid in transition regions in the evaluation of scattered fields and in the 

asymptotic evaluation of the diffracted fields. Since the denominator of the equation 

becomes zero, fields go to the infinity. Keller in 1952 tried to clarify this point [5]. 

According to him, GTD coefficients are non-uniform, and therefore they become 

zero in transition regions. The advantage of his clarification is that it makes easy to 

understand features of scattered fields. However, GTD method can not calculate the 

fields on transition regions [4, 20]. The UTD method formulated by Pathak and 

Kouyoumjian in 1974 [2], and the UAT method developed by Ahluwalia, Lewis and 

Boersma [10, 11] can deal with this problem. While UAT obtains uniform solution 

by modifying the GO fields, UTD modifies the diffracted fields for the continuity 

across shadow and reflection boundaries by multiplying the diffraction coefficient by 

a Fresnel integral [16]. But the UTD and UAT methods are still insufficient to 

calculate the diffracted fields at foci, caustics and shadow regions, because the 

amplitude of approximate solution becomes infinity at caustics and there are no real 

rays passing through shadow regions [18]. To cope with this insufficiency, the PO 

and PTD methods, current based methods, are suggested by Macdonald and 

Ufimtsev, respectively [27, 3]. 

Diffraction phenomenon has been popular for many researchers and has been 

studied in many aspects for many years. Satterwhite [21], for example, obtained 

diffraction from angular sector of a perfectly conducting quarter plane in spheroconal 

coordinates. He firstly derived the dyadic Green’s function by using the method of 

the separation of variables [22]. He used the “eigenfunction expansion method” to 

get the exact solution. Hansen obtained a corner diffraction coefficient based on 
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exact solution of a canonical scattering problem [23]. He obtained induced surface 

current density near a corner on a scatterer by calculating physical optics current, 

fringe wave current and corner current.  Zhang  et. al. [24] dealt with the corner 

diffraction formula which can be derived by evaluating the radiation integral 

asymptotically by using (ordinary) equivalent edge currents. Different from ordinary 

equivalent edge currents, he used the UTD method, and therefore he got the result 

that was uniformly continuous through the entire far field region. Sıkta et al. [25] 

used the modified equivalent current concept to find corner diffraction scattering 

from flat plate structures. As another example, Hill and Pathak [20] used the UTD 

method to evaluate the electromagnetic diffraction in the corner of a plane angular 

sector. In this study, apart from incident, reflected and edge diffracted fields, they 

have defined a uniform corner diffraction term and by calculating this term, they 

have found the UTD corner diffracted field term. As it is seen, the function of the 

diffracted fields that all above researchers have been interested in is to compensate 

the discontinuities of the GO fields at the transition regions [9]. 

Two different edge diffracted waves occur in a diffraction problem of a 

conducting surface [26]: One of them is incident diffracted waves compensating the 

discontinuities of the incident fields at the shadow boundary. The other is the 

reflected diffracted fields compensating the discontinuities of the reflected fields at 

the reflection boundary.  

According to the PO method, incident fields form a surface current on surface 

body and this current is integrated over the surface body. The current on the surface 

body acts as a secondary source of electromagnetic fields and this results a current on 

lit sides, but not on shaded sides. The PO method is defined for perfectly conducting 

surfaces, but it does not give the exact solution for diffraction problems [3]. An 
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enhanced version of the PO method, named as PTD, is firstly discussed by Ufimtsev 

[3], and is able to evaluate the fields at foci, caustics and shadow boundaries and to 

give the asymptotic solution of diffraction. To calculate and evaluate diffraction 

effects on the fields, a non-uniform current, called fringe current, is added to the 

ordinary uniform current. The PTD method uses fringe current (a non-uniform 

current) addition to real physical optics current (an ordinary uniform current) 

appearing on the surface of a scatterer.  

MTPO, developed by Umul [4], is a method capable of finding the exact 

diffracted waves for scattering problems caused by conducting geometries. The 

MTPO method eliminates the erroneous edge effect on the scattering integral [4]. 

Since a complementary aperture surface is taken into account in addition to the 

surface of the scatterer, the MTPO method can evaluate the total scattered fields.  

