

ITERATIVE DECODING OF BLOCK CODES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

ÇANKAYA UNIVERSITY

BY

FATĐH GENÇ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

ELECTRONIC AND COMMUNICATION

ENGINEERING

SEPTEMBER 2010

Approval of the Graduate School of Natural and Applied Sciences, Çankaya
University

Prof. Dr. Taner ALTUNOK
Director

i certify that this thesis satisfies all the requirements as a thesis for the
degree of Master of Science.

C-t~
~Assoc. Prof. Dr. Celal Zaim ÇiL

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of
Science.

O~tAssist. Prof. ~ rhan GAZi
Supervisor

Assoc. Prof. Dr. Celal Zaim ÇiL

Assist. Prof. Dr. Orhan GAZi

 iv

ABSTRACT

ITERATIVE DECODING OF BLOCK CODES

Genç, Fatih

M.Sc., Department of Electronic and Communication Engineering

Supervisor : Assist. Prof. Dr. Orhan Gazi

September 2010, 57 Pages

Error control coding is vital for digital communication. With the advent of

turbo codes a huge interest on iterative decoding aroused recently. Although

iterative decoding reduces bit error rate (BER) significantly, it brings new

challenges such as increased complexity and large decoding delays. Turbo

like codes can be constructed either using convolutional codes or block

codes. In this thesis we construct classical turbo codes with both

convolutional codes and block Bose Chaudhuri and Hocquenghem (BCH)

codes, and simulate their performances and discuss their advantages and

disadvantages.

Key Words : BCH Codes, Iterative Decoding, Turbo Code

 v

ÖZ

 BLOK KODLARDA DÖNGÜLÜ KODÇÖZME

Genç, Fatih

Yükseklisans, Elektronik ve Haberleşme Mühendisliği Anabilim Dalı

Tez Yöneticisi : Yrd. Doç. Dr. Orhan Gazi

Eylül 2010, 57 Sayfa

Hata kontrollü kodlama dijital iletişim için hayati öneme sahiptir. Turbo

kodların gelişi iteratif çözümleme üzerine büyük bir ilgi uyandırdı. Đteratif

çözümleme BER’i önemli ölçüde azaltmasına rağmen, artan karmaşıklık ve

çözümleme gecikmeleri gibi yeni sorunlar oluşturur. Turbo kodlar katlamalı

kodlar veya blok kodlar kullanılarak yapılabilir. Bu tez çalışmasında katlamalı

kodlar ve blok BCH kodları kullanılarak klasik turbo kodları inşası ve onların

performansları, avantaj ve dezavantajları tartışılmıştır.

Anahtar Kelimeler : BCH Kodlar, Döngülü Kod Çözme, Turbo Kod

 vi

ACKNOWLEDGMENTS

I am grateful to my supervisor Assist. Prof. Dr. Orhan Gazi for his patience,

guidance, encouragement and intellectual support.

I also wish to thank to Assoc. Prof. Dr. Celal Zaim Çil for his criticisms and

comments. He shed light upon my intellectual map for my further studies.

I owe too much to my family, especially; to my grandmother Sultan Uzuner

for the life energy she gives to me and to my mother Leman Genç, my father

Dr. Ramazan Genç, my brother Dr. Serhat Bahadır Genç, for their emotional

support.

 vii

TABLE OF CONTENTS

STATEMENT OF NON-PLAGIARISM .. ĐĐĐ

ABSTRACT... ĐĐIV

ÖZ.. V

ACKNOWLEDGMENTS ... VI

TABLE OF CONTENTS... VII

LIST OF TABLES.. IX

LIST OF FIGURES .. X

CHAPTERS :

1.INTRODUCTION .. 1

1.1 Coding .. 1

1.2 The AWGN Channel... 4

1.2 Modulation .. 5

1.4 Entropy and Channel Capacity ... 5

1.5 Thesis Outline... 6

2.CONVOLUTIONAL CODES.. 7

2.1 Convolotuional Encoder.. 7

2.2 Decoding of Convolotuional Codes .. 9

2.2.1 Hard Decision Decoding Algortihm.. 9

 2.2.2 Soft – Decision Decoding.. 13

 viii

2.2.3 Map Decoding Algorithm ... 15

2.2.3.1 Forward Recursive Calculation of the

 (s) kα Values ... 21

 2.2.3.2 Backward Recursive Calculation of the (s) kβ Values 21

2.2.3.3 Calculation of the (s', s) kγ Values 22

2.2.3.4 Summary of the Map Algorithm.................................. 23

2.2.4 LOG-MAP Algorithm.. 24

2.3 Turbo Code... 27

2.3.1 Turbo Encoder... 28

2.3.2 Iterative Decoding of Turbo Codes .. 30

2.4 Simulation Results of Turbo Codes, MAP, Soft-Hard Decision

Algorithms... 35

3. BLOCK CODE ... 37

3.1 BCH (31, 21, 5) Block Code Encoder .. 38

3.2 Trellis Decoding of Block Codes... 49

3.3 Simulation Results.. 53

4. CONCLUSION... 55

REFERENCES .. 57

APPENDICES

A. State of the BCH (31,21) Code .. A1

B. Turbo Code .. B1

CV ..C1

 ix

LIST OF TABLES

Table 3.1 32 Field Elements ……………………………..……….…………….40

Table 3.2 Conjugate Elements in 5(2)GF ………………………….…………..43

Table 3.3 Operation Steps of BCH (7, 4, 3) Encoder…................................48

 x

LIST OF FIGURES

Figure 1.1 Model of Digital Communication System .. 2

Figure 1.2 Gaussian Channel .. 4

Figure 2.1 A Rate
1

2
 Convolutional Encoder ... 7

Figure 2.2 State Transition Diagram For the Encoder of Figure 2.1................ 8

Figure 2.3 Trellis Diagram for the Encoder of Fig 2.1 9

Figure 2.4 Hamming Distance Calculation of the VA 11

Figure 2.5 Branch Metrics of the VA .. 12

Figure 2.6 Winning Path of the VA ... 13

Figure 2.7 Possible Transitions.. 17

Figure 2.8 MAP Decoder Trellis ... 19

Figure 2.9 Recursive Calculation of (0) kα and (0)kβ 20

Figure 2.10 Summary of the MAP Algorithm.. 24

Figure 2.11 Trellis Diagram for MAP.. 25

Figure 2.12 Turbo Encoder .. 29

Figure 2.13 Soft-Input / Soft-Output Decoder ... 30

 xi

Figure 2.14 Iterative Decoding Procedures with Two Soft-Input / Soft-Output

Decoder ... 31

Figure 2.15 Turbo Decoder Schematic .. 33

Figure 2.16 Simulation Result of Turbo Code ... 35

Figure 2.17 Turbo Coding BER Performance Using Different Number of

Iterations .. 36

Figure 2.18 Effect of Frame Length on BER Performance of One-Third Rate

Turbo Coding ... 36

Figure 3.1 Systematic Encoder for BCH Codes Having (n-k) Shift-Register

with ()n k− Cells .. 46

Figure 3.2 Systematic Encoder for BCH(31,21) Code Having 10n k− =

Register Stages ... 47

Figure 3.3 Systematic Encoder for BCH (7,4,3) ... 47

Figure 3.4 Binary Representations Of The Encoded Data Bits

and Code Bits .. 48

Figure 3.5 State Transition Diagram for BCH(7,4,3) 49

Figure 3.6 State Diagram for the BCH(7,4,3) Code 50

Figure 3.7 Trellis Diagram for the BCH(7,4,3) Code 51

Figure 3.8 BCH Block Turbo Encoder Schematic .. 52

Figure 3.9 BCH Block Turbo Decoder Schematic .. 52

Figure 3.10 Simulation Results of BCH(31,21) Block Turbo Code................. 53

Figure 3.11 Performance of Different Number of Iterations in Turbo

BCH(31,21) Code .. 54

 1

CHAPTER 1

INTRODUCTION

1.1 Coding

Figure 1.1 illustrates the basic elements found in digital communication which

connect a data source to a data user through a channel. The nature of the

information source may be either analog or digital, depending on the

application. An analog signal; however, must be digitalized before being used

in a digital communication system. A digital signal is discrete in time and

uses only a finite alphabet. Typically, the data is represented by a sequence

of binary digits (bits). One of the tasks in coding theory is to detect, or even

correct errors. Usually, coding is defined as the source coding and the

channel coding. The source-coding theorem is one of the most important

theorems introduced by Shannon. The source-coding establishes a

fundamental limit on the rate at which the output of an information source can

be compressed without causing a large error probability [1, 2, 3]. An example

of source coding is the ASCII code, which converts each character to a byte

of 8 bits. In this work source coding is not concerned. In order to understand

the role of error control coding, a model of a general communication system

is presented, as shown in Fig.1.1.

 2

 Figure 1.1 Model of Digital Communication System

The task of the transmitter in such a system is to transform the information

into a form that can withstand the effect of noise over the transmission

medium. An information source generates messages bearing information to

be transmitted. The messages can be words, code symbols etc. The output

of the information source is converted sequence of symbols from a certain

alphabet. The most often binary symbols are transmitted. In general, the

output of the information source is not suitable for transmission as it might

contain too much redundancy. Due to the efficiency reasons, the source

encoder is designed to convert the source output sequence into a sequence

of binary digits with minimum redundancy. The number of bits br generated

by the source encoder per second is called the data rate. The channel

impairments cause errors in the received signal. The channel encoder is

incorporated in the system to add redundancy to the information sequence.

This redundancy is used to reduce transmission errors. The channel encoder

assigns to each message of k symbols a longer message of n digits called a

codeword. A good error control code generates codewords which are

different as possible from one another. This makes the communication

system less defenseless to channel errors. Each code is characterized by the

ratio R = < 1
k

n
called the code rate. The data rate at the output of the

channel encoder is brr = c R
 bps. The primary goal of error control coding is to

 3

maximize the reliability of transmission within the constraints of signal power,

system bandwidth and complexity of the circuitry which is achieved by

introducing structured redundancy into transmitted signals. This usually

results in a lowered data transmission rate of increased channel bandwidth.

The output signal of the channel encoder is not normally suitable for

transmission. The modulator enables signal transmission over a channel. In

the receiver, the demodulator typically generates a binary or analog

sequence at its output as the best estimates of the transmitted codewords.

The channel decoder makes estimates of the actually transmitted message.

The decoder process is based on the encoder rule and the characteristics of

the channel. The goal of the decoder is to minimize the effect of channel

noise. By proper design of the transmitter - receiver system, it would be

possible to reduce or remove the effects of attenuation and distortion and to

minimize the noise effects. The impact of noise cannot be totally removed. If

the demodulator makes hard decisions, the output is a binary sequence. The

subsequent channel decoding process is called Hard-decision decoding.

Hard decisions in the demodulator result in some irreversible information

loss. An alternative is to quantize the demodulator output to more than two

levels or take samples of the analog received baseband signal and pass it to

the channel decoder. The subsequent decoding process is called soft

decision decoding [4, 5].

The two most frequently used types of codes are block and convolutional

codes. In block codes each encoding operation depends on the current input

message and is independent on previous encodings. That is, the encoder

has no memory of history of past encodings. In contrast, for a convolutional

code, each encoder output sequence depends not only on the current input

message, but also on a number of past message blocks.

 4

1.2 The AWGN Channel

The model that is used in this thesis is the most commonly used model, the

Additive White Gaussian Noise (AWGN) channel. It is a very simple

memoryless channel. The received signal Y is described by [1]

 Y = X + Z (1.1)

The noise Z is assumed to be independent of the signal X . We first analyze

a simple suboptimal way to use this channel. Assume that we want to send

bit ‘1’ over the channel. Given the power constraint, the best that we can do

is to send one of two level, P+ or P− . The receiver looks at the

corresponding Y received and tries to decide which of the two levels were

sent. Assuming that both signals levels are equally likely (this would be the

case if we wish to send exactly 1 bit of information), the optimum decoding

rule is to decide that '1'was send if 0Y > and decide ' 1'− was send if 0Y < .

 Figure 1.2 Gaussian Channel

The noise Z is a stationary random process with Gaussian Probability

distribution given as

2

2

1
exp

22

x
P

σσ π
 −=  
 

 , (1.2)

Where mean is 0nγ = and average power of noise is 2σ .

