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ABSTRACT 
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Error control coding is vital for digital communication. With the advent of 

turbo codes a huge interest on iterative decoding aroused recently. Although 

iterative decoding reduces bit error rate (BER) significantly, it brings new 

challenges such as increased complexity and large decoding delays. Turbo 

like codes can be constructed either using convolutional codes or block 

codes. In this thesis we construct classical turbo codes with both 

convolutional codes and block Bose Chaudhuri and Hocquenghem (BCH) 

codes, and simulate their performances and discuss their advantages and 

disadvantages.  
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ÖZ 
 

 

   BLOK KODLARDA DÖNGÜLÜ KODÇÖZME 

 

 

Genç, Fatih 

Yükseklisans, Elektronik ve Haberleşme Mühendisliği Anabilim Dalı 

Tez Yöneticisi  : Yrd. Doç. Dr. Orhan Gazi 

                                                                      

Eylül 2010, 57 Sayfa 

 

 

Hata kontrollü kodlama dijital iletişim için hayati öneme sahiptir. Turbo 

kodların gelişi iteratif çözümleme üzerine büyük bir ilgi uyandırdı. Đteratif 

çözümleme BER’i önemli ölçüde azaltmasına rağmen, artan karmaşıklık ve 

çözümleme gecikmeleri gibi yeni sorunlar oluşturur. Turbo kodlar katlamalı 

kodlar veya blok kodlar kullanılarak yapılabilir. Bu tez çalışmasında katlamalı 

kodlar ve blok BCH kodları kullanılarak klasik turbo kodları inşası ve onların 

performansları, avantaj ve dezavantajları tartışılmıştır. 

 

 

Anahtar Kelimeler : BCH Kodlar, Döngülü Kod Çözme, Turbo Kod  
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CHAPTER 1 
 
 

INTRODUCTION 
 

1.1 Coding  
 
Figure 1.1 illustrates the basic elements found in digital communication which 

connect a data source to a data user through a channel. The nature of the 

information source may be either analog or digital, depending on the 

application. An analog signal; however, must be digitalized before being used 

in a digital communication system. A digital signal is discrete in time and 

uses only a finite alphabet. Typically, the data is represented by a sequence 

of binary digits (bits). One of the tasks in coding theory is to detect, or even 

correct errors. Usually, coding is defined as the source coding and the 

channel coding. The source-coding theorem is one of the most important 

theorems introduced by Shannon. The source-coding establishes a 

fundamental limit on the rate at which the output of an information source can 

be compressed without causing a large error probability [1, 2, 3]. An example 

of source coding is the ASCII code, which converts each character to a byte 

of 8 bits. In this work source coding is not concerned. In order to understand 

the role of error control coding, a model of a general communication system 

is presented, as shown in Fig.1.1. 
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         Figure 1.1 Model of Digital Communication System 
 
The task of the transmitter in such a system is to transform the information 

into a form that can withstand the effect of noise over the transmission 

medium. An information source generates messages bearing information to 

be transmitted. The messages can be words, code symbols etc. The output 

of the information source is converted sequence of symbols from a certain 

alphabet. The most often binary symbols are transmitted. In general, the 

output of the information source is not suitable for transmission as it might 

contain too much redundancy. Due to the efficiency reasons, the source 

encoder is designed to convert the source output sequence into a sequence 

of binary digits with minimum redundancy. The number of bits br  generated 

by the source encoder per second is called the data rate. The channel 

impairments cause errors in the received signal. The channel encoder is 

incorporated in the system to add redundancy to the information sequence. 

This redundancy is used to reduce transmission errors. The channel encoder 

assigns to each message of k  symbols a longer message of n  digits called a 

codeword. A good error control code generates codewords which are 

different as possible from one another. This makes the communication 

system less defenseless to channel errors. Each code is characterized by the 

ratio R =  < 1 
k

n
called the code rate. The data rate at the output of the 

channel encoder is brr  = c R
 bps. The primary goal of error control coding is to 
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maximize the reliability of transmission within the constraints of signal power, 

system bandwidth and complexity of the circuitry which is achieved by 

introducing structured redundancy into transmitted signals. This usually 

results in a lowered data transmission rate of increased channel bandwidth. 

The output signal of the channel encoder is not normally suitable for 

transmission. The modulator enables signal transmission over a channel. In 

the receiver, the demodulator typically generates a binary or analog 

sequence at its output as the best estimates of the transmitted codewords. 

The channel decoder makes estimates of the actually transmitted message. 

The decoder process is based on the encoder rule and the characteristics of 

the channel. The goal of the decoder is to minimize the effect of channel 

noise. By proper design of the transmitter - receiver system, it would be 

possible to reduce or remove the effects of attenuation and distortion and to 

minimize the noise effects. The impact of noise cannot be totally removed. If 

the demodulator makes hard decisions, the output is a binary sequence. The 

subsequent channel decoding process is called Hard-decision decoding. 

Hard decisions in the demodulator result in some irreversible information 

loss. An alternative is to quantize the demodulator output to more than two 

levels or take samples of the analog received baseband signal and pass it to 

the channel decoder. The subsequent decoding process is called soft 

decision decoding [4, 5]. 

The two most frequently used types of codes are block and convolutional 

codes. In block codes each encoding operation depends on the current input 

message and is independent on previous encodings. That is, the encoder 

has no memory of history of past encodings. In contrast, for a convolutional 

code, each encoder output sequence depends not only on the current input 

message, but also on a number of past message blocks. 
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1.2 The AWGN Channel  

 

 

The model that is used in this thesis is the most commonly used model, the 

Additive White Gaussian Noise (AWGN) channel. It is a very simple 

memoryless channel. The received signal Y  is described by [1] 

 

                                                      Y = X + Z                                               (1.1) 

 

The noise Z  is assumed to be independent of the signal X . We first analyze 

a simple suboptimal way to use this channel. Assume that we want to send 

bit ‘1’ over the channel. Given the power constraint, the best that we can do 

is to send one of two level, P+ or P− . The receiver looks at the 

corresponding Y  received and tries to decide which of the two levels were 

sent. Assuming that both signals levels are equally likely (this would be the 

case if we wish to send exactly 1 bit of information), the optimum decoding 

rule is to decide that '1'was send if 0Y >  and decide ' 1'−  was send if 0Y < . 

  

                               

                       Figure 1.2 Gaussian Channel 

 

The noise Z  is a stationary random process with Gaussian Probability 

distribution given as 

 

                                        
2

2

1
exp

22

x
P

σσ π
 −=  
 

             ,                        (1.2)    

 

Where mean is 0nγ =  and average power of noise is 2σ . 
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1.3 Modulation 

 

The modulation method employed in this thesis is Binary Phase Shift Keying 

(BPSK). This is a Memoryless Modulation Technique. The binary digits '1' 

and '0 ' are modulated as '1' and ' 1'− . In general for binary string b  

transmitter signal after modulation operation is 2 1s b= − . 

 

1.4 Entropy and Channel Capacity 

 

Information sources generate any of a set of M different symbols, which are 

considered as representatives of a discrete random variable X  that adopts 

any value in the range A={ }1 2, ,..., mx x x . Each symbol iX  has the probability 

iP  of being emitted and contains information iI . The symbol probabilities 

must be in agreement with the fact that at least one of them will be emitted, 

which means that, 

 

               
1

1
m

i
i

P
=

=∑       .                                  (1.3) 

The source symbol probability distribution is stationary, and the symbols are 

independent and transmitted at a rate of r  symbol per second. This 

description corresponds to a Discrete Memoryless Source (DMS) [1]. Each 

symbol contains the information iI  so that the set { }1 2........ mI I I  can be seen 

as a discrete random variable with average information 

     

   b
1 1

1
( )

m m

i b
i i i

iix P L o g
P

P I
= =

 
= =  

 
∑ ∑H            (1.4) 

 

The function so defined is called the entropy of the source. When base 2 is 

used, the entropy is measured in bits per symbol: 
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2

1 1

1
( ) lo g

i

m n

i i i
i i

H x P I P
P= =

 
= =     

 
∑ ∑      b its p e r s ym b o l    (1.5) 

  

The channel capacity of a discrete memoryless channel is equal to  

 

                 
( )

( , )
i

S
P x

c MAX I x y bit per symbol=                                     (1.6) 

 

Shannon’s “Noisy Coding Theorem” states that every channel has a capacity 

C , which is the highest rate C  in bits per channel used at which reliable 

communication is possible. Shannon showed that error free communication 

is possible at transmission rates below channel capacity employing channel 

codes. Ever since Shannon proved his noisy coding theorem, the 

construction of practical capacity-achieving schemes has been the goal of 

coding theory. The classical approaches to this problem included algebraic 

block codes and convolutional codes. The field was revolutionized by the 

introduction of turbo codes by Berrou, Glavieux and Thitimajshima in 1993. 