Radar Cross Section (RCS) is a reflecting factor of electromagnetic radar 

waves of a body [8]. Theσ  term is the RCS which is equal to  

2

2

22 44 limlim
i

s

ri

s

r E

E
r

S

S
r ππσ

∞→∞→

==      (1.1) 

where  iS , sS , iE , sE  and r are the incident power density, scattered power density, 

incident electric field, scattered field and the distance from target to observation 

point, respectively [8].  

1.2 Objectives of the thesis 
 

The aim of this thesis is to obtain the electromagnetic scattered fields at all 

points of a conducting rectangular flat plate by using the MTPO method. The 

reflected scattered fields at the edges, corners and at the surface of the plate are 

firstly observed, then by using Matlab tool, these fields are plotted and evaluated. 
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1.3 Organization of the thesis 
 

This thesis contains five chapters and is organized as follows: 

Chapter 1 provides the introduction of the thesis. It consists of three subparts; 

a background of the study, objectives of the thesis and organization of the thesis. 

Chapter 2 is an overview of the study. It has three subparts. The first 

mentions about the PO method and the second is the MTPO method used in this 

thesis, and the third is about the geometry of this study; the fields, the angles etc. 

Chapter 3 discusses the reflected scattered fields. It is composed of four 

subparts. The first three parts mention about the reflected scattered fields at the 

surface of the plate, at the edges and at the corners, respectively. The last subpart is a 

comparison of this study with literature. 

Chapter 4 contains numerical results. This chapter evaluates the results given 

in Chapter 3. In other words, it has Matlab results and comments on the figures.  

Chapter 5 is a conclusion part. This chapter summarizes the main points and 

results of the study together. 
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CHAPTER 2 
 

 

OVERVIEW  
 

 

 

2.1 Physical optics 
 

According to the PO method, incident fields form a surface current on surface 

body and this current POJ
r

 is integrated over the surface body. Figure 1 gives the PO 

structure. iH
r

 is the incident magnetic field at the surface. 

 

Figure 1 Physical optics 
 

The current on the surface body acts as a secondary source of electromagnetic 

fields and this results a current on lit sides, but not on shaded sides.  
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The first condition is given as 

  

 

0=
S

Exn
rr

     (2.1) 

where n
r

 is the unit vector of the surface and inside the conductor there is neither 

magnetic fields nor electric fields, so   

0== insideinside EH
rr

     (2.2) 

 

Since this is a perfectly electric conductor, reflection occurs. The fields reflect 

to space as if the source is this perfectly electric conductor. This reflection fields can 

be found by using this method. In the perfectly electric conductor there is no charge 

density, but there is current density. This current density is evaluated, because this is 

the reason of radiation. For perfectly electric conductor second boundary condition is  

 

S
TPO HxnJ

rrr
=      (2.3) 

where 

 

riT HHH
rrr

+=     (2.4) 

 

which gives the total magnetic fields.  

 

S
r

S
i HH

rr
=      (2.5) 
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where rH
r

 is the reflected field at the surface. According to Eqn. (2.4), one obtains 

 

S
i

S
T HH

rr
2=      (2.6) 

which means that total magnetic fields are twice of magnetic fields’ tangential 

component at the surface. Eqn. (2.3) can be rewritten as  

 

S
iPO HxnJ

rrr
2= .    (2.7) 

 

In the shadow region, there are no fields. But in the lit region, the current given in 

Eqn. (2.7) is considered. The physical optics integral can be written as 

 

')'(
4

'

0 dV
R

e
rJA

jkR

V

−

∫∫∫=
rrr

π

µ
    (2.8) 

 

where  )'(rJ
rr

 is the induced current on the surface, and 
R

e
jkR−

 is Green’s function. 

By using Eqn. (2.7) one can rearrange Eqn. (2.8) as 

 

'
2

'

0 dV
R

e
HxnA

jkR

V
S

i

−

∫∫∫=
rrr

π

µ
.    (2.9) 

In PO method, stationary phase of the scattering integrals gives exact 

geometrical optics fields. But at the edges, EP method gives the edge diffracted fields 

incorrectly [7]. Also, in the scattering integral only the perfectly conducting surface 

is considered and the aperture part is neglected. Besides, when reflected and 
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reflected diffracted fields are evaluated, there will not be any information about 

incident and incident diffracted fields [4]. 