 5

1.3 Modulation

The modulation method employed in this thesis is Binary Phase Shift Keying

(BPSK). This is a Memoryless Modulation Technique. The binary digits '1'

and '0 ' are modulated as '1' and ' 1'− . In general for binary string b

transmitter signal after modulation operation is 2 1s b= − .

1.4 Entropy and Channel Capacity

Information sources generate any of a set of M different symbols, which are

considered as representatives of a discrete random variable X that adopts

any value in the range A={ }1 2, ,..., mx x x . Each symbol iX has the probability

iP of being emitted and contains information iI . The symbol probabilities

must be in agreement with the fact that at least one of them will be emitted,

which means that,

1

1
m

i
i

P
=

=∑ . (1.3)

The source symbol probability distribution is stationary, and the symbols are

independent and transmitted at a rate of r symbol per second. This

description corresponds to a Discrete Memoryless Source (DMS) [1]. Each

symbol contains the information iI so that the set { }1 2........ mI I I can be seen

as a discrete random variable with average information

 b
1 1

1
()

m m

i b
i i i

iix P L o g
P

P I
= =

 
= =  

 
∑ ∑H (1.4)

The function so defined is called the entropy of the source. When base 2 is

used, the entropy is measured in bits per symbol:

 6

2

1 1

1
() lo g

i

m n

i i i
i i

H x P I P
P= =

 
= =   

 
∑ ∑ b its p e r s ym b o l (1.5)

The channel capacity of a discrete memoryless channel is equal to

()

(,)
i

S
P x

c MAX I x y bit per symbol= (1.6)

Shannon’s “Noisy Coding Theorem” states that every channel has a capacity

C , which is the highest rate C in bits per channel used at which reliable

communication is possible. Shannon showed that error free communication

is possible at transmission rates below channel capacity employing channel

codes. Ever since Shannon proved his noisy coding theorem, the

construction of practical capacity-achieving schemes has been the goal of

coding theory. The classical approaches to this problem included algebraic

block codes and convolutional codes. The field was revolutionized by the

introduction of turbo codes by Berrou, Glavieux and Thitimajshima in 1993.

The performance of Turbo Code is much closer to capacity than that of any

previous codes and has lower complexity.

1.5 Thesis Outline

In Chapter 2, we introduce the convolutional codes and some of the decoding

methods. First we explain the Trellis structure. We consider the Hard-

Decision Viterbi Algorithm (HVA), soft-decision Algorithm (SOVA) and Map

algorithm-log Map algorithm and we present the turbo Convolutional code.

Simulation results are shown and conclusions are added.

In chapter 3, we begin with the BCH Block code and present turbo BCH

codes considering two trellis decoding methods, which are the Maximum A-

Posteriori (MAP) and the soft-output Viterbi Algorithm (SOVA) and simulation

results, are given.

Finally conclusions are given in Chapter 4.

 7

CHAPTER 2

CONVOLUTIONAL CODES

2.1 Convolutional Encoders

An important technique in error-control coding is that convolutional coding.

Convolutional codes were invented in 1954 by P. Elias [6]. They constitute a

family of error correcting codes. In this type of coding the encoder output is

not in block form, but is in the form of continuous bit stream. The

convolutional encoding operation involves past and present bits and it is a

continuous operation. The convolutional encoding operation can be

performed using Finite State Machines (FSMs).

In this thesis we will use the convolutional encoder shown in Fig. 2.1. Let k

and n denote the number data and encode bits [7].

 Figure 2.1 A Rate
1

2
 Convolutional Encoder

Then the rate of the code is defined as;

 c

k
R

n = . (2.1)

 8

For the convolutional encoder in Fig.2.1 1k = , 2n = 3L = . If the number of

cells in convolutional encoder register is γ , the constraint length is L .

Therefore, the convolutional encoder is defined as 1L = γ + . The total number

of states in Fig.2.1 is (1)2 4L− = . The convolutional encoder in Fig.2.1 can be

represented by a state transition diagram. Fig.2.2 shows the state transition

diagram for the convolutional encoder in Fig.2.1. In this state-transition

diagram, each state of the convolutional encoder is represented by a box and

transitions between states are denoted by lines connecting these boxes.

 Figure 2.2 State Transition Diagram for the Encoder of Fig 2.1

Convolutional codes can also be described using trellis diagrams. The trellis

diagram shows the change in states as time passes. Usually horizontal axis

is used for time and vertical axis is used for state transitions.

 9

Example 2.1

Using state transition diagram 10101 can be encoded as 11 01 10 01 11 . For

the encoding process first we start with the 00 state. Notice that when the

input bit is 0 the encoded bits are 00 which is shown like 0 00. After that

when the input bit is 1 the encoded bits are 11 and the state becomes to 10

state.

Fig.2.3 shows the trellis diagram for the convolutional encoder which was

shown in Fig.2.1.

 Figure 2.3 Trellis Diagram for the Encoder of Fig 2.1

The trellis diagram starts with the 00 state and the all states merge with the

proper next states. The dashed line denotes the input bits which are 0 and

the other flat lines denote the input bits1. The other bits are shown at the top

of the all lines which are the output encoded bits.

2.2 Decoding of Convolutional Codes

2.2.1 Hard Decision Decoding Algorithm

The Viterbi Algorithm (VA) performs maximum likelihood decoding. It is

applied to the trellis of a convolutional code whose properties are

conveniently used to implement this algorithm. Such that the code word

generated from path in hard-decision decoding the trellis technique denoted

 10

by c , is a path through the trellis is chosen at minimum Hamming distance

from the quantized received sequence y .The Hamming distance between c

and y is therefore.

1

(,) (,)
m

i i
i

d c y d c y
=

=∑ (2.2)

In the other word ic are the encoded bits and the iy are the received bits. The

binary distance was found with ic and iy by the Hamming distance

calculation.

Viterbi algorithm can be summarized as with [8]:

1- Find the Hamming distance of the thi subsequence of the received

sequence to all branches which are connecting thi stage states to

the (1)i + stage states shown in Fig. 2.4. Here 1,2...i n= and n is

the number of the input bits.

2- Add these distances to the metrics of the thi stage states to obtain

the metric candidates for the (1)i + stage states. For each state of

the (1)i + stage there are 2 metrics candidate.

3- For each state at the (1)i + stage, choose the minimum one of the

metric candidates. Label the branch corresponding to this minimum

value as the survivor and assign the minimum of the metric

candidates as the metrics of the (1)i + stage states which is shown

in Fig. 2.5.

4- Starting with the minimum value state at the final stage. Go back

through the trellis along the survivors to reach the initial all-zero

state. This path is the optimal path and is called Wining Path.

Example 2.2

Consider the convolutional code of Fig.2.2 whose trellis is seen in Fig.2.3 for

the received sequence is 1101110111rS = .

 11

In example 2.1 the message sequence 10101 is encoded to 11 01 10 01 11 .

We will use Trellis Diagram with Viterbi Algorithm to decode the encoded

11 01 10 01 11 sequence.

The first step in the application of this algorithm is to determine the Hamming

distance between the received sequences. This is shown in Fig 2.4 all the

codewords generated by the Trellis Diagram.

Message Sequence : 1 0 1 0 1

Code Sequence : 11 01 10 01 11

Received Sequence : 11 01 11 01 11

 Figure 2.4 Hamming Distance Calculation of the VA

At each shape of the decoding operations from the all-zero state, we

compute the Hamming distance of the received bit pairs. For example, for the

first two-bits “11”, the associated Hamming distances are 2 and 0 with

respect to both the “00” and “11”. We also note these Hamming distances in

the trellis diagram of Fig.2.4. These Hamming distances are known in the

context of Viterbi decoding as the branch metric. The power of the Viterbi

decoding algorithm accrues from the fact that it carries out maximum

likelihood sequence estimation. The branch metrics will be accumulated over

a number of consecutive trellis stages before a decision as to the most likely

encoder path and information sequence can be released. Proceeding to the

 12

next received two-bit symbol namely “01” that is the Hamming distance

between the encoded symbols of all four legitimate paths and the received

symbol is computed. These distances yield the new branch metrics

associated with the second trellis stage. By now the encoded symbols of two

original input bits have been received and this is why there are now four

possible trellis states which the decoder may reside. The branch metrics

computed for these four legitimate transitions from top to bottom are 1, 1, 2

and 0. These are now added to the previous branch metrics of 1 in order to

generate the path metrics of 3, 2, 3 and 0 which were accumulated Hamming

distance in Fig2.5.

 Figure 2.5 Branch Metrics of the VA

A low Hamming distance indicates a high similarity between the received

sequence and the encoded sequence. If we continue at trellis stage 3t the

received sequence of “11” is compared to the four legitimate two-bit encoded

symbols. Notice that there is an error bit that changes the Hamming distance

of each path so the lower metric will always remain the more likely encoder

path. This is respected in Fig.2.6 by referring to the path exhibiting the lower

metric as the survivor path.

 13

.

 Figure 2.6 Winning Path of the VA

In our example the received bit sequence does not contain any more

transmission errors, and so it is plausible that the winning path remains the

one at the top of Fig.2.6. The corresponding winning path was drawn in bold

in the Fig.2.6.

2.2.2 Soft – Decision Decoding

In Hard decision decoding operation Hamming distance are used. On the

other hand in Soft-decision decoding operation the probability values are

used. This is the main differences of Hard and Soft decision decoding. Let’s

first review maximum likelihood criteria. It can be stated as follows [9,10]:

 () ()1 0P s y P s y≥ The decoder decides for hypothesis 1H

 () ()0 1P s y P s y≥ The decoder decides for hypothesis 0H (2.3)

Hypothesis 1H corresponds to the transmission of symbol '1', and

hypothesis 0H corresponds to the transmission of symbol '0 '. Equation (2.3)

can be written as;

 14

 () ()1 1 0 0(()P y s P s P y s P s) ≥

 () ()0 0 1 1(()P y s P s P y s P s) ≥ (2.4)

Where for the first set the decoder decides for hypothesis 1H and for the

second set the decoder decides for 0H . If the transmitted symbols are

equally likely, then

()
()

1

0

1
P y s

P y s
> The decoder decides for hypothesis 1H

()
()

1

0

1
P y s

P y s
< The decoder decides for hypothesis 0H (2.5)

Assume that the transmitted signals are 1s and 2s . The received signals are

1 1y s n= + and 2 0y s n= + . If the transmission is over an AWGN channel, the

probability density functions is given of

2

()1

2 21
(|) 0,1

2

iy s

P y s e iσ

σ π

−
−

= . = (2.6)

Using eqn.(2.4) and (2.6) the likelihood ratio can also be expressed in terms

of these probability density functions for each of the transmitted symbols as ;

2
1

1

2
0

0

1

2

0

1
12

1
()2
()1

2
H

y s

H

y s

e
P s

P s
e

σ

σ

σ π

σ π

− −  
 

− −  
 

 >
<

 (2.7)

The decoder decides for hypothesis 1H and 0H which is simplified as;

 15

22
01

1

0

1

2 0

1

()

()
H

y by b
H P s

e
P s

σ σ
 −−   −  −   
      >

<
 (2.8)

If natural logarithm of both sides of eqn.(2.7) is taken the decision criteria to

1

0

2 2
1 0() ()

H

H

y b y b− > −
<

. This means contrary to Hamming distance in Hard

decision decoding and Euclidean distance are used in Soft decision

decoding.

2.2.3 Map Decoding Algorithm

In hard decision algorithm estimated bits for transmitted sequence is given to

the channel decoder. Thus, any information about the reliability of the

received sequence is lost. In soft decision decoding algorithm the probability

values for transmitted sequence are used at decoder. Soft decision decoding

algorithm achieves better performance than hard decision decoding. In this

chapter we introduce Maximum A Posteriori (MAP) decoder algorithm that

both accepts and delivers soft values. The Log Likelihood Ratio (LLR) of a

data bit ku is denoted as ()
k

L u and is defined to be merely the log of the ratio

of the probability of the bit taking its two possible values [11], i.e.,

()
()

1
() ln

1
k

k
k

P u
L u

P u

 = +
  = − 

≜ (2.9)

The BPSK modulated values for the bits ku are taken 1+ and 1− .This

approach slightly simplifies the mathematics in the derivations. The sign of

the LLR, ()
k

L u will indicate whether the bit is more likely to be 1+ or 1− and

the magnitude of the ()
k

L u gives an indication of how likely it is that the sign

of ()
k

L u gives the correct value ku . When () 0
k

L u ≈ , It results in

(1) (1) 0.5
k k

P u P u= + ≈ = − ≈ , and we can not be certain about the value of ku .