The performance of Turbo Code is much closer to capacity than that of any 

previous codes and has lower complexity. 

 

1.5 Thesis Outline 

 

In Chapter 2, we introduce the convolutional codes and some of the decoding 

methods. First we explain the Trellis structure. We consider the Hard-

Decision Viterbi Algorithm (HVA), soft-decision Algorithm (SOVA) and Map 

algorithm-log Map algorithm and we present the turbo Convolutional code. 

Simulation results are shown and conclusions are added. 

In chapter 3, we begin with the BCH Block code and present turbo BCH 

codes considering two trellis decoding methods, which are the Maximum A-

Posteriori (MAP) and the soft-output Viterbi Algorithm (SOVA) and simulation 

results, are given. 

Finally conclusions are given in Chapter 4. 
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CHAPTER 2 

 

CONVOLUTIONAL CODES 

 

2.1 Convolutional Encoders  

 

An important technique in error-control coding is that convolutional coding. 

Convolutional codes were invented in 1954 by P. Elias [6]. They constitute a 

family of error correcting codes. In this type of coding the encoder output is 

not in block form, but is in the form of continuous bit stream. The 

convolutional encoding operation involves past and present bits and it is a 

continuous operation. The convolutional encoding operation can be 

performed using Finite State Machines (FSMs). 

In this thesis we will use the convolutional encoder shown in Fig. 2.1. Let k  

and n  denote the number data and encode bits [7].  

         

   Figure 2.1 A Rate 
1

2
 Convolutional Encoder 

 
Then the rate of the code is defined as;  
    

                                        c

k
R

n =    .                                             (2.1) 
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For the convolutional encoder in Fig.2.1 1k = , 2n =  3L = . If the number of 

cells in convolutional encoder register is γ , the constraint length is L . 

Therefore, the convolutional encoder is defined as 1L = γ + . The total number 

of states in Fig.2.1 is ( 1)2 4L− = . The convolutional encoder in Fig.2.1 can be 

represented by a state transition diagram. Fig.2.2 shows the state transition 

diagram for the convolutional encoder in Fig.2.1. In this state-transition 

diagram, each state of the convolutional encoder is represented by a box and 

transitions between states are denoted by lines connecting these boxes.  

 
 
 

              
         Figure 2.2 State Transition Diagram for the Encoder of Fig 2.1 

 
Convolutional codes can also be described using trellis diagrams. The trellis 

diagram shows the change in states as time passes. Usually horizontal axis 

is used for time and vertical axis is used for state transitions.  
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Example 2.1 

Using state transition diagram 10101 can be encoded as 11 01 10 01 11        . For 

the encoding process first we start with the 00  state. Notice that when the 

input bit is 0  the encoded bits are 00  which is shown like 0 00. After that 

when the input bit is 1 the encoded bits are 11 and the state becomes to 10 

state. 

Fig.2.3 shows the trellis diagram for the convolutional encoder which was 

shown in Fig.2.1. 

 

 
                     Figure 2.3 Trellis Diagram for the Encoder of Fig 2.1 
 
The trellis diagram starts with the 00  state and the all states merge with the 

proper next states. The dashed line denotes the input bits which are 0  and 

the other flat lines denote the input bits1. The other bits are shown at the top 

of the all lines which are the output encoded bits.  

 

2.2 Decoding of Convolutional Codes 
 
2.2.1 Hard Decision Decoding Algorithm  
 
The Viterbi Algorithm (VA) performs maximum likelihood decoding. It is 

applied to the trellis of a convolutional code whose properties are 

conveniently used to implement this algorithm. Such that the code word 

generated from path in hard-decision decoding the trellis technique denoted 
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by c , is a path through the trellis is chosen at minimum Hamming distance 

from the quantized received sequence y .The Hamming distance between c  

and y  is therefore. 

 

                        
1

( , ) ( , )
m

i i
i

d c y d c y
=

=∑                          (2.2) 

 
In the other word ic are the encoded bits and the iy  are the received bits. The 

binary distance was found with ic  and iy  by the Hamming distance 

calculation. 

Viterbi algorithm can be summarized as with [8]: 

1- Find the Hamming distance of the thi  subsequence of the received 

sequence to all branches which are connecting  thi  stage states to 

the ( 1)i +  stage states shown in Fig. 2.4. Here 1,2...i n=  and n is 

the number of the input bits. 

2- Add these distances to the metrics of the thi  stage states to obtain 

the metric candidates for the ( 1)i +  stage states. For each state of 

the ( 1)i +  stage there are 2  metrics candidate.  

3- For each state at the ( 1)i +  stage, choose the minimum one of the 

metric candidates. Label the branch corresponding to this minimum 

value as the survivor and assign the minimum of the metric 

candidates as the metrics of the ( 1)i +  stage states which is shown 

in Fig. 2.5. 

4- Starting with the minimum value state at the final stage. Go back 

through the trellis along the survivors to reach the initial all-zero 

state. This path is the optimal path and is called Wining Path. 

 

Example 2.2 

Consider the convolutional code of Fig.2.2 whose trellis is seen in Fig.2.3 for 

the received sequence is 1101110111rS = . 
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In example 2.1 the message sequence 10101 is encoded to 11 01 10 01 11        . 

We will use Trellis Diagram with Viterbi Algorithm to decode the encoded 

11 01 10 01 11         sequence. 

The first step in the application of this algorithm is to determine the Hamming 

distance between the received sequences. This is shown in Fig 2.4 all the 

codewords generated by the Trellis Diagram. 

Message Sequence  :     1   0   1   0   1 
 
Code Sequence        :   11 01 10 01 11 
 
Received Sequence :   11 01 11 01 11 
 
 

 

            Figure 2.4 Hamming Distance Calculation of the VA 

 
At each shape of the decoding operations from the all-zero state, we 

compute the Hamming distance of the received bit pairs. For example, for the 

first two-bits “11”, the associated Hamming distances are 2 and 0 with 

respect to both the “00” and “11”. We also note these Hamming distances in 

the trellis diagram of Fig.2.4. These Hamming distances are known in the 

context of Viterbi decoding as the branch metric. The power of the Viterbi 

decoding algorithm accrues from the fact that it carries out maximum 

likelihood sequence estimation. The branch metrics will be accumulated over 

a number of consecutive trellis stages before a decision as to the most likely 

encoder path and information sequence can be released. Proceeding to the 
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next received two-bit symbol namely “01” that is the Hamming distance 

between the encoded symbols of all four legitimate paths and the received 

symbol is computed. These distances yield the new branch metrics 

associated with the second trellis stage. By now the encoded symbols of two 

original input bits have been received and this is why there are now four 

possible trellis states which the decoder may reside. The branch metrics 

computed for these four legitimate transitions from top to bottom are 1, 1, 2 

and 0. These are now added to the previous branch metrics of 1 in order to 

generate the path metrics of 3, 2, 3 and 0 which were accumulated Hamming 

distance in Fig2.5. 

 

                             Figure 2.5 Branch Metrics of the VA 

 
A low Hamming distance indicates a high similarity between the received 

sequence and the encoded sequence. If we continue at trellis stage 3t  the 

received sequence of “11” is compared to the four legitimate two-bit encoded 

symbols. Notice that there is an error bit that changes the Hamming distance 

of each path so the lower metric will always remain the more likely encoder 

path. This is respected in Fig.2.6 by referring to the path exhibiting the lower 

metric as the survivor path. 
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. 

 

    Figure 2.6 Winning Path of the VA 

 
 
In our example the received bit sequence does not contain any more 

transmission errors, and so it is plausible that the winning path remains the 

one at the top of Fig.2.6. The corresponding winning path was drawn in bold 

in the Fig.2.6. 