2.2 Modified theory of physical optics 
 

The MTPO has been proposed by Umul [4] as a new method to find the exact 

diffracted waves for scattering problems by conducting geometries. It has the 

advantage of the eliminating of the erroneous edge effect of the PO method on the 

scattering integral. So, it can be said that the MTPO method is an improved version 

of the PO method.   

By using the MTPO method, one can directly derive the exact scattered fields 

from the asymptotic evaluation of the surface integral of the PO method [4]. It 

directly gives the exact edge-diffracted waves. This method was also applied to 

wedge diffraction problems by Umul [13]. The MTPO integrals which are uniform 

asymptotic evaluation techniques are divided into two integrals according two their 

boundaries: Exact diffracted fields and geometrical optics fields constitute the 

asymptotic evaluation of the MTPO integrals. This method helps to express the 

integrals in terms of the GO fields and Fresnel functions [12]. Umul has defined 

three assumptions in this method [4]: One of them is that the reflection angle is a 

function of integral variables, i.e., it is calculated inside the integral as a variable 

function. Secondly, he has defined a new unit vector which is not constant and 

divides the angles between the incident and reflected fields into two equal parts. This 

variable unit vector does not affect geometrical optics fields since this unit vector is 

equal to the actual normal vector at the stationary phase point. MTPO gives the exact 

diffracted fields at the edge point [7]. Finally, he has considered the perfectly 

conducting surface with an aperture part together.  

 



 

 
11 

2.3 Rectangular plate geometry 
 

The reflected scattered fields from a rectangular plate can be calculated and 

evaluated by using the method of the MTPO. The 3-dimensional geometry of the 

rectangular plate is given in Figure 2. As it is seen in the figure, the rectangular plate 

lies down on z axis. Its height in the z axis is assumed as negligible. It has a length 

from –a to +a in x axis, and similarly width from –b to +b in y axis. λ  is the 

wavelength and there is a condition that the lengths of the rectangular plate which are 

2a and 2b should be greater than the value of this wavelength, λ . Also, the distance 

to the observation point should be greater than the wavelength, λ . 

 

Figure 2 Geometry of rectangular flat plate 
 

 

In this study, the surface of the rectangular plate is assumed as “soft surface” 

(providing Dirichlet Condition; the condition that the total of fields over a surface is 

zero). For a soft surface, a minus sign (-) can be put in front of the scattering integral. 

If a surface was accepted as “hard surface” (providing Neumann Condition; the 
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condition that the derivative of the total fields with respect to unit vector over the 

surface is zero), a plus sign (+) would be put in front of the scattering integral. 

 
Figure 3 Geometry of incident and reflected scattered fields 

 
 

Here, 0θ  is the incident angle, η  is the angle between x and z axis, and 

similarly, β  is the angle between y and z axis. From the geometry we can calculate 

R as 

 

ββ sincos)'( 1RyyR +−=     (2.10) 

 
depends on 1R , which is 

 

ηη sincos)'(1 zxxR +−=     (2.11) 

 

in terms of angles that will be explained in Chapter 3 Section 3.1. In Figure 3, 

P(x,y,z) is the observation point, and iU  is the incident field. It encounters x-y plane 

at x=x’ and y=y’. This point is called Q as shown in Figure 3. The Q point changes 

on the surface. When R projects to x-y plane, α  can be easily found between 
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this projection and y axis which is depicted in Figure 3. The incident electric field is 

 

)sincos( 00 θθ zyjk

ixi eEeE
+=

rr
    (2.12) 

 

and the reflected electric field is 

 

)sincoscoscossin( αβαββ
ρ

yxzjk

rr eEeE
−+−=

rr
   (2.13) 

 

where 

 

ααρ sincos xy eee
rrr

+= .    (2.14) 

 

The incident field’s direction is 

 

zyi ees
rrr

00 sincos θθ −−=     (2.15) 

 

and the reflected field’s direction is 

 

zyxr eees
rrrr

ηββηβ sinsincoscossin +−=    (2.16) 

 

It is mentioned in [4, 6] that the defect of the PO method consists of a constant 

normal vector between the incident field and the diffracted field. The MTPO method 

eliminates this defect by using a variable normal vector 1n
r

, dividing the directions of 

incident and reflected fields into two equal angles. It is defined as  

 

zyx ecebean
rrrr

++=1 .     (2.17) 
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Figure 4 Reflection geometry 

 

The geometry about those directions is depicted in Figure 4 [7]. By using the 

following cosine equations 

 

uuu
22 sin212cos1cos2 −==− ,    (2.18) 

and also considering Figure 5, some equations are found.  