Conversely, when () 0kL u ≫ , we get (1) (1)
k k

P u P u+ = −≫ and we can be

 16

almost certain that 1
k

u = + . As well as the ()
k

L u based on the a-priori

probabilities (1)
k

P u = ± , LLR can also be defined using a-posteriori

probabilities as:

(1|)

(/) ln
(1|)

k k
k k

k k

P u y
L u y

P u y

 +
 − 

≜ (2.10)

Where y is the noise added transmitting sequence. The conditional

probabilities (1|)kP u y= ± are known as the a-posteriori probabilities of data

bit ku . Assume that ky is the received symbol.

Then

 (|) () (|)k k k k kP u y P u P y u= (2.11)

where (|)k kP u y can be computed as

 2

()

21
(/) e

2

k ky u

kP y u σ

σ π

−
−

= . (2.12)

Where 2σ is the variance of noise. For a sequence of received symbols y

the LLR is defined as:

(1,)

(/) ln
(1,)

k
k

k

P u y
L u y

P u y

 = +
  = − 

≜ (2.13)

In Fig.2.7 a section of trellis diagram for (1,5 / 7)octal convolutional encoder is

given that if the previous state 1k
S − and the present state

k
S it is seen from

Fig.2.7, then the value of the input bit
k

u that causes the transition between

these two states, will be known. Hence the probability that 1
k

u = + is equal to

the probability that the transition from the previous state 1k
S − to the present

 17

state
k

S is one of the set of four possible transitions that can occur when

1
k

u = + (i.e. those transitions shown with broken lines). This set of transitions

is mutually exclusive (i.e. only one of them could have occurred at the

encoder). Using Bayes’ Rule Equation (2.12) can be re-written as;

()

()

1
',

1

1
',

1

(', ,)

(/)
(', ,)

k

k

n

k k
s s

u
k n

k k
s s

u

P S s S s y

L u y
P S s S s y

−
⇒

=+

−
⇒

=−

 = = 
 

=  
 = =
  
 

∑

∑
 . (2.14)

Where ()',s s with 1ku = + is the set of transitions from the previous state

1 '
k

S s− = to the present state
k

S s= and similarly for ()',s s with 1ku = − for

brevity we shall write 1(', ,)k kP S s S s y− = = as (', ,)P s s y .

 Figure 2.7 Possible Transitions

The individual probabilities can be written as (', ,)P s s y :

 18

 (', ,) (', , , ,)
j k k j k

P s s y P s s y y y
< >

=
.
 (2.15)

Using Bayes’ Rule (,) (|) ()P a b P a b P b= of and the fact that if we assume that

the channel is memoryless, then the future received sequence
j>k

 y will

depend only on the present state s and not on the previous state 's or the

present and previous received channel sequences
k

y and
j k

y
<

. Thus,

Equation (2.14) can be written as;

(', ,) (| ', , }) (', , ,)

(|) (', , ,) .
j k j k j k k

j k j k k

P s s y P y s s y P s s y y

P y s P s s y y

> < <

> <

= {

 =
 (2.16)

Again, using Bayes’ rule and the assumption that the channel is

memoryless, Equation 2.15 can be expanded as follows:

1

(', ,) (|) (', , ,)

(|) ({ , }|{ ', }) (',)

(|) ({ , } | ') (',)

() (',) (') .

j k j k k

j k k j k j k

j k k j k

k k k

P s s y P y s P s s y y

P y s P y s s y P s y

P y s P y s s P s y

s s s sβ α

> <

> < <

> <

−

=

 =

 =

 = γ

 (2.17)

Where;

 1 1(') (',)k k j k
s P S s yα − − <

= =

 (2.18)

which is the probability that the Trellis is in state 's at time 1k − and the

received channel sequence up to this point is
j k

y
<

, as visualized in Figure

2.8.

 19

 Figure 2.8 MAP Decoder Trellis

In Equation (2.17)

 () (|)k kj k

s P y S sβ
>

= = (2.19)

is the probability that given the trellis is in state s at time k the future

received channel sequence will be
j k

y
>

, and finally:

 1(',) (() | ')k k kk
s s P y S s S s−γ = , = =

 (2.20)

is the probability that given the trellis was in state 's at time 1k − , and it

moves to state s and the received channel sequence for this transition is
k

y .

 20

.
k

y
1k

y
+

1(0)
k

α −

1
(1)

k
α −

(0,0)
k

γ

(1,0)
k

γ

1
(0,0)

k+γ

1(0,2)
k+γ

(0)
k

α

(0)
k

β

1(0)
k

β +

1
(2)

k
β +

 Figure.2.9 Recursive Calculation of (0) kα and (0)kβ

Equation (2.17) shows that the probability (', ,)P s s y can be split into the

product of three terms: 1(')
k

sα − , (',)
k

s sγ and ()
k

sβ . The meaning of these

three probability terms is shown in Figure 2.9. The MAP algorithm finds ()
k

sα

and ()
k

sβ for all states s throughout the trellis, i.e. for 0,1,.... 1k N= − , and

(',)
k

s sγ for all possible transitions from state 1 '
k

S s− = to state
k

S s= . These

values are then used to find the probabilities 1(', ,)k kP S s S s y− = = which are

then used in Equation (2.13) to compute the (|)
k

L u y for each
k

u .

Additionally, it can be described that how the values ()
k

sα , ()
k

sβ and (',)k s sγ

can be calculated.

 21

2.2.3.1 Forward Recursive Calculation of the (s) kα Values

The ()k sα may be computed recursively as;

 1
'

() (',) (')k k k
s

s s s sα γ α −=∑ (2.21)

Since;

1

1
'

1 1

1 1
'

1

1
'

1
'

() (,)

(', ,)

(, | ',) (',)

(, | ') (',)

(, ') (') ,

k
k

k

s

k k
k

s

k
k

s

k k
s

s P s y

P s s y

P s y s y P s y

P s y s P s y

s s s

α

α

− −

−

−

=

 =

 =

 =

 = γ

∑

∑

∑

∑

 (2.22)

Thus, ()k sα may be recursively computed as 1

'

() (',) (')k k k
s

s s s sα α −= γ∑ with

the initial condition given as;

 0 0

0 0

(0) 1

() 0 0.

S

S s s

α
α

= =
= = ∀ ≠ (2.23)

2.2.3.2 Backward Recursive Calculation of the (s) kβ Values

Using Equation (2.19); thus, 1(')k sβ − can be computed recursively;

1(') () (',) .k k k
s

s s s sβ β− = γ ∑

 22

1(') (| ')

(, | ')

k k

k
s

s P y s

P y s s

β − =

 =∑

1

1

(| ', ,) (, | ')

(|) (, | ')

() (',)

kk k
s

kk
s

k k
s

P y s s y P s y s

P y s P s y s

s s sβ

+

+

 =

 =

 = γ .

∑

∑

∑

 (2.24)

As an example, in Figure 2.9;

 1 1 2 1

1 1

(0) (0) (0,0) (2) (0,2)

(0) (0) (0,0) (1) (1,0) .
k k k k k

k k k k k

β β β
α α α

+ + + +

− −

= γ + γ
= γ + γ

(2.25)

2.2.3.3 Calculation of the (s', s) kγ Values

1()k sα − , ()k sβ are the state probabilities. (',)k s sγ is the transition probability

among states, these are also called branch metrics. Additionally, it is

considered that how the (',)k s sγ values in Equation (2.22) can be calculated

from the received signal sequence using the definition of (',)k s sγ from

computation Equation (2.26) and Bayes’ Rule of

(',) (, | ')

(', ,)

(')

(', ,) (',)

(') (',)

(', ,)(',)

(') (',)

(| ') (| ',) .

k k

k

k

k

k

s s P s y s

P s s y

P s

P s s y P s s

P s P s s

P s s yP s s

P s P s s

P s s P y s s

γ =

 =

 =

 =

 =

 (2.26)

 23

The probability (',)P s s equals to ()kP u . Since going from 's to s depends

on input data. Hence, (' |) ()kP s s P u= . Thus,

(' |) () (| ',)

() (|) ,
k k k

k k k

s s P u P y s s

P u P y c

γ =
 =

 (2.27)

Where ()k k kc u p , 1 2()k k ky y y and (|)k kP y c is;

() 2

1 22 2

2
2 2

1 1
(|) exp ()

2 2
1 1

exp
2 2

k k k k k k

k k

P y c y u y p

y c

πσ σ

πσ σ

 = −  − + −    

  = − −  
� �

 (2.28)

2.2.3.4 Summary of the MAP Algorithm

Forward recursion from Equation (2.22) can be used to calculate (',)
k

s sγ .

Once all the channel values have been received, and (',)
k

s sγ are calculated

for all 0,1,....k N= , the forward state probabilities (',)k s sα and the state

probabilities (',)
k

s sβ are computed. Finally, all the calculated values of

(',)k s sα (',)k s sβ and (',)k s sγ are in

1
(',)

1

1
(',)

1

1
(',)

1

1
(',)

1

(', ,)

(|)
(', ,)

('). (',). ()

ln
('). (',). ()

k

k

k

k

k k
s s

u
k

k k
s s

u

k k k
s s

u

k k k
s s

u

P S s S s y

L u y
P S s S s y

s s s s

s s s s

α β

α β

−
⇒

=+

−
⇒

=−

−
⇒

=+

−
⇒

=−

 = =
 
 
 = =
 
 

 γ
 
 
 γ
 
 

∑

∑

∑

∑

≜

≜

 (2.29)

 24

to decide decoded bits. These operation are summarized in Fig.2.10.

(',)
k

s sγ

1(')
k

sα − ()
k

sβ

 Figure 2.10 Summary of the MAP algorithm

2.2.4 LOG – MAP Algorithm

The MAP decoding algorithm requires large memory and a large number of

operation involving exponential value computations and multiplications. One

way of simplifying computation amount is to work with the logarithms of

1(,)k s sγ , (')k sα and 1()k sβ + , denoted by �(',)k s sγ , �(')k sα and�1()k sβ + . If log

values are used �() log ()k ks sα α= ; so,
� ()() k S

k s eαα = . Using Equation (2.23);

� � � � �

� � � � �

1 1

1 1

() (') (',) (') (',)
1

(') (') (',) (') (',)
2

k k k k k

k k k k k

s s s s s s s

s s s s s s s

x e e e e e

x e e e

α α α

α α α

− −

− −

γ γ

+γ +γ

⇒ = = +

⇒ = = +

Using log of 1x and 2x ;

 25

� � � �
1 1(') (') (',)() log()k k ks s s s

k s e eα αα − − +γ⇒ = +

 (2.30)

Now consider MAP;

 Figure 2.11 Trellis Diagram for MAP

 1
',

1

(1|) (') (',) ()

k

k k k k
s s
u

P u y s s s sα γ β +

=

= + = ∑ (2.31)

In log domain;

 �
� � �()1(') (',) ()

'
1

(1|) log k k k

k

s s s s
k

s s

P u y eα γ β

γ

++ +

=

= = ∑ (2.32)

 �

(',) () (|)

(',) log () log (|)

() log (|)

k k k k

k k k k

k k k

s s P u P y c

s s P u P y c

L u P y c

γ
γ

=

= +
 = +

 (2.33)
Now consider (|)k kP y c

 1 1 2 2
2 22 2

1 1
(|) exp . exp

2 22 2

k k k k
k k

y c y c
P y c

σ σπσ πσ
− −    = −       

 (2.34)

() ()2 2

1 1 2 22 2

1 1
log (|) log

2 2k k k k k kP y c y c y c
πσ σ

 = + − + −
 

 (2.35)

This can be simplified as;

1ku =

1ku =

1ku =

 26

 2 2 2 2 2
1 2 1 2 1 1 2 22

1
log (|) log 2 2 2

2k k k k k k k k k kP y c y y c c y c y cπσ
σ

 = − − + + + − − 

 (2.36)

 2 2 2 2 2
1 2 1 22

1
log 2 ()

2 k k k ky y c cπσ
σ

= − + + + []1 1 2 22

1
k k k ky c y c

σ
+ +

 (2.37)

 Where the first and second term can be dropped due to non dependently on

ku , and the following can be obtained;

1 1 2 22

1
log (|) ()k k k k k k

k k

P y c y c y c

u p

σ
= +

 ↓ ↓

 (2.38)

Hence,

� ()1 1 2 22

1
(',) ()k k k k k k

k k

s s L u y c y c

u p

γ
σ

= + +

 ↓ ↓

 (2.39)

Using the log values of ()k sα , (',)k s sγ and ()k sβ it can be written as

�(|) 1kP u y = ;

� �
1 1 2 2 12

',
1

1
(1|) log exp () () () ()

k

k k k k k k k k
s s
u

P u y s L u y c y c sα β
σ +

=

 = = + + + +  
∑

(2.40)
This can be simplified as;

� �
1 2 2 12 2

',
1

1 1
(1|) log exp () () ()

k

k k k k k k k
s s
u

P u y s L u y y c sα β
σ σ +

=

 = = + + + +  
∑

 (2.41)

Also, using log() log()a b c a d f b c d fe e a e e+ + + + + ++ = + + property, Equation (2.41)

can be further simplified of;

� �
1 2 2 12 2

',

1 1
(1|) () log exp () ()k k k k k k k

s s

P u y y L u s y c sα β
σ σ +

 = = + + + +  
∑

(2.42)

 27

Where;

 12

1
k c ky Channel Value L y

σ
 → cL is the channel reliablitiy value

 ()kL u a priori provided by the other decoder→ −

 � �
2 2 12

',

1
log exp () ()k k k k e k

s s

s y c s L uα β
σ +

 + + → ()  
∑ Extrinsic information

 �(1|)kP u y= is a-posteriori log-likelihood ration ˆ()L u .