 
2.2.2 Soft – Decision Decoding 
 
In Hard decision decoding operation Hamming distance are used. On the 

other hand in Soft-decision decoding operation the probability values are 

used. This is the main differences of Hard and Soft decision decoding. Let’s 

first review maximum likelihood criteria. It can be stated as follows [9,10]: 

  
 ( ) ( )1 0P s y P s y≥     The decoder decides for hypothesis 1H               

 ( ) ( )0 1P s y P s y≥   The decoder decides for hypothesis 0H            (2.3) 

  
Hypothesis 1H  corresponds to the transmission of symbol '1', and 

hypothesis  0H  corresponds to the transmission of symbol '0 '. Equation (2.3) 

can be written as;  
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                                   ( ) ( )1 1 0 0( ( )P y s P s P y s P s) ≥   

                       ( ) ( )0 0 1 1( ( )P y s P s P y s P s) ≥                                             (2.4) 

 

Where for the first set the decoder decides for hypothesis 1H  and for the 

second set the decoder decides for  0H  . If the transmitted symbols are 

equally likely, then 

  

( )
( )

1

0

1
P y s

P y s
>   The decoder decides for hypothesis 1H  

 

( )
( )

1

0

1
P y s

P y s
<   The decoder decides for hypothesis 0H                                (2.5) 

 
Assume that the transmitted signals are 1s  and 2s . The received signals are 

1 1y s n= +  and 2 0y s n= + . If the transmission is over an AWGN channel, the 

probability density functions is given of 

 

                                         
2

( )1

2 21
( | ) 0,1

2

iy s

P y s e iσ

σ π

−
−

= .           =                         (2.6) 

 

Using eqn.(2.4) and (2.6) the likelihood ratio can also be expressed in terms 

of these probability density functions for each of the transmitted symbols as ; 

 

                                           

2
1

1

2
0

0

1

2

0

1
12

1
( )2
( )1

2
H

y s

H

y s

e
P s

P s
e

σ

σ

σ π

σ π

− −  
 

− −  
 

  >    
<

                                       (2.7) 

 
The decoder decides for hypothesis  1H   and 0H  which is simplified as; 
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22
01

1

0

1

2 0

1

( )

( )
H

y by b
H P s

e
P s

σ σ
 −−   −  −   
      >

<
                                       (2.8) 

 
If natural logarithm of both sides of eqn.(2.7) is taken the decision criteria to 

1

0

2 2
1 0( ) ( )

H

H

y b y b− > −
<

. This means contrary to Hamming distance in Hard 

decision decoding and Euclidean distance are used in Soft decision 

decoding. 

 

2.2.3 Map Decoding Algorithm 
 
In hard decision algorithm estimated bits for transmitted sequence is given to 

the channel decoder. Thus, any information about the reliability of the 

received sequence is lost. In soft decision decoding algorithm the probability 

values for transmitted sequence are used at decoder. Soft decision decoding 

algorithm achieves better performance than hard decision decoding. In this 

chapter we introduce Maximum A Posteriori (MAP) decoder algorithm that 

both accepts and delivers soft values. The Log Likelihood Ratio (LLR) of a 

data bit ku  is denoted as ( )
k

L u  and is defined to be merely the log of the ratio 

of the probability of the bit taking its two possible values [11], i.e., 

 

                                      
( )
( )

1
( ) ln

1
k

k
k

P u
L u

P u

 = +
  = − 

≜                                          (2.9) 

 
The BPSK modulated values for the bits ku  are taken 1+  and 1− .This 

approach slightly simplifies the mathematics in the derivations. The sign of 

the LLR, ( )
k

L u   will indicate whether the bit is more likely to be 1+  or 1−  and 

the magnitude of the ( )
k

L u  gives an indication of how likely it is that the sign 

of ( )
k

L u  gives the correct value ku . When ( ) 0
k

L u ≈ , It results in 

( 1) ( 1) 0.5
k k

P u P u= + ≈ = − ≈ , and we can not be certain about the value of ku . 

Conversely, when ( ) 0kL u ≫ , we get ( 1) ( 1)
k k

P u P u+ = −≫  and we can be 
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almost certain that 1
k

u = + . As well as the ( )
k

L u  based on the a-priori 

probabilities ( 1)
k

P u = ± , LLR can also be defined using a-posteriori 

probabilities as: 

 

                                         
( 1| )

( / ) ln
( 1| )

k k
k k

k k

P u y
L u y

P u y

 +
 − 

≜                     (2.10) 

 
Where y  is the noise added transmitting sequence. The conditional 

probabilities ( 1| )kP u y= ±  are known as the a-posteriori probabilities of data 

bit ku . Assume that ky  is the received symbol.  

Then 

      ( | ) ( ) ( | )k k k k kP u y P u P y u=                               (2.11) 

 

where ( | )k kP u y  can be computed as 

 

     2

( )

21
( / ) e

2

k ky u

kP y u σ

σ π

−
−

=   .                              (2.12)  

 

Where 2σ  is the variance of noise. For a sequence of received symbols y  

the LLR is defined as: 

 

      
( 1, )

( / ) ln
( 1, )

k
k

k

P u y
L u y

P u y

 = +
  = − 

≜                             (2.13) 

 

In Fig.2.7 a section of trellis diagram for (1,5 / 7)octal  convolutional encoder is 

given that if the previous state 1k
S −  and the present state 

k
S  it is seen from 

Fig.2.7, then the value of the input bit 
k

u  that causes the transition between 

these two states, will be known. Hence the probability that 1
k

u = +  is equal to 

the probability that the transition from the previous state 1k
S −  to the present 
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state 
k

S  is one of the set of four possible transitions that can occur when 

1
k

u = +  (i.e. those transitions shown with broken lines). This set of transitions 

is mutually exclusive (i.e. only one of them could have occurred at the 

encoder). Using Bayes’ Rule Equation (2.12) can be re-written as; 

 

                          
( )

( )

1
',

1

1
',

1

( ', , )

( / )
( ', , )

k

k

n

k k
s s

u
k n

k k
s s

u

P S s S s y

L u y
P S s S s y

−
⇒

=+

−
⇒

=−

 = = 
 

=  
 = =
  
 

∑

∑
  .                               (2.14) 

 

Where ( )',s s  with 1ku = +  is the set of transitions from the previous state 

1 '
k

S s− =  to the present state 
k

S s=  and similarly for ( )',s s  with 1ku = −   for 

brevity we shall write 1( ', , )k kP S s S s y− = =  as ( ', , )P s s y . 

 

                                
                                    Figure 2.7 Possible Transitions 

 
The individual probabilities can be written as ( ', , )P s s y  : 
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                                     ( ', , ) ( ', , , , )
j k k j k

P s s y P s s y y y
< >

=
.
                           (2.15) 

 
Using Bayes’ Rule ( , ) ( | ) ( )P a b P a b P b=  of and the fact that if we assume that 

the channel is memoryless, then the future received sequence 
j>k

 y will 

depend only on the present state s and not on the previous state 's  or the 

present and previous received channel sequences 
k

y  and
j k

y
<

. Thus, 

Equation (2.14) can be written as; 

 
 

                          
( ', , ) ( | ', , }) ( ', , , )

( | ) ( ', , , ) .
j k j k j k k

j k j k k

P s s y P y s s y P s s y y

P y s P s s y y

> < <

> <

=  {   

                =      
                (2.16) 

 
 

Again, using Bayes’  rule and the assumption that the channel is 

memoryless, Equation 2.15 can be expanded as follows: 

 

                       

1

( ', , ) ( | ) ( ', , , )

( | ) ({ , }|{ ', }) ( ', )

( | ) ({ , } | ') ( ', )

( ) ( ', ) ( ') .

j k j k k

j k k j k j k

j k k j k

k k k

P s s y P y s P s s y y

P y s P y s s y P s y

P y s P y s s P s y

s s s sβ α

> <

> < <

> <

−

=   

                =      

                =   

                =  γ      

                 (2.17)                            

 

Where; 

 

                                   1 1( ') ( ', )k k j k
s P S s yα − − <

= =
     

                                (2.18) 

 

which is the probability that the Trellis is in state 's  at time 1k −  and the 

received channel sequence up to this point is
j k

y
<

, as visualized in Figure 

2.8. 
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           Figure 2.8 MAP Decoder Trellis 

 
In Equation (2.17) 
 
                                                    ( ) ( | )k kj k

s P y S sβ
>

=  =                            (2.19) 

 
is the probability that given the trellis is in state s at time k  the future 

received channel sequence will be
j k

y
>

, and finally: 

 

                                              1( ', ) (( ) | ')k k kk
s s P y S s S s−γ = , = =  

   
             (2.20) 

 

is the probability that given the trellis was in state 's  at time 1k − , and it 

moves to state s and the received channel sequence for this transition is 
k

y . 
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k
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k
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     Figure.2.9 Recursive Calculation of (0) kα and (0)kβ   

 
Equation (2.17) shows that the probability ( ', , )P s s y  can be split into the 

product of three terms: 1( ')
k

sα − , ( ', )
k

s sγ  and ( )
k

sβ . The meaning of these 

three probability terms is shown in Figure 2.9. The MAP algorithm finds ( )
k

sα  

and ( )
k

sβ  for all states s  throughout the trellis, i.e. for 0,1,.... 1k N= − , and 

( ', )
k

s sγ  for all possible transitions from state 1 '
k

S s− =  to state 
k

S s= . These 

values are then used to find the probabilities 1( ', , )k kP S s S s y− = =  which are 

then used in Equation (2.13) to compute the ( | )
k

L u y  for each 
k

u . 