 
 

Figure 5 Variable unit vector 
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These equations consist of the dot product and the cross product of incident and 

reflected rays with the variable unit vector. These are  

 

usn r cos1 =⋅
rr

     (2.19) 

 

and 

 

usn i cos1 −=⋅
rr

    (2.20) 

 

and also 

 

uss ri 2cos−=⋅
rr

    (2.21) 

 

which are the dot product equations. Also the cross product can be written as 

 

0)(1 =−× ri ssn
rrr

.    (2.22) 

 

By solving the Eqns. (2.18), (2.19), (2.20), (2.21) and (2.22) together, a, b and c 

coefficients in the 1n
r

 unit vector can be found as  

 

)sinsinsincoscos1(2

)cos(sin

00 θηβθβ

ηβ

+−

−
= xe

a

r

,   (2.23) 

 

and 

 

)sinsinsincoscos1(2

)cos(cos

00

0

θηβθβ

βθ

+−

−−
=

ye
b

r

   (2.24) 
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and  

)sinsinsincoscos1(2

)sinsin(sin

00

0

θηβθβ

βηθ

+−

+−
= ze

c

r

.   (2.25) 

By inserting Eqns. (2.23), (2.24) and (2.25) into 1n
r

, we can clearly get 1n
r

 as 

 

)sinsinsincoscos1(2

)sinsin(sin)cos(cos)cos(sin

00

00

1
θηβθβ

βηθβθηβ

+−

++−+
−=

zyx eee
n

rrr
r

. (2.26) 

 

Exact diffraction coefficients can be found from the asymptotic evaluation of the 

MTPO integrals. The general formula of reflected scattered fields given in [15] is 

 

''),,(
2

)( 0cos'

'

0

'

dxdye
R

e
f

jk
UPU

jky
jkRb

by

a

ax

irs

θθηβ
π

−

−=−=

∫∫−= .  (2.27) 

 

Eqn. (2.27) is a double integral and depends on the angles given in Figure 3 and 

variable R. Beside of Eqn. (2.10), R can be expressed as 

 

222 )'()'( zyyxxR +−+−=    (2.28) 

 
which has a dependency of Cartesian coordinates. By using the Eqn. (1.1), one can 

easily find the RCS of the fields given in Eqn. (2.27). 

In the Eqn. (2.27), ),,( 0θηβf  is equal to 10 ),,( nsf i

rr
⋅=θηβ   when Figure 3 

and Figure 4 are observed. The crucial point of the MTPO method is this scalar 

product [15] given in Eqn. (2.29). Finally, ),,( 0θηβf  becomes  
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2

sinsinsincoscos1
),,( 00

0

ηβθβθ
θηβ

+−
−=f  . (2.29) 

 

The calculation of the integral given in Eqn. (2.27) gives us 9 separate 

integrals’ solution. One of them is taken into account for the surface of the 

rectangular plate whose height is too small to consider. Two integrals are taken into 

account for two edges of this rectangular plate and other two integrals are considered 

for its other two edges. The remaining four integrals are measured for the corners 

which are the points of (a, b), (a,-b), (-a, b) and (-a,-b). 

In these calculations, we deal with two types of integral solving method. First, 

named Stationary Phase Point (SPP) method, is 

 

)()(

)(''

)(2
)( sxjkg

s

s

b

a

xjkg
e

xg

xf

jk
dxexfI

π
≈= ∫    (2.30) 

 

where f(x) and g(x) are the real-valued amplitude and phase function, respectively. 

Also, f(x) indicates the surface current induced on the surface and g(x) is the ray path 

of the scattered fields [17]. sx can be found when derivative of g(x) is equal to 0. 

This method is used to measure the GO fields.  