2.3 Turbo Code

Berrou, Glavieux and Thitimajshima [11] introduced in 1993 a novel and

apparently revolutionary error-control coding technique, which they called

turbo coding. This coding technique consists essentially of a parallel

concatenation of two binary convolutional codes. These codes obtain an

excellent bit error rate (BER) performance by making use of three main

components. They are constructed using two systematic convolutional

encoders usually known as recursive systematic convolutional (RSC)

encoders, which are concatenated in parallel. In this parallel concatenation, a

random inter-leaver plays a very important role as the randomizing

constituent part of the coding technique. Interleaving procedure is designed

to make the encoder output sequences be statistically independent from

each other. This coding scheme is decoded by means of an iterative decoder

that makes the resulting BER performance close to the Shannon limit.

In parallel concatenation, so that each input element is encoded twice, but

the input to the second encoder passes first through a random inter-leaver.

Turbo codes can be iteratively decoded using soft decision decoding

algorithms. The decoders operate in a soft-input–soft-output mode; that is,

both the input applied to each decoder, and the resulting output generated by

the decoder, should be soft decisions or estimates. Both decoders operate by

utilizing what is called a priori information, and together with the channel

information provided by the samples of the received sequence, and

information about the structure of the code, they produce an estimate of the

message bits. They are also able to produce an estimate called the extrinsic

 28

information, which is passed to the other decoder, information that in the

following iteration will be used as the a priori information of the other

decoder. Thus the first decoder generates extrinsic information that is taken

by the second decoder as its a priori information. This procedure is repeated

in the second decoder. The first decoder then takes the received information

as its a priori information for the new iteration, and operates in the same way

as described above, and so on.

The iterative passing of information between the first and the second

decoders continues until a given number of iterations are reached. With each

iteration, the estimate of the message bits improves and they usually

converge to a correct estimate. The number of errors corrected increases as

the number of iterations increases. However, the improvement of the

estimates does not increase linearly, and so, in practice, it is enough to utilize

a reasonable small number of iterations to achieve acceptable performance

[12 13 14].

One of the most suitable decoding algorithms that performs soft – input – soft

- output decisions is a maximum a posteriori (MAP) algorithm known as the

BCJR (Bahl, Cocke, Jelinek,Raviv, 1974) algorithm [15]. Further

optimizations of this algorithm lead to lower complexity algorithms, like

SOVA (soft-output Viterbi algorithm), and the LOG MAP algorithm, which is

basically the BCJR algorithm with logarithmic computation [9].

2.3.1 Turbo Encoder

A turbo encoder structured using two RSC encoders arranged in parallel, and

combined with a random inter-leaver, together with a multiplexing and

puncturing block, is depicted in Figure 2.12.

 29

 Figure 2.12 Turbo Encoder

In the traditional structure of a turbo encoder, the encoders are usually RSC

encoders of rate c
1R = 2 , such that 1 1P P′ = , 2 2P P′ = , and the lengths of the

sequences u , 1P and 2P , 1P′ and 2P′ are all the same. Then the overall turbo

code rate is c
1R = 3 . Puncturing [2, 9, 16] is a technique very commonly

used to improve the overall rate of the code. The puncturing selection

process is performed by periodically eliminating one or more of the outputs

generated by the constituent RSC encoders. During puncturing, the parity

bits generated by these two encoders are alternately eliminated so that the

redundant bit of the first encoder is first transmitted, eliminating that of the

second decoder, and in the following time instant the redundant bit of the

second encoder is transmitted, eliminating that of the first. In this way, the

lengths of 1P′ and 2P′are half the lengths of 1P and 2P , respectively, and the

resulting overall rate becomes 1
2cR = . Puncturing is not preferred for

message (systematic) bits, due to BER performance loss. The use of

interleaver has a major influence on the BER performance of a turbo code,

especially its length and structure. The excellent BER performance of these

codes is enhanced when the length of the inter-leaver is significantly large

and its structure have pseudo random nature. The interleaving block and its

corresponding de-inter-leaver in the decoder do not much increase the

complexity of a turbo scheme. However, it does introduce a significant delay

RSC1

RSC2 Interleaver

 MUX

 And

Puncture

1 2, ' , 'u P P

u

1P

 2P

u

 30

in the system, which in some cases can be a strong drawback, depending on

the application. The RSC-generated Convolutional Codes are comparatively

simple, but offer excellent performance when iteratively decoded using soft-

input–soft-output algorithms.

2.3. 2 ITERATIVE DECODING of TURBO CODES

Principle of the Iterative Decoding Algorithm in Figure 2.13, Soft-Input / Soft-

Output decoder structure is shown [12].

 Figure 2.13 Soft-Input / Soft-Output Decoder

The output of the “symbol-by-symbol” Maximum a posteriori Probability

(MAP) decoder is defined as the a posteriori log-likelihood ratio, that is,

the logarithm of the ratio of the probabilities of a given bit being “ +1” or “ -1”

given the observation y , and is given as

(1|)
ˆ() () ln

(1|)
k

k
k

P u y
L u L u y

P u y

 = +
=   = −  

≜ .

 (2.43)

Such a decoder uses a priori values L(u)for all information bits u , if

available, and the channel values cL y for all coded bits. It also delivers soft

outputs ˆ()L u on all information bits and an extrinsic information ˆ()eL u , which

contains the soft output information from all the other coded bits in the code

sequence and is not influenced by the L(u) and cL y values of the current bit

Soft-in/Soft-out
Decoder

A priori values for
all information bits

Channel value for all
code bits

Extrinsic value for all
information bits

A posteriori values for
all information bits

()L u

cL y

ˆ()eL u

Output-Log-likelihood Input-Log-likelihood

ˆ()L u

 31

[10,17]. For systematic codes, the soft output for the information bit u will be

represented as the sum of three terms

 ˆ ˆ() () ()c eL u L y L u L u= + + (2.44)

This means that three independent estimates exist for the log-likelihood ratio

of the information bits; the channel values cL y the a priori values L(u)and

the values ˆ()eL u by a third independent estimator utilizing the code

constraint. The whole procedure of iterative decoding with two “Soft-in/Soft-

out” decoders is shown in Figure (2.14). In the first iteration of the iterative

decoding algorithm, decoder 1 computes

The extrinsic information;

 []1 1ˆ ˆ() () ()e cL u L u L y L u= − + (2.45)

Assume that equally likely information bits; thus, it is initialized that

() 0L u = for the first iteration. This extrinsic information from the first decoder

is passed to the decoder 2, which uses 1 ˆ()eL u as the a priori value in place of

()L u to compute 2()L u . Hence, the extrinsic information value computed by

Decoder2 is;

2 2 1ˆ ˆ ˆ() () ()e c eL u L u L y L u = − +  (2.46)

 Figure 2.14 Iterative Decoding Procedures with

Two “Soft-Input/Soft-Output Decoder

 SISO

DECODER1

 SISO

DECODER2

Feedback for the next iteration

()L u =0

cL y

1 ˆ()eL u

1 ˆ()L u

2 ˆ()eL u

2 ˆ()L u

ˆ()L u

 32

Then, Decoder 1 will use the extrinsic information values 2 ˆ()eL u as a priori

information in the second iteration. The computation is repeated every

iteration. The iterative process is usually terminated after a predetermined

number of iterations, when the soft-output value 2 ˆ()L u stabilizes and

changes little between successive iterations. In the final iteration, Decoder 2

combines both extrinsic information values in computing the soft-output

values of;

 2 1 2ˆ ˆ ˆ() () ()c e eL u L y L u L u= + + (2.47)

and makes decision on decoded bits.

It was summarized below what is meant by the terms a-priori, extrinsic and a-

posteriori information, which will be used throughout this thesis [9].

A priori kL(u) : The a-priori information related to a bit is information

known before decoding commences, from a source other than the received

sequence or the code constraints. It is also sometimes referred to as intrinsic

information for contrasting it with the extrinsic information to be described

next.

Extrinsic e kL (u) : The extrinsic information related to a bit ku is the

information provided by a decoder based on the received sequence and on

the a-priori information, but excluding the received systematic bit uy and the

a-priori information L(u) related to the bit ku . Typically the component

decoder provides this information using the constraints imposed on the

transmitted sequence by the code used. It processes the received bits and

the a-priori information surrounding the systematic bit ku , and uses this

information and the code constraints for providing information about the value

of the bit ku .

A posteriori kL(u |y) : The a-posteriori information related to a bit is the

information that the decoder generates by taking into account all available

sources of information concerning ku . It is the a-posteriori LLR, i.e. kL(u |y)

 33

that the MAP algorithm generates as its output. A more detailed explanation

of Figure 2.14 is shown in Figure 2.15 for 1
3cR = turbo decoders.

 Figure 2.15 Turbo Decoder Schematic

In Figure 2.15, decoder the first decoder receives the channel sequence 1cL y

containing the received versions of the transmitted systematic bits, c uL y , and

the parity bits, 2cL y [10,17,28]. Usually, to obtain a half-rate code, half of

these parity bits will have been punctured at the transmitter, and so the turbo

decoder must insert zeros in the soft channel output c uL y for these

punctured bits. The first component decoder can then process the soft

channel inputs and produce its estimate 11 kL (u | y) of the conditional LLRs of

the data bits ku , 1,2,......k N= . In this notation the subscript 11 in 11 kL (u | y)

indicates that this is the a-posteriori LLR in the first iteration from the first

component decoder. Note that in this first iteration the first component

decoder will have no a-priori information about the bits, and hence kL(u) in

Equation (2.34) giving k(s',s)γ will be zero, corresponding to a-priori

probability of 0.5. Next, the second component decoder comes into

 34

operation. It receives the channel sequence 2cL y containing the interleaved

version of the received systematic bits, and the parity bits from the second

encoder. However now in addition to the received channel sequence 2cL y ,

the decoder can use the conditional LLR 11 kL (u | y) provided by the first

component decoder to generate posteriori to be used by the second

component decoder. Ideally these a-posteriori information would be

completely independent from all the other information used by the second

component decoder. As can be seen in Fig.2.16 in iterative turbo decoders

the extrinsic information e kL (u) from the other component decoder is used

as the a-priori after being interleaved. Again, according to eqn.2.42, the

reason for the subtraction paths shown in Fig.2.16 is that the a-posteriori

LLRs from one decoder have the systematic soft channel inputs c uL y and the

a-priori LLRs kL(u) (if any were available) subtracted to yield the extrinsic

information e kL (u) which are then used as a-priori LLRs for the other

component decoder. The second component decoder thus uses the received

channel sequence 2cL y and the a-priori LLRs ()kL u to produce its a-

posteriori LLRs 12 kL (u | y). This is the end of the first iteration. For the

second iteration the first component encoder again processes its received

channel sequence 1cL y , but now it has updated a-priori kL(u) provided by

the second component encoder, and hence it can produce an improved a-

posteriori LLRs 21 kL (u | y). The second iteration then continues with the

second component decoder using the improved a-posteriori 21 kL (u | y) from

the first encoder to derive, through Equation (2.42), improved a-priori LLRs

kL(u) which it uses in conjunction with its received channel sequence ()kL u

to calculate 22 kL (u | y) . This iterative process continues and the each

iteration on the average the BER of the decoded bits will fall. However, the

improvement in performance for the each additional iteration carried out falls

as the number of iterations increases. Hence for complexity reasons usually

only about between 8 and12 iterations are carried out, as no significant

 35

improvement in performance is obtained with a higher number of iterations.