Additionally, it can be described that how the values ( )
k

sα , ( )
k

sβ  and ( ', )k s sγ  

can be calculated. 
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2.2.3.1 Forward Recursive Calculation of the (s) kα Values 

The  ( )k sα  may be computed recursively as; 

 

                                       1
'

( ) ( ', ) ( ')k k k
s

s s s sα γ α −=∑                                    (2.21) 

Since; 
                      

                

1

1
'

1 1

1 1
'

1

1
'

1
'

( ) ( , )

( ', , )

( , | ', ) ( ', )

( , | ') ( ', )

( , ') ( ') ,

k
k

k

s

k k
k

s

k
k

s

k k
s

s P s y

P s s y

P s y s y P s y

P s y s P s y

s s s

α

α

− −

−

−

=

         =

         =

         =  

         = γ   

∑

∑

∑

∑

      

                                                                                                                 (2.22)                 
 
Thus, ( )k sα  may be recursively computed as 1

'

( ) ( ', ) ( ')k k k
s

s s s sα α −= γ∑  with 

the initial condition given as; 
 

     0 0

0 0

( 0) 1

( ) 0 0.

S

S s s

α
α

= =
= =  ∀ ≠                                       (2.23)

 

 
 

2.2.3.2 Backward Recursive Calculation of the (s) kβ Values 

Using Equation (2.19); thus, 1( ')k sβ −  can be computed recursively; 

1( ') ( ) ( ', ) .k k k
s

s s s sβ β− =  γ    ∑  
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1( ') ( | ')

( , | ')

k k

k
s

s P y s

P y s s

β − =

             =∑
 

    

1

1

( | ', , ) ( , | ')

( | ) ( , | ')

( ) ( ', )

kk k
s

kk
s

k k
s

P y s s y P s y s

P y s P s y s

s s sβ

+

+

             =

             =

             = γ                 .

∑

∑

∑

 

                                                                                                             (2.24) 

As an example, in Figure 2.9; 

 

    1 1 2 1

1 1

(0) (0) (0,0) (2) (0,2)

(0) (0) (0,0) (1) (1,0) .
k k k k k

k k k k k

β β β
α α α

+ + + +

− −

= γ + γ
= γ + γ   

 

 
(2.25) 

 
2.2.3.3 Calculation of the (s', s) kγ Values 
 

1( )k sα − , ( )k sβ  are the state probabilities. ( ', )k s sγ  is the transition probability 

among states, these are also called branch metrics. Additionally, it is 

considered that how the ( ', )k s sγ  values in Equation (2.22) can be calculated 

from the received signal sequence using the definition of ( ', )k s sγ  from 

computation Equation (2.26) and Bayes’ Rule of  

 

                                 

( ', ) ( , | ')

( ', , )

( ')

( ', , ) ( ', )

( ') ( ', )

( ', , )( ', )

( ') ( ', )

( | ') ( | ', ) .

k k

k

k

k

k

s s P s y s

P s s y

P s

P s s y P s s

P s P s s

P s s yP s s

P s P s s

P s s P y s s

γ =

             =

             =  

             =  

             =   

 

                       (2.26) 
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The probability ( ', )P s s  equals to ( )kP u . Since going from 's  to s depends 

on input data. Hence, ( ' | ) ( )kP s s P u= . Thus,       

                                          

                                             
( ' | ) ( ) ( | ', )

( ) ( | ) ,
k k k

k k k

s s P u P y s s

P u P y c

γ =
              =    

            

              (2.27) 
 
 
Where ( )k k kc u p  , 1 2( )k k ky y y  and  ( | )k kP y c  is;  
 
 

                             
( ) 2

1 22 2

2
2 2

1 1
( | ) exp ( )

2 2
1 1

exp
2 2

k k k k k k

k k

P y c y u y p

y c

πσ σ

πσ σ
 

 = −  − + −    

                = − −  
� �

 

           (2.28) 
 
 

2.2.3.4 Summary of the MAP Algorithm 

Forward recursion from Equation (2.22) can be used to calculate ( ', )
k

s sγ . 

Once all the channel values have been received, and ( ', )
k

s sγ  are calculated 

for all 0,1,....k N= , the forward state probabilities ( ', )k s sα  and the state 

probabilities ( ', )
k

s sβ  are computed. Finally, all the calculated values of 

( ', )k s sα  ( ', )k s sβ  and ( ', )k s sγ  are in  

 

    

1
( ', )

1

1
( ', )

1

1
( ', )

1

1
( ', )

1

( ', , )

( | )
( ', , )

( '). ( ', ). ( )

ln
( '). ( ', ). ( )

k

k

k

k

k k
s s

u
k

k k
s s

u

k k k
s s

u

k k k
s s

u

P S s S s y

L u y
P S s S s y

s s s s

s s s s

α β

α β

−
⇒

=+

−
⇒

=−

−
⇒

=+

−
⇒

=−

 = =
 
    
 = =
 
 

 γ
 
             
 γ
 
 

∑

∑

∑

∑

≜

≜

 

              (2.29) 

 



 

 24 

to decide decoded bits. These operation are summarized in Fig.2.10. 

( ', )
k

s sγ

1( ')
k

sα − ( )
k

sβ

 

            Figure 2.10 Summary of the MAP algorithm 

 

2.2.4 LOG – MAP Algorithm 

 

The MAP decoding algorithm requires large memory and a large number of 

operation involving exponential value computations and multiplications. One 

way of simplifying computation amount is to work with the logarithms of 

1( , )k s sγ , ( ')k sα  and 1( )k sβ + , denoted by �( ', )k s sγ , �( ')k sα  and�1( )k sβ + . If log 

values are used �( ) log ( )k ks sα α= ; so, 
� ( )( ) k S

k s eαα = . Using Equation (2.23);  

  

                             
� � � � �

� � � � �

1 1

1 1

( ) ( ') ( ', ) ( ') ( ', )
1

( ') ( ') ( ', ) ( ') ( ', )
2

k k k k k

k k k k k

s s s s s s s

s s s s s s s

x e e e e e

x e e e

α α α

α α α

− −

− −

γ γ

+γ +γ

⇒ = = +

⇒ = = +
  

 

Using log of 1x  and 2x ; 
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� � � �
1 1( ') ( ') ( ', )( ) log( )k k ks s s s

k s e eα αα − − +γ⇒ = +  

                                                                                          (2.30) 

Now consider MAP; 
  

                                            
                            Figure 2.11 Trellis Diagram for MAP 
 

                                    1
',

1

( 1| ) ( ') ( ', ) ( )

k

k k k k
s s
u

P u y s s s sα γ β +

=

= + = ∑              (2.31) 

In log domain; 
 

                   �
� � �( )1( ') ( ', ) ( )

'
1

( 1| ) log k k k

k

s s s s
k

s s

P u y eα γ β

γ

++ +

=

= = ∑      (2.32) 

  

                                  �

( ', ) ( ) ( | )

( ', ) log ( ) log ( | )

( ) log ( | )

k k k k

k k k k

k k k

s s P u P y c

s s P u P y c

L u P y c

γ
γ

=

= +
              = +

    

              (2.33) 
Now consider ( | )k kP y c  
  

 1 1 2 2
2 22 2

1 1
( | ) exp . exp

2 22 2

k k k k
k k

y c y c
P y c

σ σπσ πσ
− −    = −       

     (2.34) 

 