Second method, used in this study, is Edge Point (EP) method equal to 

 

)()(

)('

)(1
)( e

e

xjkg

e

e

x

xjkg
e

xg

xf

jk
dxexfII ≈= ∫

∞

   (2.31) 

 

and it is used for edge points or corners. The EP method gives us the contribution of 

the edges and corners to the total fields.  
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According to the Figure 6 ; 

(1) can be found by the SPP method twice, it gives the GO fields of the plate 

(since when the PO fields are evaluated by using the SPP method, the GO fields 

are obtained); 

(2) is the corner point of (-a,-b) and it can be found by using the EP method 

twice; 

(3) is the corner point of (-a,b) and it can be found by using the EP method twice; 

 (4) is the corner point of (a,-b) and it can be found by using the EP method 

twice; 

(5) is the corner point of (a,b) and it can be found by using the EP method twice; 

 

 

 

 

Figure 6 Separation each of the diffraction parts 
 
 

(6) is the edge of “-a”, it can be found by applying the SPP method to y’ 

integrand, and by applying the EP method to x’ integrand (at x’=-a point), 

respectively; 
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(7) is the edge of “a”, it can be found by applying the SPP method to y’ 

integrand, and by applying the EP method to x’ integrand (at x’=a point), 

respectively; 

(8) is the edge of “-b”, it can be found by applying the SPP method to x’ 

integrand, and by applying the EP method to y’ integrand (at y’=-b point), 

respectively and 

(9) is the edge of “b”, it can be found by applying the SPP method to x’ 

integrand, and by applying the EP method to y’ integrand (at y’=-b point), 

respectively. 
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CHAPTER 3 
 

 

REFLECTED SCATTERED FIELDS 
 

 

 

3.1 Reflected scattered fields at the surface the rectangular plate 
 

For the surface of the rectangular plate, the double integral is solved in Eqn. 

(2.27) by using the SPP method twice.  

 

 

Figure 7 First triangle inside the geometry 
 
As depicted in Figure 7, the equality of  

ββ cos

'

sin
1 yy

R
R −

==      (3.1) 
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can be found from sine theorem. Similarly, from Figure 8, it can be seen that 

ηη cos

'

sin
1

xxz
R

−
== .     (3.2) 

 

 

Figure 8 Second triangle inside the geometry 

 

In order to use the SPP method for x’ integral, the sine theorem gives us R as 

 

ββ sincos)'( 1RyyR +−=     (3.3) 

 

and 

 

ηη sincos)'(1 zxxR +−=     (3.4) 

 

as mentioned in Chapter 2.3. According to Eqn. (2.27), 

 

]sinsinsincos)'(cos)'[()'( βηβηβ zxxyyRxg +−+−−=−= .  (3.5) 

By equalizing the derivative of g (x’) to zero we get η  as 
2

π
.Then the double 
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integral given in Eqn. (2.27) turns into a single integral which is  

 

'
)(

sinsincoscos1
2

)( 0cos'
)(

'

00 dye
xR

ejkU
PU

jky

s

xjkRb

by

i

rs

s

θβθβθ
π

−

−=

∫ +−−=     (3.6) 

 

where 
 

ββ sincos)'()( zyyxR s +−= .   (3.7) 

 

The SPP method is applied to remaining y’ integral given in Eqn. (3.6) after the first 

integral is solved. In this calculation, we get 

 

)cos(cos'cossin)'( 0θβββ −−−−= yyzyg .  (3.8) 

 

When we make equal Eqn. (3.8) to zero, it gives 0θβ = . By using Eqn. (2.27), we 

find GOU  as 

 

)sincos( 00 θθ zyjk

iGO eUU
−−=     (3.9) 

 
where  
 

]
sin2

cos
arcsin[

22 θ

θ
β

yryr

r

++
=    (3.10) 

 
according to Figure 9 given below. Both the incident and the reflected fields are 

plane waves in this situation. 
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Figure 9 Angles for GO fields for the geometry 

 
 

3.2 Reflected scattered fields at the edges of the rectangular plate 
 

For the edge of the rectangular plate, the double integral in Eqn. (2.27) is 

solved by using both the SPP and EP methods, respectively. By following the same 

way in Section 3.1, using the SPP method to find the fields in the “-b” edge of the 

rectangular plate, we can find η  as 
2

π
. In the second integral, we use the EP method, 

since eeyg βθ coscos)(' 0 −= , in this case 0θβ ≠e . As a result, the fields at the edge  

“-b” is 

 

1

1

)()(
kR

e
DQUPU

jkR

eeirs

−

=     (3.11) 

 

where 

eee bzyR βββ cos)sincos(1 ++=     (3.12) 

and  
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]
sin2

cos
arcsin[

22 θ

θ
β

brbr

r
e

++
=    (3.13) 

 

as shown in Figure 10. 