This is the arrangement of 8 iterations which was used in the simulations, i.e.

the decoder carries out a fixed number of iterations.

2.4 Simulation Results of Turbo Codes, MAP, Soft - Hard Decision
Algorithms

 Figure.2.16 Simulation Result of Turbo Code

(1,5 / 7)octal RSCs were used for turbo encoders. The rate of the code is

1
3cR = and an inter-leaver of length 1024 is used. S-Random inter-leaver is

used with s=10. Iteration number is chosen as 8. First the data sequence is

BPSK modulated and it is passed through an AWGN channel with noise

variance 2σ . The simulation results are shown in Figure 2.16 where

performance graphs for Map decoder, Turbo decoder, Hard and Soft

Decision Viterbi Algorithm are depicted. It is clear from Figure 2.16 that Turbo

Decoder achieves the best performance and is 5 dB better that MAP

 36

decoder.

Figure 2.17 Turbo Coding BER Performance Using Different Number of

Iterations

Figure 2.18 Effect of Frame Length on BER Performance of One-Third Rate

Turbo Coding [9]

 37

CHAPTER 3

BLOCK CODES

A block code is set of vectors that have a well defined mathematical property

of structure and each vector is a sequence of a fixed number of bits. The

vectors belonging to a block code are called code words. A code word both

contains information bits and parity-check bits which are used for error

correction and detection purposes. An n-bit code has code words which have

k information bits r parity bits n k r= + . Such a code referred as an (,)n k

block code, n and k are respectively named as the block length and

information word length.

A codeword whose information bits are kept together is defined as in a

systematic form otherwise the codeword is referred to as in non-systematic

form. A block code whose code words are in systematic form is referred to as

a systematic code. Systematic codes are normally preferred to

nonsystematic codes.

In this thesis BCH (31,21) Bose Chaudhuri and Hocquenghem, block codes

will be used BCH Codes which is a subclass of cyclic code. BCH Code

parameters are given as;

2 1mn = −
 (3.1)

n k mt− ≤

 (3.2)

min 2 1d t= +
 (3.3)

 38

Where t is the number of errors to be corrected, n is the block length, k is

the information word length, and m is an integer. For BCH (31,21) code the

parameters are 31, 21, 5, 2n k m t= = = = and min 5d = .

In general the minimum distance of a code is the minimum Hamming

distance between any two different code words, i.e.

 ()min ,
min ,

i j
i jc c

i j

d d c c

≠

= (3.4)

Where the Hamming distance between two code words
i

c and
j

c is the

number of components at which the two code words differ, and is denoted by

(,)
i j

d c c . Using mind BCH code can also be shown as BCH (n, k, dmin) , for

BCH(31,21,5).

3.1 BCH (31, 21, 5) Block Code Encoder

BCH codes are defined over the mathematical structure of finite fields; for

this reason, their construction will be briefly considered. The mathematical

framework of the BCH code is Galois field and these codes defined in the

binary field (2)GF . Galois fields containing more than two elements can be

constructed using (2)GF . Construction of (2)mGF can be performed using

the primitive element α which satisfies
12 1

m

α
−

= and all the other elements of

(2)mGF can be generates from primitive element. The elements of the

extension field (2)mGF q = can be written as 2 3 2{0,1, , , , . . . , }qα α α α − and

their polynomial representation is given by the remainder of 1nx + upon

division by the prime polynomial ()p x :

 { }(1) / ()n n= Remainder x p xα + . (3.5)

For the construction of BCH (31,21) code, first, the finite field 5(2)GF will be

constructed. The primitive polynomial for BCH (31,21) can be chosen as

 39

5 2() 1p x α α= + + . The field 5(2)GF can be generated from the newly defined

element α which satisfies

 5 2 1 0α α+ + = . (3.6)

Consider addition and multiplication of α with the binary numbers 0 and 1,

the binary numbers 0 and 1 have the form additive and multiplicative

elements respectively, so

0α α+ =

1α α ∗ = .

 (3.4)

The additive inverse of α is α itself, as can be easily shown

 1 1 (1 1) 0 0α α α α α α+ = + = + = = (3.5)

And;

 0α α+ = , (3.6)

This gives;

 α α= − . (3.7)

After these properties rearranging (3, 7), the following can be obtained;

 5 2 1α α= + . (3.8)

When constructing higher powers of α Equation (3.13) is used to reduce

field elements to their lowest power. Power of α other than 5 can be

obtained as:

 40

()
()
()

5 2

6 5 2 3

7 6 3 4 2

8 7 4 2 5 3 3 2

1

1

1.

α α
α αα α α α α

α αα α α α α α

α αα α α α α α α α

= +

= = + = +

= = + = +

= = + = + = + +

 (3.9)
This is continued in a similar manner up to 30 4α α α= + and finally;

 ()31 30 4 5 2 2 21 1α αα α α α α α α α= = + = + = + + =

 (3.10)

Constructing more powers of α other than 31 will always give existing field

elements; for instance,

33 31 2 2

45 31 14 14 4 3 21 1

α α α α
α α α α α α α

= =
= = = + + +

 (3.11)

Table 3.1 32 Field Elements

15 4 3 2

16 4 3

17 4

0 1

1 1

1

α α α α α
α α α α

α α α α
α

 = + + + +
 = + + +
 = + +
2 18

3 19 2

4 20 3 2

5 2

1

1

α α
α α α α
α α α α
α α

 = +
 = +
 = +
= + 21 4 3

6 3 22 4 2

7 4 2 23 3 2

8 3 2 24 4 3 2

9 4 3

1

1

1

α α α
α α α α α α
α α α α α α α
α α α α α α α α
α α α α

 = +
= + = + +
= + = + + +
= + + = + + +
= + + 25 4 3

10 4 26 4 2

11 2 27 3

12 3 2 28 4 2

13 4 3 2

1

1 1

1 1

α α α
α α α α α α
α α α α α α
α α α α α α α α
α α α α

 = + +
= + = + + +
= + + = + +
= + + = + +
= + + 29 3

14 4 3 2 30 4

1

1 .

α α
α α α α α α α

 = +
= + + + = +

 41

In Table 3.1, the 32 field elements are tabulated.

Complex roots of equations with real coefficients always occur in pairs of

complex conjugates. If p jq+ is a root of an equation with real coefficients

then its complex conjugate p jq− is also a root. The roots of a polynomial

with binary coefficients likewise occur in conjugates, not necessarily in pairs

but in groups or sets of conjugates [19,20,21] . Given that β is a field

element of (2)mGF then the conjugates of β are;

12 4 8 2, , , , ,

r
β β β β β

−

Where r is the smallest integer such that 2r
β β= . For example consider the

conjugates of α in 5(2)GF

()
()
()
()
()

2 2

4 4

8 8

16 16

32 31 31 5(2recall that in GF

α α

α α

α α

α α

α α α α α

=

=

=

=

= = [=1)]

Therefore, in 5(2)GF α has four conjugate 2 4 8 16{ , , , }α α α α . In a similar

manner conjugate classes of 3 5 7 11 15, , ,α α α α α , can be found as;

()
()
()
()
()

23 6

43 12

83 24

163 48 31 17 17

323 96 31 31 31 3 3 ,

α α

α α

α α

α α α α α

α α α α α α α

=

=

=

= = =

= = =

The conjugates class of 3α is { }3 6 12 17 24, , , ,α α α α α .

 42

()
()
()
()
()

2
5 10

4
5 20

8
5 40 31 9 9

16
5 80 31 31 18 18

32
5 160 31 31 31 31 31 5 5

α α

α α

α α α α α

α α α α α α

α α α α α α α α α

=

=

= = =

= = =

= = =

The conjugates class of 5α is { }9 10 18 20, , ,α α α α ,

()
()
()
()
()

2
7 14

4
7 28

8
7 56 31 25 25

16
7 112 93 19 19

32
7 224 7

α α

α α

α α α α α

α α α α α

α α α

=

=

= = =

= = =

= =

The conjugates class of 7α is { }14 19 25 28, , ,α α α α .

()
()
()
() ()
()

2
11 22

4
11 44 31 13 13

8
11 88 31 31 26 26

16 5
11 176 31 21 21

32
11 11

α α

α α α α α

α α α α α α

α α α α α

α α

=

= = =

= = =

= = =

=

The conjugates class of 11α is { }13 21 26, ,α α α .

()
()
()
()
()

2
15 30

4
15 60 29

8
15 120 27

16
15 23

32
15 15

α α

α α α

α α α

α α

α α

=

= =

= =

=

=

 43

The conjugates class of 15α is { }23 27 29 30, , ,α α α α . All the conjugate classes

are depicted in Table 3.2

Table 3.2 Conjugate Elements in 5(2)GF .

2 4 8 16

3 6 12 17 24

5 9 10 18 20

7 14 19 25 28

11 13 21 22 26

15 23 27 29 30

1

α α α α α
α α α α α
α α α α α
α α α α α
α α α α α
α α α α α

One of the properties of conjugates is that they provide a mechanism for

going from an extension field to its base field. Consider the pair of complex

conjugates z p jq= + and *z p jq= − , their product gives the real number

 * 2 2zz p q= +

Taking the product of the two factors ()x z− and *()x z− likewise gives a real

expression

 ()()* 2 2 22x z x z x px p q− − = − + + .

In finite field sets of conjugate elements perform the same operation.

Consider 3α ; belonging to 5(2)GF , and its conjugates 6 12 17, ,α α α and 24α ,

let

 3 6 12 17 24() ()()()()()M x x x x x xα α α α α= + + + + +

Performing the multiplication on the right side it is obtained that;

 44

()()()()()
() ()

()
() () () ()

3 6 12 17 24

2 6 3 9 2 14 29 24

4 3 14 2 29 3 2 15 30 2 9 23 7 24

4 3 14 2 29 15 9 30 23 7 24

x x x x x

x x x x x

x x x x x x x x x

x x x x x

α α α α α

α α α α α α

α α α α α α α α α

α α α α α α α α α

+ + + + +

   = + + + + + +  

 = + + + + + + + + + 

 = + + + + + + + + + 

 ⇓
15 20 14α α α

 ⇓ ⇓

5

3.1

(2)

weusetable for addition

of inGFα

() () () ()
() ()

() () () ()

5 4 24 4 14 3 14 24 3 29 15 9 2 29 15 9 24

2 30 23 30 23 24 7

5 4 24 15 3 8 20 2 13 14 7 7

1

1

x x x x x x

x x x

x x x x x

α α α α α α α α α α α α α

α α α α α α

α α α α α α α α

= + + + + + + + + + + +

+ + + + + +

= + + + + + + + + +

 ⇓ ⇓ ⇓

5 4 3 2

1 1 1 0

() 1M x x x x x

 ⇓

= + + + +

Hence, 5 4 3 2() 1M x x x x x= + + + + which is referred to as the minimal

polynomial of conjugate class of { }3 6 12 17 24, , , and xα α α α . It is the binary

polynomial of smallest degree that has 3 6 12 17, , ,α α α α and 24α as roots. Let

()
i

M x denote the minimal polynomial of iα , then ()
i

M x is defined to be the

smallest degree polynomial in (2)GF that has iα as a root, and; so,

 () 0 .i
iM α =

 (3.12)

The minimal polynomial ()

i
M x is also the minimal polynomial of the

conjugates of iα and; therefore,

 5 4 3 2
3 6 12 17 24() () () () () 1.M x M x M x M x M x x x x x= = = = = + + + +

(3.13)

 45

In a similar manner 1 2 4 8(), (), (), ()M x M x M x M x and 16()M x can be calculated

as;

 5 2 1x x+ + . (3.14)

Using the minimal polynomial, generator polynomial of t-error-correcting

binary BCH code can be computed as;

 1 2 3 2() (), (), (),....., () .
t

g x LCM M x M x M x M x =   (3.15)

where LCM is the Least Common Multiple (LCM) operation. For the BCH

(31,21) double-error-correcting 2t = code with block length 31n = over

5(2)GF . The generator polynomial is;

 1 2 3 4() (), (), (), ()g x LCM M x M x M x M x =   . (3.16)

Where,

5 2
1

2 1
5 4 3 2

3

4 2

() 1

() ()

() 1

() () .