( ) ( )2 2

1 1 2 22 2

1 1
log ( | ) log

2 2k k k k k kP y c y c y c
πσ σ

 = + − + −
 

       (2.35) 

This can be simplified as;  

                 

1ku =  

1ku =  

1ku =  
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          2 2 2 2 2
1 2 1 2 1 1 2 22

1
log ( | ) log 2 2 2

2k k k k k k k k k kP y c y y c c y c y cπσ
σ

 = − − + + + − −      

                                                                                                             (2.36) 
 

                         2 2 2 2 2
1 2 1 22

1
log 2 ( )

2 k k k ky y c cπσ
σ

= − + + + [ ]1 1 2 22

1
k k k ky c y c

σ
+ +  

                                                                                                             (2.37) 
 
 Where the first and second term can be dropped due to non dependently on 

ku , and the following can be obtained;                          

       

1 1 2 22

1
log ( | ) ( )k k k k k k

k k

P y c y c y c

u p

σ
= +

                                      ↓             ↓
                                                 
                                         

                                (2.38)  

Hence,  

   

� ( )1 1 2 22

1
( ', ) ( )k k k k k k

k k

s s L u y c y c

u p

γ
σ

= + +

                                           ↓             ↓
                                                      

                     (2.39) 

Using the log values of ( )k sα , ( ', )k s sγ  and ( )k sβ  it can be written as 

�( | ) 1kP u y = ; 

� �
1 1 2 2 12

',
1

1
( 1| ) log exp ( ) ( ) ( ) ( )

k

k k k k k k k k
s s
u

P u y s L u y c y c sα β
σ +

=

 = = + + + +  
∑  

(2.40) 
This can be simplified as; 

� �
1 2 2 12 2

',
1

1 1
( 1| ) log exp ( ) ( ) ( )

k

k k k k k k k
s s
u

P u y s L u y y c sα β
σ σ +

=

 = = + + + +  
∑  

                                                                                                  (2.41) 
 

Also, using log( ) log( )a b c a d f b c d fe e a e e+ + + + + ++ = + +  property, Equation (2.41) 

can be further simplified of;  

� �
1 2 2 12 2

',

1 1
( 1| ) ( ) log exp ( ) ( )k k k k k k k

s s

P u y y L u s y c sα β
σ σ +

 = = + + + +  
∑

   

                                                                                                          
(2.42) 
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Where; 

   12

1
k c ky Channel Value L y

σ
 →    cL is the channel reliablitiy value      

    ( )kL u a priori provided by the other decoder→ −       

              � �
2 2 12

',

1
log exp ( ) ( )k k k k e k

s s

s y c s L uα β
σ +

 + + → ( )  
∑   Extrinsic information 

 �( 1| )kP u y=  is a-posteriori log-likelihood ration ˆ( )L u . 
 
 
 
2.3 Turbo Code 
 
Berrou, Glavieux and Thitimajshima [11] introduced in 1993 a novel and 

apparently revolutionary error-control coding technique, which they called 

turbo coding. This coding technique consists essentially of a parallel 

concatenation of two binary convolutional codes. These codes obtain an 

excellent bit error rate (BER) performance by making use of three main 

components. They are constructed using two systematic convolutional 

encoders usually known as recursive systematic convolutional (RSC) 

encoders, which are concatenated in parallel. In this parallel concatenation, a 

random inter-leaver plays a very important role as the randomizing 

constituent part of the coding technique. Interleaving procedure is designed 

to make the encoder output sequences be statistically independent from 

each other. This coding scheme is decoded by means of an iterative decoder 

that makes the resulting BER performance close to the Shannon limit.  

In parallel concatenation, so that each input element is encoded twice, but 

the input to the second encoder passes first through a random inter-leaver. 

Turbo codes can be iteratively decoded using soft decision decoding 

algorithms. The decoders operate in a soft-input–soft-output mode; that is, 

both the input applied to each decoder, and the resulting output generated by 

the decoder, should be soft decisions or estimates. Both decoders operate by 

utilizing what is called a priori information, and together with the channel 

information provided by the samples of the received sequence, and 

information about the structure of the code, they produce an estimate of the 

message bits. They are also able to produce an estimate called the extrinsic 
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information, which is passed to the other decoder, information that in the 

following iteration will be used as the a priori information of the other 

decoder. Thus the first decoder generates extrinsic information that is taken 

by the second decoder as its a priori information. This procedure is repeated 

in the second decoder. The first decoder then takes the received information 

as its a priori information for the new iteration, and operates in the same way 

as described above, and so on. 

The iterative passing of information between the first and the second 

decoders continues until a given number of iterations are reached. With each 

iteration, the estimate of the message bits improves and they usually 

converge to a correct estimate. The number of errors corrected increases as 

the number of iterations increases. However, the improvement of the 

estimates does not increase linearly, and so, in practice, it is enough to utilize 

a reasonable small number of iterations to achieve acceptable performance 

[12 13 14]. 

One of the most suitable decoding algorithms that performs soft – input – soft 

- output decisions is a maximum a posteriori (MAP) algorithm known as the 

BCJR (Bahl, Cocke, Jelinek,Raviv, 1974) algorithm [15]. Further 

optimizations of this algorithm lead to lower complexity   algorithms, like   

SOVA    (soft-output Viterbi algorithm), and the LOG MAP algorithm, which is 

basically the BCJR algorithm with logarithmic computation [9]. 

 

2.3.1 Turbo Encoder 

A turbo encoder structured using two RSC encoders arranged in parallel, and 

combined with a random inter-leaver, together with a multiplexing and 

puncturing block, is depicted in Figure 2.12. 
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                                       Figure 2.12   Turbo Encoder 
 
In the traditional structure of a turbo encoder, the encoders are usually RSC 

encoders of rate c
1R  = 2 , such that 1 1P P′ =  , 2 2P P′ = , and the lengths of the 

sequences  u , 1P  and 2P , 1P′  and 2P′  are all the same. Then the overall turbo 

code rate is c
1R  = 3 . Puncturing [2, 9, 16] is a technique very commonly 

used to improve the overall rate of the code. The puncturing selection 

process is performed by periodically eliminating one or more of the outputs 

generated by the constituent RSC encoders. During puncturing, the parity 

bits generated by these two encoders are alternately eliminated so that the 

redundant bit of the first encoder is first transmitted, eliminating that of the 

second decoder, and in the following time instant  the redundant bit of the 

second encoder is transmitted, eliminating that of the first. In this way, the 

lengths of 1P′  and 2P′are half the lengths of  1P  and 2P  , respectively, and the 

resulting overall rate becomes 1
2cR =  . Puncturing is not preferred for 

message (systematic) bits, due to BER performance loss. The use of 

interleaver has a major influence on the BER performance of a turbo code, 

especially its length and structure.  The excellent BER performance of these 

codes is enhanced when the length of the inter-leaver is significantly large 

and its structure have pseudo random nature. The interleaving block and its 

corresponding de-inter-leaver in the decoder do not much increase the 

complexity of a turbo scheme. However, it does introduce a significant delay 

RSC1 

RSC2 Interleaver 
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Puncture 
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in the system, which in some cases can be a strong drawback, depending on 

the application. The RSC-generated Convolutional Codes are comparatively 

simple, but offer excellent performance when iteratively decoded using soft-

input–soft-output algorithms. 

 

2.3. 2 ITERATIVE DECODING of TURBO CODES 

 

Principle of the Iterative Decoding Algorithm in Figure 2.13, Soft-Input / Soft-

Output decoder structure is shown [12]. 

                             Figure 2.13   Soft-Input / Soft-Output Decoder 
 
The output of the “symbol-by-symbol” Maximum a posteriori Probability 

(MAP) decoder is defined as the a posteriori log-likelihood ratio, that is, 

the logarithm of the ratio of the probabilities of a given bit being “ +1” or “ -1” 

given the observation y , and is given as  

 

( 1| )
ˆ( ) ( ) ln

( 1| )
k

k
k

P u y
L u L u y

P u y

 = +  
=   = −   

≜  . 