 

 

Figure 10 Edge diffraction geometry 

 
 

In Eqn. (3.11), 

 

0cos)( θjkb

iei eUQU −=     (3.14) 

 

and eD  is a coefficient  

 

)]cos(1[)cos(cos2

1)cos(

00

0

ee

e

e
j

D
βθπβθ

βθ

−−−

−+
=   (3.15) 
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and the remaining coefficient 
1

1

kR

e
jkR−

 is cylindrical wave factor. It means that the 

incident plane wave is scattered as a cylindrical wave causing Keller’s Cone [5] in a 

eQ  point in this situation. Edge diffracted fields exist for the line discontinuities; 

while corner diffracted fields exist for a point discontinuity [26]. The main reason of 

Keller’s Cone formed from the edge diffracted fields is these two types of 

discontinuities [5].   

In order to find the fields at “+b” edge, the same procedure is applied; firstly 

SPP method to first integral and EP method to the second at “+b” edge. The reflected 

scattered fields become 

 

2

2

)()(
kR

e
DQUPU

jkR

eeirs

−

= .    (3.16) 

 

In Eqn. (3.16), 

 

0cos)( θjkb

iei eUQU −=      (3.17) 

 

and eD  is a coefficient 

 

)]cos(1[)cos(cos2

1)cos(

00

0

ee

e

e
j

D
βθπβθ

βθ

−−−

−+
= .  (3.18) 

 

In this case,  

ee zbyR ββ sincos)(2 +−=     (3.19) 
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and  

]
sin2

cos
arcsin[

22 θ

θ
β

brbr

r
e

−+
=    (3.20) 

 

and the remaining coefficient  
2

2

kR

e
jkR−

 is cylindrical wave factor. It means that the 

incident plane wave is scattered as a cylindrical wave. 

The remaining edges “-a” and “a” are calculated by using the same methods, 

the SPP and EP methods. But for the edge of “-a”, the SPP method is applied to y’ 

integral firstly, and 

 

Ryyg −= 0cos')'( θ      (3.21) 

 

and also the derivative of g(y’) can be found as 

 

0coscos)'(' 0 =−= θβyg     (3.22) 

 

Eqn. (3.22) gives us 0θβ = . By using this result in the remaining integral, the 

reflected scattered fields become  

 

3

3

)()(
kR

e
DQUPU

jkR

eeirs

−

=     (3.23) 

 
where 

 

0003 sinsinsincos)(cos)( θηθηθ zaxyyR s +++−=   (3.24) 
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and  

22
0 )(cot zaxyys ++−= θ .   (3.25) 

 

 In Eqn. (3.23), )( ei QU  term is 

  
0cos)( θsjky

iei eUQU −=     (3.26) 

 

and the coefficient 
eD  is equal to 

 

πηθ

η

j
De

cossin2

sin1

0

+
−=     (3.27) 

 

and the remaining coefficient 
3

3

kR

e
jkR−

 is cylindrical wave factor. It means that the 

incident plane wave is scattered as a cylindrical wave. Similarly, for the edge “a”,  

 

4

4

)()(
kR

e
DQUPU

jkR

eeirs

−

=     (3.28) 

 

and also 4R , sy  are altered as 

 

0004 sinsinsincos)(cos)( θηθηθ zaxyyR s +−+−=   (3.29) 

 
and  

22
0 )(cot zaxyys +−−= θ .   (3.30) 
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In Eqn. (3.28), )( ei QU  term is  

 
0cos)( θsjky

iei eUQU −=     (3.31) 

 

and the coefficient eD  is equal to 

 

πηθ

η

j
De

cossin2

sin1

0

+
−=     (3.32) 

 

and the remaining coefficient 
4

4

kR

e
jkR−

 is cylindrical wave factor. It means that the 

incident plane wave is scattered as a cylindrical wave. 