M x x x

M x M x

M x x x x x

M x M x

= + +
=
= + + + +
=

Hence,

 ()()
1 3

5 2 5 4 3 2

10 9 8 6 5 3

() () ()

1 1

1 .

g x M x M x

x x x x x x

x x x x x x

=

 = + + + + + +

 = + + + + + +

A t-error-correcting BCH code has guaranteed minimum distance of

2 1d t= + .Therefore this is the (31,21,5) double-error-correcting binary

BCH code.

Since BCH Codes are cyclic codes, their encoders can be implemented

using shift-register circuits [3,9]. The codes can be encoded either

systematically or non-systematically. Systematic codes perform slightly better

than their non-systematic counterparts. For systematic codes, the generator

polynomial ()g x is written as follows;

 46

 2 1
0 1 2 1()n k n k

n k n k
g x g g x g x g x g x− − −

− − −= + + + + + (3.17)

The generator polynomial ()g x formulates n codeword bits by appending

()n k− parity bits to the k information data bits. The encoder employs a shift

register having ()n k− stages as depicted in Fig.3.1, where ⊗ represents

multiplication and ⊕ is modulo-2 addition. The parity bits are computed from

the information bits according to the rules imposed by the generator

polynomial [3,9].

 Figure 3.1 Systematic Encoder for BCH Codes Having (n-k)

Shift-Register with ()n k− Cells

The following steps describe the systematic procedures [9]:

1) Switch1 is closed during the first k shifts, in order to allow the information

data bits, ()d x to shift into the n k− stages of the shift register.

2) At the same time, Switch 2 is in the down position to allow the data bits,

()d x , to be copied directly to the codeword, ()c x .

3) After thk shifts, Switch 1 is opened and Switch 2 is moved to the upper

position.

4) The remaining n k− shifts clear the shift register by appending the parity

bits to the codeword, ()c x .

Fig.3.2 shows the specific encoder, which is a derivative of Fig.3.1. Observe

that all the multipliers illustrated in Fig.3.1 are absent in Fig.3.2. Explicitly, if

the generator polynomial coefficient is 1, the multiplier is replaced by a direct

 47

hard-wire connection as shown in Fig.3.2, whereas if the coefficient is 0, no

connection is made.

Figure 3.2 Systematic Encoder for BCH (31,21) Code Having 10n k− =
 Register Stages

The shift registers must be reset to zero before the encoding process starts.

After the k (information bits) shift, Switch 1 is opened and Switch 2 is moved

to the upper position. The parity bits contained in the shift register are

appended to the codeword. Let’s consider an example to be more specific.

Example 3.1

Consider the BCH (7,4,3) code. The generator polynomial is 3 2() 1g x x x= + +

.

 Figure 3.3 Systematic Encoder for BCH (7,4,3)

 48

 Let use the shift register shown in Figure 3.3 for encoding four (4)k =

information data bits, 1011d = 2 3() 1d x x x= + + . The operational steps are

given in Table 3.3;

 Table 3.3 Operation Steps of BCH (7,4,3) Encoder

0 1 2 0 1 2 3 4 5 6

Input queue Shift index Shift register Codeword

r r r c c c c c c c

1011 0 0 0 0 − − − − − − −
 1 0 1 1 1 1 0 − − − − − − 1
 1 0 2 1 0 1 − − − − − 1 1
 1 3 1 0 0 − − − − 0 1 1
 − 4 ∗ 1 0 0 − − − 1 0 1 1
 − 5 0 1 0

0 0 1011

 − − 0 1 0 1 1
 − 6 0 0 1 −
 − 7 0 0 0 1 0 0 1 011

The codeword is 10 01011c = . The binary representation of both ()d x and

()c x is shown in Figure 3.4.

Figure 3.4 Binary Representations of the Encoded Data Bits and Code Bits

In the example above, there are a few points worth noting [9]:

• The encoding process always starts at the all-zero state and ends at the all

zero state.

• The number of the output bits is always one following a clock pulse.

 49

• For the first k (which is four for this example) shifts, the output bit is the

same as the input bit.

• After the thk shift, the parity bits of the shift register are shifted to the output.

•The number of states is equal to 2n k− increasing exponentially, n k−

increases.

By this information, it can be introduced that the Trellis structure of Block

code to use in Viterbi algorithm. At the next topic, this option will be the focus

point.

3.2 Trellis Decoding of Block Codes

For the previous example for the BCH (7,4,3) code , 3n k− = and the total

number of encoder states is 32 8= . By using the shift register shown in

Figure 3.2, it can be found that all the subsequent states when the register is

in a particular state. Figure 3.5 shows all possible state transitions at any

encoder state for the BCH(7,4,3) code [9,22].

 Figure 3.5 State Transition Diagram for BCH (7,4,3) .

 50

The branch emanating from the present state to the next state indicates the

state transition. The broken line branch is the transition initiated by a data bit

of logical 0, whereas the continuous branch is due to the data bit being

logical 1. The number of branches emanating from the present state is 2,

which corresponds to the number of possible input bits. State transition

diagram can also be illustrated via state diagram the state diagram of Figure

3.5 is shown in Figure 3.6. By using the state diagram in Figure 3.6, data bits

1011d = can be encoded, without using the shift register shown in Figure

3.3. The first data bit is a logical 1, hence the state changes from 000 to110,

as illustrated by the solid branch emanating from state 000 in Figure 3.6. The

encoder output is the same as the input data bit, which is a logical 1. At the

next instant, the present state becomes 110 and the data bit is logical 1. This

causes the state transition from 110 to101. The encoding cycle is repeated

for subsequent data bits, which change the states. By following the change of

states throughout the first k cycles of the encoding process, a particular path

associated with states 000 110 101 100 100→ → → → can be observed [9, 22].

 Figure 3.6 State Diagram for the BCH (7,4,3) code

 51

After the thk cycle, the state changes correspond to shifting out the parity bits

from the shift register. In our example, the parity bits are 100 at the thk cycle.

In the following cycle, the parity bits are shifted to the right. The rightmost bit

of the parity bits is shifted out to become the output bit and the leftmost bit is

filled with logical0 . As a result, the state changes are100 010 001 000→ → → .

The whole encoding process can be associated with state transitions of

000 110 101 100 100 010 001 000→ → → → → → → .

Notice that if the binary value of the state number becomes input, the parity

bits provide by the final n k− bits of the codeword. Therefore, it can be found

that all of the BCH (7,4,3) code’s states with the MATLAB code in Appendix

A. Also we can use this code for BCH (31,21,5) code which has

31 21 102 2 2 1024n k− −= = = states. This MATLAB code is written for our BCH

(31,21,5) which will be used in this thesis.

Using state transition diagram of Figure 3.5 trellis diagram of BCH (7,4,3) can

be obtained as in Figure 3.7.

 Figure 3.7 Trellis Diagram for the BCH (7,4,3) code

 52

Thus, both Convolutional and Block Codes have a Trellis Diagram

representation. It can be constructed thatf turbo codes whose constituent

codes are BCH codes. Block turbo encoder and decoder structures

constructed with BCH codes are shown in Figures 3.8 and 3.9.

 Figure 3.8 BCH Block Turbo Encoder Schematic

Figure 3.9 BCH Block Turbo Decoder Schematic

This chapter presented the idea of Block Turbo Codes including the way they

are encoded and decoded.

BCH
encoder1

BCH
encoder2 Interleaver

 1 2, ' , 'u P P

u

1P

 2P

u

 MUX
 And
Puncture

 53

3.3 Simulation Results

BCH (31,21) codes was used as constituent codes in turbo code encoder.

The simulation results are depicted in Figure 3.10. The rate of block turbo

code is 0.68cR = . The number of iterations is limited to 8. AWGN channel is

used. It can be clearly depicted from Figure 3.10 that iterative decoding

achieves more than 4.5 dB gain when compared to non-iterative Hard-Viterbi

decoding and 2.5 dB gain when compared to non-iterative Soft-Viterbi

decoding.

 Figure 3.10 Simulation Results of BCH (31,21) Block Turbo Code

 54

Figure 3.11 Performance of Different Number of Iterations in

Turbo BCH (31,21) Code

 55

CHAPTER 4

CONCLUSION

This master thesis reports iterative decoding method on block codes. In

Chapter 2 the focus point was on those convolutional codes which are main

component of turbo encoder. After that the Viterbi Algorithm which is the

most important topic to understand the Hard-Decision, Soft-Decision and

MAP Algorithms are considered. Then they were compared with each other.

It was seen that Soft-Decision decoding is 2 dB better than Hard-Decision

decoding. After that MAP Decoding was explained. With the modified Log-

Map Algorithm iteration decoding of turbo codes are considered next. The

simulation results are depicted in Figure 2.16 where it was clear that iterative

decoding of convolutional Turbo Codes achieves more than 4.5 dB gain than

hard or soft Viterbi decoding methods.

Turbo decoder is about four times as complex as decoding as the same code

using a standard Viterbi Algorithm. Because in MAP Algorithmα , β , γ and

P are calculated but in Viterbi algorithm only the distance is considered.

One of the other parameter that affects the performance of Turbo codes is

the number of decoding iteration. If the number of iterations used by the

Turbo Decoder increases, the Turbo Decoder performs significantly better.

However, after eight iterations there is little improvement achieved by using

further iterations. For example, it can be seen from Figure 2.17 that using 16

iterations rather than eight gives an improvement of only about 0.1 dB. Again

there is little improvement in BER performance of the decoder from using

more than eight iterations. Hence for complexity reasons usually only

between about 4 and 12 iterations are used.

 56

In the original paper on turbo coding by Berrou et al. [11], and in many of the

subsequent papers, impressive results have been presented for coding with

very large frame lengths. However, for many applications the large delays

inherent in using high frame lengths are unacceptable. Therefore an

important area of turbo coding research is achieving as impressive results

with short frame lengths like had demonstrated for long frame length

systems. Figure 2.18 shows how the performance of turbo codes depends on

the frame length L used in the encoder.

The other parameter is the generator polynomials and constraint lengths of

the component codes. The standard RSC component codes are constraint

length 3K = codes with generator polynomials 0 7G = and 1 5G = in octal

representation which are shown in Fig 2.1. These generator polynomials are

optimum in terms of maximizing the minimum free distance of the component

codes [23].

In Chapter 3, Block Codes were described. The same decoding method was

used which was referred before as Chapter 2. Than the block turbo code was

constructed and decoded with iterative decoding principle. The simulation

results are depicted in Figure 3.10 where it is seen that the advantages of

block turbo codes as compared to their counterparts’ Convolutional Turbo

Codes are their high code rate
21

0.51
2 41

k
R

n k
= = =

−
 and short frame length

to be decoded with high performance. Short frame length reduces the

decoding latency and these results in increased throughput which is a critical

issue for high speed communication which is essential especially for

multimedia communication, i.e., video, image, music, speed, data, etc. The

disadvantages of block turbo code are the large number of the states. For

BCH (31,21) code the number of states is 1024. So, it increases the

complexity of the Viterbi Algorithm but this situation may create a new

workspaces. In Convolutional Turbo Code, the complexity is 4 4 1024x L x and

in block turbo code the complexity is 1024 4 31x L x . The Block Turbo Code is

about 8 times complex than the Convolutional Turbo Code.

 57

One of the other parameter that affects the performance of BCH Turbo Code

is the number of decoding iteration. As it can be seen in Figure 3.11,

optimum iteration number is 8. Other parameter is the frame length while the

1024-bit code would be suitable for video transmission. The larger frame

length systems would be useful in data or non-real-time transmission

systems.

Finally, Convolutional and Block Turbo Codes are constructed. Turbo Codes

are compared with the other coding methods. The main goal is to constitute

the Trellis form of the Block Codes and applying the Viterbi Algorithm for

iterative decoding.

 R1

REFERENCES

[1] Glavieux, A. (2007), Channel Coding in Communication Networks, Iste Ltd.

[2] Moreira, J.C., Farrell, P.G. (2006), Essentials of Error-Control Coding, Wiley & Sons.

[3] Lin, S., Costello, D.J. (1983), Error Control Coding: Fundamentals and Applications,
 Prentice-Hall.

[4] Neubauer, A., et. al. (2007), Coding Theory Algorithm, Architectures and Applications.