  (2.43) 
 

Such a decoder uses a priori values L(u )for all information bits u , if 

available, and the channel values cL y  for all coded bits. It also delivers soft 

outputs ˆ( )L u  on all information bits and an extrinsic information ˆ( )eL u  , which 

contains the soft output information from all the other coded bits in the code 

sequence and is not influenced by the L(u ) and cL y  values of the current bit 

Soft-in/Soft-out 
Decoder 

A priori values for 
all information bits 

Channel value for all 
code bits 

Extrinsic value for all 
information bits 

A posteriori values for 
all information bits 

( )L u

cL y

ˆ( )eL u

Output-Log-likelihood  Input-Log-likelihood 

ˆ( )L u
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[10,17]. For systematic codes, the soft output for the information bit u   will be 

represented as the sum of three terms  

                                                  
                                        ˆ ˆ( ) ( ) ( )c eL u L y L u L u= + +                                 (2.44) 

 
This means that three independent estimates exist for the log-likelihood ratio 

of the information bits; the channel values cL y  the a priori values L(u )and 

the values ˆ( )eL u  by a third independent estimator utilizing the code 

constraint. The whole procedure of iterative decoding with two “Soft-in/Soft-

out” decoders is shown in Figure (2.14). In the first iteration of the iterative 

decoding algorithm, decoder 1 computes 

The extrinsic information; 

                                          [ ]1 1ˆ ˆ( ) ( ) ( )e cL u L u L y L u= −  +                          (2.45) 

 

Assume that equally likely information bits; thus, it is initialized that 

( ) 0L u = for the first iteration. This extrinsic information from the first decoder 

is passed to the decoder 2, which uses 1 ˆ( )eL u  as the a priori value in place of 

( )L u  to compute 2( )L u . Hence, the extrinsic information value computed by 

Decoder2 is; 

                                  
2 2 1ˆ ˆ ˆ( ) ( ) ( )e c eL u L u L y L u = −  +                                      (2.46) 

 
 

  
                           Figure 2.14 Iterative Decoding Procedures with  

Two “Soft-Input/Soft-Output Decoder 

       SISO 
  
DECODER1  

       SISO 
  
DECODER2  

Feedback for the next iteration 

( )L u =0 

cL y

1 ˆ( )eL u  

1 ˆ( )L u  

2 ˆ( )eL u  

2 ˆ( )L u  

ˆ( )L u  
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Then, Decoder 1 will use the extrinsic information values 2 ˆ( )eL u  as a priori 

information in the second iteration. The computation is repeated every 

iteration. The iterative process is usually terminated after a predetermined 

number of iterations, when the soft-output value 2 ˆ( )L u  stabilizes and 

changes little between successive iterations. In the final iteration, Decoder 2 

combines both extrinsic information values in computing the soft-output 

values of; 

       
                        2 1 2ˆ ˆ ˆ( ) ( ) ( )c e eL u L y L u L u= + +                 (2.47) 

 
and makes decision on decoded bits. 

 

It was summarized below what is meant by the terms a-priori, extrinsic and a-

posteriori information, which will be used throughout this thesis [9]. 

A priori kL(u ) :  The a-priori information related to a bit is information 

known before decoding commences, from a source other than the received 

sequence or the code constraints. It is also sometimes referred to as intrinsic 

information for contrasting it with the extrinsic information to be described 

next. 

Extrinsic e kL (u )  : The extrinsic information related to a bit ku  is the 

information provided by a decoder based on the received sequence and on 

the a-priori information, but excluding the received systematic bit uy  and the 

a-priori information L(u ) related to the bit ku . Typically the component 

decoder provides this information using the constraints imposed on the 

transmitted sequence by the code used. It processes the received bits and 

the a-priori information surrounding the systematic bit ku , and uses this 

information and the code constraints for providing information about the value 

of the bit ku . 

A posteriori kL(u |y) : The a-posteriori information related to a bit is the 

information that the decoder generates by taking into account all available 

sources of information concerning ku . It is the a-posteriori LLR, i.e. kL(u |y)  
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that the MAP algorithm generates as its output. A more detailed explanation 

of Figure 2.14 is shown in Figure 2.15 for 1
3cR =  turbo decoders. 

 

    

   Figure 2.15 Turbo Decoder Schematic 

 

In Figure 2.15, decoder the first decoder receives the channel sequence 1cL y  

containing the received versions of the transmitted systematic bits, c uL y , and 

the parity bits, 2cL y  [10,17,28]. Usually, to obtain a half-rate code, half of 

these parity bits will have been punctured at the transmitter, and so the turbo 

decoder must insert zeros in the soft channel output c uL y  for these 

punctured bits. The first component decoder can then process the soft 

channel inputs and produce its estimate 11 kL (u | y )  of the conditional LLRs of 

the data bits ku , 1,2,......k N= . In this notation the subscript 11 in 11 kL (u | y )  

indicates that this is the a-posteriori LLR in the first iteration from the first 

component decoder. Note that in this first iteration the first component 

decoder will have no a-priori information about the bits, and hence kL(u ) in 

Equation (2.34) giving k( s',s )γ  will be zero, corresponding to a-priori 

probability of 0.5. Next, the second component decoder comes into 
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operation. It receives the channel sequence 2cL y  containing the interleaved 

version of the received systematic bits, and the parity bits from the second 

encoder. However now in addition to the received channel sequence 2cL y , 

the decoder can use the conditional LLR 11 kL (u | y )  provided by the first 

component decoder to generate posteriori  to be used by the second 

component decoder. Ideally these a-posteriori information would be 

completely independent from all the other information used by the second 

component decoder. As can be seen in Fig.2.16 in iterative turbo decoders 

the extrinsic information e kL (u )  from the other component decoder is used 

as the a-priori after being interleaved. Again, according to eqn.2.42, the 

reason for the subtraction paths shown in Fig.2.16 is that the a-posteriori 

LLRs from one decoder have the systematic soft channel inputs c uL y  and the 

a-priori LLRs kL(u )  (if any were available) subtracted to yield the extrinsic 

information e kL (u )  which are then used as a-priori LLRs for the other 

component decoder. The second component decoder thus uses the received 

channel sequence 2cL y  and the a-priori LLRs ( )kL u  to produce its a-

posteriori LLRs 12 kL (u | y ). This is the end of the first iteration. For the 

second iteration the first component encoder again processes its received 

channel sequence 1cL y , but now it has updated a-priori kL(u ) provided by 

the second component encoder, and hence it can produce an improved a-

posteriori LLRs 21 kL (u | y ). The second iteration then continues with the 

second component decoder using the improved a-posteriori 21 kL (u | y ) from 

the first encoder to derive, through Equation (2.42), improved a-priori LLRs 

kL(u ) which it uses in conjunction with its received channel sequence ( )kL u  

to calculate 22 kL (u | y ) . This iterative process continues and the each 

iteration on the average the BER of the decoded bits will fall. However, the 

improvement in performance for the each additional iteration carried out falls 

as the number of iterations increases. Hence for complexity reasons usually 

only about between 8 and12 iterations are carried out, as no significant 
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improvement in performance is obtained with a higher number of iterations. 

This is the arrangement of 8 iterations which was used in the simulations, i.e. 

the decoder carries out a fixed number of iterations. 

 
2.4 Simulation Results of Turbo Codes, MAP, Soft - Hard Decision 
Algorithms 
 

 
                             Figure.2.16 Simulation Result of Turbo Code 
 
(1,5 / 7)octal  RSCs were used for turbo encoders. The rate of the code is 

1
3cR =  and an inter-leaver of length 1024 is used. S-Random inter-leaver is 

used with s=10. Iteration number is chosen as 8. First the data sequence is 

BPSK modulated and it is passed through an AWGN channel with noise 

variance 2σ . The simulation results are shown in Figure 2.16 where 

performance graphs for Map decoder, Turbo decoder, Hard and Soft  

Decision Viterbi Algorithm are depicted. It is clear from Figure 2.16 that Turbo 

Decoder achieves the best performance and is 5 dB better that MAP 
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decoder.

 

Figure 2.17 Turbo Coding BER Performance Using Different Number of 

Iterations 

 

Figure 2.18 Effect of Frame Length on BER Performance of One-Third Rate                 

Turbo Coding                                              [9]
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CHAPTER 3 
 

BLOCK CODES 
 
 

A block code is set of vectors that have a well defined mathematical property 

of structure and each vector is a sequence of a fixed number of bits. The 

vectors belonging to a block code are called code words. A code word both 

contains information bits and parity-check bits which are used for error 

correction and detection purposes. An n-bit code has code words which have 

k information bits r parity bits n k r= + . Such a code referred as an ( , )n k  

block code, n  and k  are respectively named as the block length and 

information word length.  