 

3.3 Reflected scattered fields at the corners of the rectangular plate 
 

In order to find the reflected scattered fields at the corners of the rectangular 

plate, the double integral in Eqn. (2.27) is solved by using the EP method twice. The 

integrals at the corners of (a, b), (a,-b), (-a, b) and (-a,-b) should be calculated. In the 

first corner, (a, b), the fields can be calculated as  

 

5

5

)()(
kR

e
DQUPU

jkR

eeirs

−

=     (3.33) 

 
where  

 

0cos)( θjkb

iei eUQU −=      (3.34) 
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and 

 

ηβπ

θβθβη
22

00

cossin22

coscossinsinsin1

j
De

−+
= .   (3.35) 

 

In Eqn. (3.33), 

 
ηββηβ sinsinsincos)(cos)(5 zaxbyR +−+−=   (3.36) 

 

The coefficient 
5

5

kR

e
jkR−

 in Eqn. (3.33) is spherical wave factor. The incident plane 

wave is scattered as a spherical wave in a 
eQ  point in this situation.  

For the corner of (-a,-b), the reflected scattered fields can be expressed as 

 

6

6

)()(
kR

e
DQUPU

jkR

eeirs

−

=     (3.37) 

 

where  

 

0cos)( θjkb

iei eUQU
−−=     (3.38) 

 
and 

 

ηβπ

θβθβη
22

00

cossin22

coscossinsinsin1

j
De

−+
= .   (3.39) 

 

In Eqn. (3.37), 
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ηββηβ sinsinsincos)(cos)(6 zaxbyR ++++=   (3.40) 

 

The coefficient 
6

6

kR

e
jkR−

 in Eqn. (3.37) is spherical wave factor. The incident plane 

wave is scattered as a spherical wave in a eQ  point in this situation.  

For the corner of (a,-b), the reflected scattered fields can be expressed as 

 

7

7

)()(
kR

e
DQUPU

jkR

eeirs

−

=     (3.41) 

 

where  

 

0cos)( θjkb

iei eUQU
−−=     (3.42) 

 

and 

 

ηβπ

θβθβη
22

00

cossin22

coscossinsinsin1

j
De

−+
= .   (3.43) 

 

In Eqn. (3.41), 

 
ηββηβ sinsinsincos)(cos)(7 zaxbyR +−++=   (3.44) 

 

The coefficient 
7

7

kR

e
jkR−

 in Eqn. (3.41) is spherical wave factor. The incident plane 

wave is scattered as a spherical wave in a eQ  point in this situation.  

For the corner of (-a, b), the reflected scattered fields can be expressed as 
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8

8

)()(
kR

e
DQUPU

jkR

eeirs

−

=     (3.45) 

 

where  

 

0cos)( θjkb

iei eUQU −=      (3.46) 

 

and 

 

ηβπ

θβθβη
22

00

cossin22

coscossinsinsin1

j
De

−+
= .   (3.47) 

 

In Eqn. (3.45), 

 

ηββηβ sinsinsincos)(cos)(8 zaxbyR +++−=                   (3.48) 

 

The coefficient 
8

8

kR

e
jkR−

 in Eqn. (3.45) is spherical wave factor. The incident plane 

wave is scattered as a spherical wave in a eQ  point in this situation.  

3.4 Comparison with literature 
 

In a similar study, published in 2010 by Moschovitis et. al. [14], the fields 

scattered from a rectangular plate by using Stationary Phase method approximation 

are considered.  

In this three-dimensional scattering electromagnetic problem, “vector 

potential A” and “electric field E” are found. In this study, far field, Fresnel 
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field and near field, which can be changed according to the observation distance, are 

examined. Similar to this thesis, they used the SPP and EP methods. But it is 

different from this thesis, because they find the fields by subtracting the areas which 

are not a part of this geometry from the whole space. Moreover, they do not  take 

into account the effect of all angles of the rectangular plate during the double integral 

calculation. In this thesis, all angles are considered to calculate the reflected scattered 

fields at all corners and edges, and at the surface of the rectangular plate.  
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CHAPTER 4 
 

 

NUMERICAL RESULTS 
 

 

 

In this chapter, numerical analysis is evaluated. The total reflected scattered 

fields are plotted by using MATLAB tool. 