[5] Hoffman, D.G. et. al. (1991), Coding Theory the Essentials, Marcel Dekker.

[6] Simon, M.K., Smith J.G. Alternate Symbol Inversion for Improved Symbol
 Synchronization in Convolutionally Coded Systems, IEEE Trans. Commun., Com-28, pp.
 228-237, February 1980.

[7] Purser, M. (1995), Introduction the Error Control Codes, Arteck House.

[8] Proakis, J.G., Salehi, M. (2002), Communication System Engineering, Prentice Hall.

[9] Hanzo, L., et. al. (2002), Turbo Coding, Turbo Equalization and Space-Time Coding for
 Transmission over Wireless Channels, Wiley & Sons.

[10] Robert, H., Zaragoza, M. (2002), the Art of Error Correcting Codes, Wiley & Sons.

[11] Berrou, C., et. al. Near Shannon Limit Error-Correcting Coding and Decoding: Turbo
 Codes, Proc. 1993, IEEE International Conference on Communications, Geneva,
 Switzerland, pp. 1064-1070, May 1993.

[12] Hagenauer, J., et. al. Iterative Decoding of Binary Block and Convolutional Codes,
 IEEE Trans. Inform. Theory, Vol. 42, No: 2, March 1996, pp. 429-445.

[13] Soleymani, M.R., et. al. (2002), Turbo Coding for Satellite and Wireless
 Communcation, Kluwer Academic Publisher.

[14] Heegard, C., Wiker, S. Turbo Coding, Kluwer, Massachusetts, 1999.

[15] Bahl, L., et. al. Optimal Decoding of Linear Codes for Minimizing Symbol Error Rate,
 IEEE Trans. Inf. Theory, Vol. I.T-20, pp. 284-287, March 1974.

 R2

[16] Cain, J.B., et. al. Punctured Convolutional Codes of Rate (n-1)/n and Simplified
 Maximum Likelihood Decoding, IEEE Trans.Inf.Theory, Vol. IT-25, pp. 97-100, January
 1979.

[17] Huffman, W.C., Pless, V. (2003), Fundamental of Error Correcting Codes, Cambridge
 Uni. Press.

[18] M.R. Soleymani, Yingzi Gao, U. Vilaipornsawai, (2002), Turbo Coding For Satellite
 and Wireless Communcation, Kluwer Academic Publisher.

[19] Gravano, S. (2001), Introduction to Error Control Codes, Oxford.

[20] Ling, S., Xing, C. (2004), Coding Theory A First Course, Cambridge Uni. Press.

[21] Stephan, B.W., Kim, S. (2003), Fundamentals of Codes, Graphs and Iterative
 Decoding, Kluwer Academic Publisher.

[22] Schreier, P.J. (1999), Iterative Decoding of Parallel Concatenated High Rate Linear
 Block Codes, University of Notre Dame, Indiana.

[23] Steele, R., Hanzo, L. (1999), eds., Mobile Radio Communications, Ch. 4.4.4, pp. 425-
 428. Piscataway, NJ, USA: IEEE Press and Pentech Press.

 A1

APPENDIX A

STATE OF THE BCH(31,21) CODE

x=0:1023; → decimal value of 1024 state

y=de2bi(x,21,’left-msb’); → binary representation of state numbers

msg=gf(y); → generates information bits in (2)GF

codeword=bchenc(msg,31,21); →bchen is the BCH(31,21) encoder

states=codeword(512:1024,22:31) → it represents the final 10n k− =

 bits which is the states of the

 BCH(31,21,5) code

 A2

Appendix B

TURBO CODE

public class AWGNGenerator
{
 Random rn1=new Random();
 private int n=3080;
 private double noiseArray[]=new double[n];
 private double uA=0;
 private double uB=0;
 private double s=0;

 public void noiseOlustur(double sigmasquare){

 for(int i=0;i<n;i++){
 s=1;
 while(s>=1){
 uA=1-2*rn1.nextDouble();
 uB=1-2*rn1.nextDouble();
 s=uA*uA+uB*uB;
 }
 noiseArray[i]=uA*Math.sqrt((-
2*sigmasquare*Math.log(s))/s);
 }
 }
 public double getNoise(int i){
 return noiseArray[i];
 }
}

public class BPSKModulator{
 public double Mapping(int x){
 if(x==0)
 return -1;
 else
 return 1;

 A3

 }

 public int Demapping(double y){
 if(y>0)
 return 1;
 else
 return 0;
 }
}

import java.util.Random;
public class encoder
{
 private int state1=0;
 private int state2=0;
 private int A=0;
 private int c1=0;
 private int c2=0;
 private int input[]=new int[1024];
 private int code[]=new int[2052];
 private int count=0;
 public void encode()
 {
 Random sec=new Random();/**/
 for(int i=0;i<1024;i++)
 {
 input[i]=sec.nextInt(2);/**/

 A=makebinary(state1,state2);
 c1=input[i];
 c2=makebinary(makebinary(input[i],state2),A);
 code[count++]=c1;
 code[count++]=c2;
 state2=state1;
 state1=makebinary(A,input[i]);
 }

 A4

/*
 *Trellis termination
 */ if(state1==0&&state2==0){
 code[2048]=0;code[2049]=0;
 code[2050]=0;code[2051]=0;
 }
 else if(state1==0&&state2==1){
 code[2048]=1;code[2049]=1;
 code[2050]=0;code[2051]=0;
 }
 else if(state1==1&&state2==0){
 code[2048]=1;code[2049]=0;
 code[2050]=1;code[2051]=1;
 }
 else if(state1==1&&state2==1){
 code[2048]=0;code[2049]=1;
 code[2050]=1;code[2051]=1;
 }/**/

 }
 public int makebinary(int x,int y)
 {
 int z=x+y;
 if(z==0||z==2)
 return 0;
 else
 return 1;
 }
 public int[] getInput()
 {
 return input;
 }
 public int[] getCode()
 {
 return code;
 }

 A5

public class Inter_encoder
{
 okuyucu oku=new okuyucu();
 private int state1=0;
 private int state2=0;
 private int A=0;
 private int c1=0;
 private int c2=0;
 private int input[]=new int[1024];
 private int Inter[]=new int[1024];
 private int Inter_input[]=new int[1024];
 private int code[]=new int[2052];
 private int count=0;

 public void InterlieverDefinition(){
 oku.openFile("Interliever.txt");
 oku.readRecord();
 Inter=oku.getRecords();
 oku.closeFile();
 for(int i=0;i<1024;i++){
 Inter_input[i]=input[Inter[i]];
 }
 }

public class TurboEncoder{
 private int[] Turbocode=new int[3080];
 private int[] input=new int[1024];
 public void MakeAll(){
 encoder encoder1=new encoder();
 Inter_encoder IE=new Inter_encoder();
 encoder1.encode();
 input=encoder1.getInput();
 IE.setInput(input);
 IE.InterlieverDefinition();

 A6

 IE.encode();
 int[] code1=encoder1.getCode();
 int[] code2=IE.getCode();

 for(int i=0;i<1024;i++){
 Turbocode[3*i]=code1[2*i];
 Turbocode[3*i+1]=code1[2*i+1];
 Turbocode[3*i+2]=code2[2*i+1];
 }
 Turbocode[3072]=code1[2048];
 Turbocode[3073]=code1[2049];
 Turbocode[3074]=code1[2050];
 Turbocode[3075]=code1[2051];
 Turbocode[3076]=code2[2048];
 Turbocode[3077]=code2[2049];
 Turbocode[3078]=code2[2050];
 Turbocode[3079]=code2[2051];
 }
 public int[] getTurbocode(){
 return Turbocode;
 }
 public int[] getInput(){
 return input;
 }
}

public class MAP1
{
 private double sigmasqr=1;
 private double[] CodeArray=new double[2052];
 private int[] uArray=new int[1026];
 private double[] prioriP0=new double[1026];
 private double[] prioriP1=new double[1026];
 private double[] a_posPr0=new double[1026];
 private double[] a_posPr1=new double[1026];
 private double[] alfa00=new double[1026];
 private double[] alfa01=new double[1026];

 A7

 private double[] alfa10=new double[1026];
 private double[] alfa11=new double[1026];
 private double[] beta00=new double[1027];
 private double[] beta01=new double[1027];
 private double[] beta10=new double[1027];
 private double[] beta11=new double[1027];
 private double[] branch0_0=new double[1026];
 private double[] branch0_2=new double[1026];
 private double[] branch1_0=new double[1026];
 private double[] branch1_2=new double[1026];
 private double[] branch2_1=new double[1026];
 private double[] branch2_3=new double[1026];
 private double[] branch3_3=new double[1026];
 private double[] branch3_1=new double[1026];

 public void setCodes(double[] car){
 CodeArray=car;
 for(int i=0;i<1026;i++){
 prioriP0[i]=Math.log(0.5);
 prioriP1[i]=Math.log(0.5);
 }
 }

 public int[] getCikis(){
 return uArray;
 }
 public void setsigma(double sigma){
 sigmasqr=sigma;
 }
 public void setPrioriPr0(double[] xxx){
 for(int i=0;i<1024;i++)
 prioriP0[i]=xxx[i];
 }
 public void setPrioriP1(double[] xxx){
 for(int i=0;i<1024;i++)
 prioriP1[i]=xxx[i];
 }
 public double[] getP0(){
 double[] P0=new double[1024];
 for(int i=0;i<1024;i++){
 P0[i]=a_posPr0[i]+CodeArray[2*i]/sigmasqr-prioriP0[i];
 }
 return P0;

 A8

 }
 public double[] getP1(){
 double[] P1=new double[1024];
 for(int i=0;i<1024;i++){
 P1[i]=a_posPr1[i]-CodeArray[2*i]/sigmasqr-prioriP1[i];
 }
 return P1;
 }

 public double[] getMAPP0(){

 return a_posPr0;
 }
 public double[] getMAPP1(){

 return a_posPr1;
 }

 public double takeDifference(double x1,double x2,double c1,double c2){
 return ((x1*c1)+(x2*c2))/(sigmasqr);
 }

 public void fillbranchs(){
 for(int i=0;i<1026;i++){
 branch0_0[i]=prioriP0[i]+takeDifference(-1,-
1,CodeArray[2*i],CodeArray[2*i+1]);

 branch0_2[i]=prioriP1[i]+takeDifference(1,1,CodeArray[2*i],CodeArray[2*i
+1]);

 branch1_0[i]=prioriP1[i]+takeDifference(1,1,CodeArray[2*i],CodeArray[2*i
+1]);
 branch1_2[i]=prioriP0[i]+takeDifference(-1,-
1,CodeArray[2*i],CodeArray[2*i+1]);
 branch2_1[i]=prioriP1[i]+takeDifference(1,-
1,CodeArray[2*i],CodeArray[2*i+1]);
 branch2_3[i]=prioriP0[i]+takeDifference(-
1,1,CodeArray[2*i],CodeArray[2*i+1]);
 branch3_1[i]=prioriP0[i]+takeDifference(-
1,1,CodeArray[2*i],CodeArray[2*i+1]);
 branch3_3[i]=prioriP1[i]+takeDifference(1,-
1,CodeArray[2*i],CodeArray[2*i+1]);
 }
 branch1_0[0]=-100;

 A9

 branch1_2[0]=-100;
 branch2_1[0]=-100;
 branch2_3[0]=-100;
 branch3_1[0]=-100;
 branch3_3[0]=-100;
 branch1_0[1]=-100;
 branch1_2[1]=-100;
 branch3_1[1]=-100;
 branch3_3[1]=-100;
 }
 public void fillalfas(){
 alfa00[0]=0;
 alfa01[0]=-100;
 alfa10[0]=-100;
 alfa11[0]=-100;
 alfa00[1]=alfa00[0]+branch0_0[0];
 alfa01[1]=-100;
 alfa10[1]=alfa00[0]+branch0_2[0];
 alfa11[1]=-100;
 alfa00[2]=alfa00[1]+branch0_0[1];
 alfa01[2]=alfa10[1]+branch2_1[1];
 alfa10[2]=alfa00[1]+branch0_2[1];
 alfa11[2]=alfa10[1]+branch2_3[1];
 for(int i=3;i<1026;i++){
 alfa00[i]=Math.log(Math.exp(alfa00[i-1]+branch0_0[i-
1])+Math.exp(alfa01[i-1]+branch1_0[i-1]));
 alfa01[i]=Math.log(Math.exp(alfa10[i-1]+branch2_1[i-
1])+Math.exp(alfa11[i-1]+branch3_1[i-1]));
 alfa10[i]=Math.log(Math.exp(alfa00[i-1]+branch0_2[i-
1])+Math.exp(alfa01[i-1]+branch1_2[i-1]));
 alfa11[i]=Math.log(Math.exp(alfa10[i-1]+branch2_3[i-
1])+Math.exp(alfa11[i-1]+branch3_3[i-1]));