A codeword whose information bits are kept together is defined as in a 

systematic form otherwise the codeword is referred to as in non-systematic 

form. A block code whose code words are in systematic form is referred to as 

a systematic code. Systematic codes are normally preferred to 

nonsystematic codes. 

In this thesis BCH (31,21) Bose Chaudhuri and Hocquenghem, block codes 

will be used BCH Codes which is a subclass of cyclic code. BCH Code 

parameters are given as; 

 
 

2 1mn = −  
       (3.1) 

   
n k mt− ≤                                                                  

   (3.2) 
 

min 2 1d t= +                                                                  
 (3.3) 

 
 
 
 



 

 38 

Where t  is the number of errors to be corrected, n  is the block length, k  is 

the information word length, and m  is an integer. For BCH (31,21) code the 

parameters are 31, 21, 5, 2n k m t=  =   =  =  and min 5d = .  

In general the minimum distance of a code is the minimum Hamming 

distance between any two different code words, i.e.  

 

                                       ( )min ,
min ,

i j
i jc c

i j

d d c c
 

≠

=                                            (3.4) 

 

Where the Hamming distance between two code words 
i

c and 
j

c  is the 

number of components at which the two code words differ, and is denoted by 

( , )
i j

d c c . Using mind  BCH code can also be shown as BCH (n, k, dmin ) , for 

BCH(31,21,5). 

 
3.1 BCH (31, 21, 5) Block Code Encoder 
 
BCH codes are defined over the mathematical structure of finite fields; for 

this reason, their construction will be briefly considered. The mathematical 

framework of the BCH code is Galois field and these codes defined in the 

binary field (2)GF . Galois fields containing more than two elements can be 

constructed using (2)GF . Construction of (2 )mGF  can be performed using 

the primitive element α  which satisfies 
12 1

m

α
−

=  and all the other elements of 

(2 )mGF  can be generates from primitive element. The elements of the 

extension field ( 2 )mGF q =  can be written as 2 3 2{0,1,  ,  ,  ,  . . . ,  }qα α α α −  and 

their polynomial representation is given by the remainder of 1nx +  upon 

division by the prime polynomial ( )p x : 

                                 { }( 1) / ( )n n= Remainder x p xα  +  .                             (3.5) 

 
For the construction of BCH (31,21) code, first, the finite field 5(2 )GF  will be 

constructed. The primitive polynomial for BCH (31,21) can be chosen as 
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5 2( ) 1p x α α= + + . The field 5(2 )GF  can be generated from the newly defined 

element α  which satisfies 

 

                                             5 2 1 0α α+ + =        .                                    (3.6) 

 
Consider addition and multiplication of α  with the binary numbers 0  and 1, 

the binary numbers 0  and 1 have the form additive and multiplicative 

elements respectively, so 

 

0α α+ =  

1α α ∗ = .                                                 

  (3.4) 

 

The additive inverse of α  is α  itself, as can be easily shown 

  

                          1 1 (1 1) 0 0α α α α α α+ = + = + = =                                  (3.5) 

 

And; 

                                                0α α+ = ,                                              (3.6) 

 

This gives; 

 

                                                 α α= −     .                                           (3.7)   

                                                     

After these properties rearranging (3, 7), the following can be obtained;  

  

                                               5 2 1α α= + .                                            (3.8) 

 
When constructing higher powers of α  Equation (3.13) is used to reduce 

field elements to their lowest power. Power of α  other than 5 can be 

obtained as: 

 



 

 40 

                 
( )
( )
( )

5 2

6 5 2 3

7 6 3 4 2

8 7 4 2 5 3 3 2

1

1

1.

α α
α αα α α α α

α αα α α α α α

α αα α α α α α α α

= +

= = + = +

= = + = +

= = + = + = + +

        

 (3.9) 
This is continued in a similar manner up to 30 4α α α= +  and finally; 

  

                       ( )31 30 4 5 2 2 21 1α αα α α α α α α α= = + = + = + + =            

   (3.10) 

 
Constructing more powers of α  other than 31 will always give existing field 

elements; for instance,   

                              
33 31 2 2

45 31 14 14 4 3 21 1

α α α α
α α α α α α α

= =
= = = + + +

                     

    (3.11) 

Table 3.1  32 Field Elements  

 
15 4 3 2

16 4 3

17 4

0 1

1 1

1

α α α α α
α α α α

α α α α
α

                                                   = + + + +    
                                                    = + + +
                                                   = + +
2 18

3 19 2

4 20 3 2

5 2

1

1

α α
α α α α
α α α α
α α

                                                 = +
                                                 = +
                                                 = +
= +                  21 4 3

6 3 22 4 2

7 4 2 23 3 2

8 3 2 24 4 3 2

9 4 3

1

1

1

α α α
α α α α α α
α α α α α α α
α α α α α α α α
α α α α

                   = +
= +                                    = + +
= +                                  = + + +
= + +                             = + + +
= + +    25 4 3

10 4 26 4 2

11 2 27 3

12 3 2 28 4 2

13 4 3 2

1

1 1

1 1

α α α
α α α α α α
α α α α α α
α α α α α α α α
α α α α

                        = + +
= +                                    = + + +
= + +                              = + +
= + +                           = + +
= + + 29 3

14 4 3 2 30 4

1

1 .

α α
α α α α α α α

                        = +
= + + +                    = +     
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In Table 3.1, the 32 field elements are tabulated.  

Complex roots of equations with real coefficients always occur in pairs of 

complex conjugates. If p jq+  is a root of an equation with real coefficients 

then its complex conjugate p jq−  is also a root. The roots of a polynomial 

with binary coefficients likewise occur in conjugates, not necessarily in pairs 

but in groups or sets of conjugates [19,20,21] . Given that β  is a field 

element of (2 )mGF  then the conjugates of β  are;  

                 
12 4 8 2, , , , .... ,

r
β β β β β

−
    

Where r  is the smallest integer such that 2r
β β= . For example consider the 

conjugates of α  in 5(2 )GF  

    

( )
( )
( )
( )
( )

2 2

4 4

8 8

16 16

32 31 31 5(2recall that in GF

α α

α α

α α

α α

α α α α α

=

=

=

=

= =    [   =1  ) ]     

 

Therefore, in 5(2 )GF  α  has four conjugate 2 4 8 16{ , , , }α α α α     . In a similar 

manner conjugate classes of 3 5 7 11 15, , ,α α α α α         , can be found as; 

    

( )
( )
( )
( )
( )

23 6

43 12

83 24

163 48 31 17 17

323 96 31 31 31 3 3 ,

α α

α α

α α

α α α α α

α α α α α α α

=

=

=

= = =

= = =    

 

The conjugates class of 3α  is { }3 6 12 17 24, , , ,α α α α α          . 
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( )
( )
( )
( )
( )

2
5 10

4
5 20

8
5 40 31 9 9

16
5 80 31 31 18 18

32
5 160 31 31 31 31 31 5 5

α α

α α

α α α α α

α α α α α α

α α α α α α α α α

=

=

= = =

= = =

= = =

 

The conjugates class of 5α  is { }9 10 18 20, , ,α α α α    , 

    

( )
( )
( )
( )
( )

2
7 14

4
7 28

8
7 56 31 25 25

16
7 112 93 19 19

32
7 224 7

α α

α α

α α α α α

α α α α α

α α α

=

=

= = =

= = =

= =

 

The conjugates class of 7α  is { }14 19 25 28, , ,α α α α . 

    

( )
( )
( )
( ) ( )
( )

2
11 22

4
11 44 31 13 13

8
11 88 31 31 26 26

16 5
11 176 31 21 21

32
11 11

α α

α α α α α

α α α α α α

α α α α α

α α

=

= = =

= = =

= = =

=

 

The conjugates class of 11α  is { }13 21 26, ,α α α . 

    

( )
( )
( )
( )
( )

2
15 30

4
15 60 29

8
15 120 27

16
15 23

32
15 15

α α

α α α

α α α

α α

α α

=

= =

= =

=

=
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The conjugates class of 15α  is { }23 27 29 30, , ,α α α α . All the conjugate classes 

are depicted in Table 3.2 

                             

Table 3.2 Conjugate Elements in 5(2 )GF . 