In the numerical analysis in Figure 11 the incident angle is taken as 6/π , and  

r=6 λ , where λ  is the wavelength of the diffracted wave. The limits of the 

rectangular plate are taken as λ .  
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Figure 11 Reflected scattered fields for teta0=pi./6 
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The plotting is considered for the quarter of the plate, at the region of 

0
2

<<
−

θ
π

. As it is seen in Figure 11, incident angle is taken as 6/π , the reflected 

scattered field is also formed at vicinity of 6/π  at the forth region. 

In the numerical analysis in Figure 12, the incident angle is taken as 3/π , 

and r=6 λ , where λ  is the wavelength of the diffracted wave. The limits of the 

rectangular plate are taken as λ . The plotting is considered for the quarter of the 

plate, at the region of 0
2

<<
−

θ
π

. As it is seen in Figure 12, incident angle is taken 

as 3/π , the reflected scattered field is also formed at vicinity of 3/π  at the forth 

region. 
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Figure 12 Reflected scattered fields for teta0=pi./3; 

 
In the numerical analysis in Figure 13, the incident angle is taken as 4/π , 

and r=6 λ , where λ  is the wavelength of the diffracted wave. The limits of the 
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rectangular plate are taken as λ . The plotting is considered for the quarter of the 

plate, at the region of  0
2

<<
−

θ
π

. As it is seen in Figure 13, incident angle is taken 

as 4/π , the reflected scattered field is also formed at vicinity of 4/π  at the forth 

region. 
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Figure 13 Reflected scattered fields for teta0=pi./4; 

 

We finally evaluated that the numerical analysis results are harmonious with the 

physical behaviors of the fields. 
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CHAPTER 5 

 

 

CONCLUSIONS 
 

 

 

In this study, we obtained the solution of the reflected scattered fields from a 

rectangular flat plate by using the MTPO method. As we have discussed in Section 

3.1, at the surface of the plate, we obtained Geometrical Optics field. At the edges 

given in Section 3.2, we faced with cylindrical waves, and at the corners given in 

Section 3.3, we obtained spherical waves as expected. Then, these waves are plotted 

by using MATLAB tool and the reflected scattered fields are analyzed numerically. 

According to the MATLAB plotting, we finally observed that the results of the 

numerical analysis are harmonious with the physical behaviors of the fields above.  
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APPENDIX 

 

 

 

The Matlab code used for the plot of reflected scattered fields is given below; 

clc 

clear all;  

l=0.1; 

k=2.*pi./l; 

teta=-pi./2:pi./100:0; 

teta0=pi./6; 

fi=-pi./2; 

r=6*l; 

 

x=r.*sin(teta).*cos(fi); 

y=r.*sin(teta).*sin(fi); 

z=r.*cos(teta); 

  

N=100; 

sum1=0; 

asinir1=-l; 

usinir1=l; 

delta1=(usinir1-asinir1)./N; 

sum2=0; 

asinir2=-l./2; 

usinir2=l./2; 

delta2=(usinir2-asinir2)./N; 

  

for p=1:N 

x1=asinir1+(p.*delta1); 

for q=1:N 

x2=asinir2+(q.*delta2); 

R=sqrt(((x-x1).^2)+((y-x2).^2)+(z.^2)); 
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R1=sqrt(((x-x1).^2)+(z.^2)); 

beta=asin(R1./R); 

eta=asin(z./R1); 

A=(-j.*k)./(2.*pi); 

K=sqrt((1-

cos(beta).*cos(teta0)+sin(beta).*sin(eta).*sin(teta0))./2); 

G=exp(-j.*k.*R)./R; 

T=exp(j.*k.*x2.*cos(teta0)); 

m=A.*G.*T.*K; 

sum1=sum1+m; 

sum2=sum2+sum1; 

end 

end 

f=sum2.*delta1.*delta2; 

polar(teta,abs(f)) 

title('reflected scattered fields') 

 


	Page 1
	Page 1