//normalization of alfas
 double
SS=Math.log(Math.exp(alfa00[i])+Math.exp(alfa01[i])+Math.exp(alfa10[i])+Math.e
xp(alfa11[i]));
 alfa00[i]=alfa00[i]-SS;
 alfa01[i]=alfa01[i]-SS;
 alfa10[i]=alfa10[i]-SS;
 alfa11[i]=alfa11[i]-SS;
 }
 }
 public void fillbetas(){

 A10

 beta00[1026]=0;
 beta01[1026]=-100;
 beta10[1026]=-100;
 beta11[1026]=-100;
 beta00[1025]=beta00[1026]+branch0_0[1025];
 beta01[1025]=beta00[1026]+branch1_0[1025];
 beta10[1025]=-100;
 beta11[1025]=-100;
 beta00[1024]=beta00[1025]+branch0_0[1024];
 beta01[1024]=beta00[1025]+branch1_0[1024];
 beta10[1024]=beta01[1025]+branch2_1[1024];
 beta11[1024]=beta01[1025]+branch3_1[1024];
 for(int i=1023;i>0;i--){

 beta00[i]=Math.log(Math.exp(beta00[i+1]+branch0_0[i])+Math.exp(beta10[
i+1]+branch0_2[i]));

 beta01[i]=Math.log(Math.exp(beta00[i+1]+branch1_0[i])+Math.exp(beta10[
i+1]+branch1_2[i]));

 beta10[i]=Math.log(Math.exp(beta01[i+1]+branch2_1[i])+Math.exp(beta11[
i+1]+branch2_3[i]));

 beta11[i]=Math.log(Math.exp(beta01[i+1]+branch3_1[i])+Math.exp(beta11[
i+1]+branch3_3[i]));

 // Normalization of betas
 double
SS=Math.log(Math.exp(beta00[i])+Math.exp(beta01[i])+Math.exp(beta10[i])+Math.
exp(beta11[i]));
 beta00[i]=beta00[i]-SS;
 beta01[i]=beta01[i]-SS;
 beta10[i]=beta10[i]-SS;
 beta11[i]=beta11[i]-SS;

 }
 }
 public void decode(){
 fillbranchs();
 fillalfas();
 fillbetas();
 for(int i=0;i<1026;i++){

 A11

 a_posPr1[i]=Math.log(Math.exp(alfa00[i]+beta10[i+1]+branch0_2[i])+

Math.exp(alfa01[i]+beta00[i+1]+branch1_0[i])+

Math.exp(alfa10[i]+beta01[i+1]+branch2_1[i])+

Math.exp(alfa11[i]+beta11[i+1]+branch3_3[i]));

 a_posPr0[i]=Math.log(Math.exp(alfa00[i]+beta00[i+1]+branch0_0[i])+

Math.exp(alfa01[i]+beta10[i+1]+branch1_2[i])+

Math.exp(alfa10[i]+beta11[i+1]+branch2_3[i])+

Math.exp(alfa11[i]+beta01[i+1]+branch3_1[i]));
 }
 }
}

public class MAPFrame{
 private int errorcounter=0;
 private int frameerr=0;
 private int framecounter=0;
 private int temple=0;
 private double sigmasquare=0.5;
 public void yeniframe(){
 temple=0;
 TurboEncoder encoder1=new TurboEncoder();
 TurboDecoder decoder1=new TurboDecoder();
 BPSKModulator bpsk=new BPSKModulator();
 AWGNGenerator awgn=new AWGNGenerator();

 encoder1.MakeAll();
 int[] inputArray=encoder1.getInput();
 int[] codes=encoder1.getTurbocode();
 awgn.noiseOlustur(sigmasquare);

 double bpskcodes[]=new double[3080];
 for(int j=0;j<3080;j++){

 A12

 bpskcodes[j]=bpsk.Mapping(codes[j])+awgn.getNoise(j);
 }
 decoder1.setSigma(sigmasquare);
 decoder1.setCodes(bpskcodes);
 decoder1.decode();
 int cıkıs[]=decoder1.getCikis();
 for(int l=0;l<1024;l++){
 if(inputArray[l]!=cıkıs[l]){
 errorcounter++;
 temple++;
 }
 }
 if(temple!=0)
 frameerr++;
 }
 public void Simulation(double Sigma){
 sigmasquare=Sigma;
 errorcounter=0;
 framecounter=0;
 frameerr=0;
 while(frameerr<100)
 {
 yeniframe();
 framecounter++;
 }
 }
 public int getframecounter(){
 return framecounter;
 }
 public int geterrorcounter(){
 return errorcounter;
 }
 public int getframeerror(){
 return frameerr;
 }
}

public class MAPFrameTest
{
 public static void main(String args[])
 {
 MAPFrame fatih=new MAPFrame();

 A13

 //0dB
 fatih.Simulation(1.5);
 System.out.printf("Eb/No:0dB(variance:1,500000) HataliBit:%d
HataliFrame:%d
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/
 //0,2dB
 fatih.Simulation(1.432489);
 System.out.printf("Eb/No:0,2dB(variance:1,432489) HataliBit:%d
HataliFrame:%d
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/
 //0,4dB
 fatih.Simulation(1.368016);
 System.out.printf("Eb/No:0,4dB(variance:1,368016) HataliBit:%d
HataliFrame:%d
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/
 //0,6dB
 fatih.Simulation(1.306445);
 System.out.printf("Eb/No:0,6dB(variance:1,306445) HataliBit:%d
HataliFrame:%d
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/
 //0,8dB
 fatih.Simulation(1.247646);
 System.out.printf("Eb/No:0,8dB(variance:1,247646) HataliBit:%d
HataliFrame:%d
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/
 //1dB
 fatih.Simulation(1.191492);
 System.out.printf("Eb/No:1dB(variance:1,191492) HataliBit:%d
HataliFrame:%d
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/
 //1,2dB
 fatih.Simulation(1.137866);
 System.out.printf("Eb/No:1,2dB(variance:1,137866) HataliBit:%d
HataliFrame:%d
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/
 //1,4dB
 fatih.Simulation(1.086654);

 A14

 System.out.printf("Eb/No:1,4dB(variance:1,086654) HataliBit:%d
HataliFrame:%d
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/
 //1,6dB
 fatih.Simulation(1.037746);
 System.out.printf("Eb/No:1,6dB(variance:1,037746) HataliBit:%d
HataliFrame:%d
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/
 //1,8dB
 fatih.Simulation(0.991040);
 System.out.printf("Eb/No:1,8dB(variance:0,991040) HataliBit:%d
HataliFrame:%d
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/
 //2dB
 fatih.Simulation(0.946436);
 System.out.printf("Eb/No:2dB(variance:0,946436) HataliBit:%d
HataliFrame:%d
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/
/* //2,2dB
 fatih.Simulation(0.903839);
 System.out.printf("Eb/No:2,2dB(variance:0,903839) HataliBit:%d
HataliFrame:%d
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/
/* //2,4dB
 fatih.Simulation(0.863160);
 System.out.printf("Eb/No:2,4dB(variance:0,863160) HataliBit:%d
HataliFrame:%d
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/
 //2,6dB
 fatih.Simulation(0.824311);
 System.out.printf("Eb/No:2,6dB(variance:0,824311) HataliBit:%d
HataliFrame:%d
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/
 //2,8dB
 fatih.Simulation(0.787211);
 System.out.printf("Eb/No:2,8dB(variance:0,787211) HataliBit:%d
HataliFrame:%d

 A15

Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/
/* //3dB
 fatih.Simulation(0.751781);
 System.out.printf("Eb/No:3dB(variance:0,751781) HataliBit:%d
HataliFrame:%d
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/
 //3,6dB
 fatih.Simulation(0.654774);
 System.out.printf("Eb/No:3,6dB(variance:0,654774) HataliBit:%d
HataliFrame:%d
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/
 //4dB
 fatih.Simulation(0.597161);
 System.out.printf("Eb/No:4dB(variance:0,597161) HataliBit:%d
HataliFrame:%d
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/

 }
}

import java.util.Scanner;
import java.io.File;
import java.io.FileNotFoundException;
import java.lang.IllegalStateException;
import java.util.NoSuchElementException;

public class okuyucu{
 private Scanner oku;
 private int[] records=new int[1024];
 private int rec=0;
 public void openFile(String name){
 try
 {
 oku=new Scanner(new File(name));
 }
 catch(FileNotFoundException fnfexc)
 {

 A16

 System.err.println("Error opening the file");
 System.exit(1);
 }
 }
 public void readRecord(){
 try{
 int i=0;
 while(oku.hasNextInt()){
 rec=oku.nextInt();
 records[i++]=rec;
 /* System.out.printf("okunan bilgiler:\n%s",records);/**/
 }
 }
 catch(NoSuchElementException nseexc){
 System.err.println("File improperly formed");
 oku.close();
 System.exit(1);
 }
 catch(IllegalStateException isexc){
 System.err.println("Error reading from file");
 System.exit(1);
 }
 }
 public void closeFile()
 {
 if(oku != null)
 oku.close();
 }
 public int[] getRecords(){
 return records;
 }
}

 A17

APPENDIX C

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name : Genç. Fatih

Nationality : Turkish (TC)

Date and Place of Birth : 1 January 1984, Ankara

Marital Status : Single

Phone : +90 312 437 29 97

Email : fatihgenc84@gmail.com

EDUCATION

Degree Institution Year of Graduation
MS Çankaya Univ. Electronic and

Communication Eng.
2010

BS Çankaya Univ. Electronic and
Communication Eng.

2007

BS Wien Technical Univ.
ERASMUS Student Exchange
Program (Austria)

2007-2006

High School Muharrem Hasbi High School,
Balıkesir

2002

WORK EXPERIENCE

Year Place Enrollment
2010-Present Gazi University Project Assistant
2009-2010 Çankaya Uni. Specialist
2007-2008 Oriantel A.Ş Hoşdere Ar-Ge Eng
2005-2006 Türksat Aş. CMC-

Communication
Monitoring Center

Summer Trainer

2004-2005 Türktelekom Aş. IT
Networks

Summer Trainer

FOREIGN LANGUAGES

Advanced English, Basic German

 A18

HOBBIES

Swimming, Basketball, Chess, Table Tennis, Watching Movies, Reading

Books, Listening Music, Karting Paintball, Latin Dances

EXPERIENCE AND PROJECT

Iterative Decoding of Block Coding (2010) (Master Thesis)

Digital Transmitter and Receiver Theory - Simulation Matlab - FPGA/VHDL

(2007)(Senior Project)

Çankaya University Spring Festival (2007)

Karting Competition Activity (2007)

C++ Class Architecture (2007)

Seminar related with Object-Oriented Programming

Remote Controlled Car (2005) (Semester Project)

Token Ring Simulation (2005)

The Project of “Let’s Go to School” (2004-2005)

TRAINING

TOSFED Observer Training (2006)

Society Voluntaries White Key Volunteer Certificate (2006)

Society Voluntaries Green Key Training (2006)

Society Voluntaries Red Key Training (2005)

Society Voluntaries Blue Key Training (2005)

Society Voluntaries Yellow Key Training (2004)

MEMBER OF GROUPS AND CLUBS

Present Member of Information Technologies Community of Çankaya

University (2003)

Present Member of FRP Community of Çankaya University (2003)

Present Organization committee Go-Kart Community of Çankaya University

(2004)

 A19

Present Incorporator of Society Voluntaries Community of Çankaya

University (2004)

Present Head of Organization Committee and Incorporator of Chess

Community of Çankaya University (2005)

Present Member of IEEE Community of Çankaya University (2007)

REFERENCES

Assoc.Prof.Dr Celal Zaim Çil

Chairman of Electronic and Communication Eng. Çankaya University

Phone: (+90) 312 2844500 / 262

Assist. Prof. Dr. Orhan Gazi

Electronic and Communication Eng. Çankaya University

Phone: +90 535 379 08 25

Assist. Professor Dr. Özgür Ertuğ

Electronic and Communication Eng. Gazi University

Phone: +90 (312) 5823320