  

2 4 8 16

3 6 12 17 24

5 9 10 18 20

7 14 19 25 28

11 13 21 22 26

15 23 27 29 30

1

α α α α α
α α α α α
α α α α α
α α α α α
α α α α α
α α α α α

   
    
    
   
    
    

 

                                                                
One of the properties of conjugates is that they provide a mechanism for 

going from an extension field to its base field. Consider the pair of complex 

conjugates z p jq= +  and *z p jq= − , their product gives the real number 

     * 2 2zz p q= +  

Taking the product of the two factors ( )x z−  and *( )x z−  likewise gives a real 

expression 

            ( )( )* 2 2 22x z x z x px p q− − = − + + . 

 

In finite field sets of conjugate elements perform the same operation. 

Consider 3α ; belonging to 5(2 )GF , and its conjugates 6 12 17, ,α α α   and 24α , 

let 

                    3 6 12 17 24( ) ( )( )( )( )( )M x x x x x xα α α α α= + + + + +  

Performing the multiplication on the right side it is obtained that;  

 



 

 44 

             

( )( )( )( )( )
( ) ( )

( )
( ) ( ) ( ) ( )

3 6 12 17 24

2 6 3 9 2 14 29 24

4 3 14 2 29 3 2 15 30 2 9 23 7 24

4 3 14 2 29 15 9 30 23 7 24

x x x x x

x x x x x

x x x x x x x x x

x x x x x

α α α α α

α α α α α α

α α α α α α α α α

α α α α α α α α α

+ + + + +

   = + + +  + +  +  

 = + + + + + + + + + 

 = + + + + + + + + + 

                      ⇓                  
15 20 14α α α

         ⇓                         ⇓                       

                                                                            
                                                        

5

3.1

(2 )

weusetable for addition

of inGFα
                          

                                                                                                         

 

 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

5 4 24 4 14 3 14 24 3 29 15 9 2 29 15 9 24

2 30 23 30 23 24 7

5 4 24 15 3 8 20 2 13 14 7 7

1

1

x x x x x x

x x x

x x x x x

α α α α α α α α α α α α α

α α α α α α

α α α α α α α α

= + + + + + + + + + + +

+ + + + + +

= + + + + + + + + +

                       ⇓                       ⇓                       ⇓  

5 4 3 2

1 1 1 0

( ) 1M x x x x x

                  ⇓
                                                                                            

= + + + +
 

Hence, 5 4 3 2( ) 1M x x x x x= + + + +  which is referred to as the minimal 

polynomial of conjugate class of { }3 6 12 17 24, , , and xα α α α    . It is the binary 

polynomial of smallest degree that has 3 6 12 17, , ,α α α α   and 24α as roots. Let 

( )
i

M x  denote the minimal polynomial of iα , then ( )
i

M x  is defined to be the 

smallest degree polynomial in (2)GF  that has iα  as a root, and; so, 

 

                                              ( ) 0 .i
iM α =                                            

    (3.12) 

 
The minimal polynomial ( )

i
M x  is also the minimal polynomial of the 

conjugates of iα  and; therefore,  

         5 4 3 2
3 6 12 17 24( ) ( ) ( ) ( ) ( ) 1.M x M x M x M x M x x x x x= = = = = + + + +      

(3.13) 
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In a similar manner 1 2 4 8( ), ( ), ( ), ( )M x M x M x M x   and 16( )M x  can be calculated 

as;  

                                               5 2 1x x+ +     .                                          (3.14) 
 
Using the minimal polynomial, generator polynomial of t-error-correcting 

binary BCH code can be computed as; 

 

                     1 2 3 2( ) ( ), ( ), ( ),....., ( ) .
t

g x LCM M x M x M x M x =                    (3.15)                               

 

where LCM is the Least Common Multiple (LCM) operation. For the BCH 

(31,21) double-error-correcting 2t =  code with block length 31n =  over 

5(2 )GF . The generator polynomial is; 

                           1 2 3 4( ) ( ), ( ), ( ), ( )g x LCM M x M x M x M x =     .               (3.16) 

Where, 

    

5 2
1

2 1
5 4 3 2

3

4 2

( ) 1

( ) ( )

( ) 1

( ) ( ) .

M x x x

M x M x

M x x x x x

M x M x

= + +           
=
= + + + +
=   

 

Hence, 

                      ( )( )
1 3

5 2 5 4 3 2

10 9 8 6 5 3

( ) ( ) ( )

1 1

1 .

g x M x M x

x x x x x x

x x x x x x

=

        = + + + + + +

        = + + + + + +       

  

 

A t-error-correcting BCH code has guaranteed minimum distance of 

2 1d t= + .Therefore this is the (31,21,5) double-error-correcting binary 

BCH code. 

Since BCH Codes are cyclic codes, their encoders can be implemented 

using shift-register circuits [3,9]. The codes can be encoded either 

systematically or non-systematically. Systematic codes perform slightly better 

than their non-systematic counterparts. For systematic codes, the generator 

polynomial ( )g x   is written as follows; 
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                     2 1
0 1 2 1( ) .......... .n k n k

n k n k
g x g g x g x g x g x− − −

− − −= + + + + +         (3.17) 
 
The generator polynomial ( )g x  formulates n  codeword bits by appending 

( )n k−  parity bits to the k  information data bits. The encoder employs a shift 

register having ( )n k−  stages as depicted in Fig.3.1, where ⊗  represents 

multiplication and ⊕   is modulo-2 addition. The parity bits are computed from 

the information bits according to the rules imposed by the generator 

polynomial [3,9]. 

 

 

 Figure 3.1 Systematic Encoder for BCH Codes Having (n-k) 

Shift-Register with ( )n k−  Cells 

 

The following steps describe the systematic procedures [9]: 

1) Switch1 is closed during the first k  shifts, in order to allow the information 

data bits, ( )d x  to shift into the n k−  stages of the shift register. 

2) At the same time, Switch 2 is in the down position to allow the data bits, 

( )d x , to be copied directly to the codeword, ( )c x . 

3) After thk shifts, Switch 1 is opened and Switch 2 is moved to the upper 

position. 

4) The remaining n k−  shifts clear the shift register by appending the parity 

bits to the codeword, ( )c x . 

Fig.3.2 shows the specific encoder, which is a derivative of Fig.3.1. Observe 

that all the multipliers illustrated in Fig.3.1 are absent in Fig.3.2. Explicitly, if 

the generator polynomial coefficient is 1, the multiplier is replaced by a direct 
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hard-wire connection as shown in Fig.3.2, whereas if the coefficient is 0, no 

connection is made. 

 

 
Figure 3.2 Systematic Encoder for BCH (31,21) Code Having 10n k− =   
                                           Register Stages 
 

The shift registers must be reset to zero before the encoding process starts. 

After the k  (information bits) shift, Switch 1 is opened and Switch 2 is moved 

to the upper position. The parity bits contained in the shift register are 

appended to the codeword. Let’s consider an example to be more specific. 

 

Example 3.1 

Consider the BCH (7,4,3) code. The generator polynomial is 3 2( ) 1g x x x= + +  

. 

 

                

    Figure 3.3 Systematic Encoder for BCH (7,4,3) 
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 Let use the shift register shown in Figure 3.3 for encoding four ( 4)k =  

information data bits, 1011d =     2 3( ) 1d x x x= + + . The operational steps are 

given in Table 3.3; 

 

    Table 3.3 Operation Steps of  BCH (7,4,3) Encoder 

 

0 1 2 0 1 2 3 4 5 6

______________________

Input queue Shift index Shift register Codeword

r r r c c c c c c c

                                    
                                                                                 

__________________________________

1011 0 0 0 0                                                                            − − − − − − −
  1 0 1                            1                         1 1 0                      − − − − − − 1 
    1 0                            2                         1 0 1                    − − − − −   1 1
      1                             3                         1 0 0                    − − − −  0 1 1
      −                            4  ∗                      1 0 0                    − − −  1 0 1 1
      −                            5                         0 1 0              

0 0 1011

      − − 0  1  0 1 1
      −                            6                         0 0 1                    −         
      −                            7                         0 0 0                    1  0  0  1 011 

 

 

The codeword is 10 01011c =        . The binary representation of both ( )d x  and 

( )c x  is shown in Figure 3.4. 

                     

Figure 3.4 Binary Representations of the Encoded Data Bits and Code Bits 

 

In the example above, there are a few points worth noting [9]: 

• The encoding process always starts at the all-zero state and ends at the all 

zero state. 

• The number of the output bits is always one following a clock pulse. 
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• For the first k  (which is four for this example) shifts, the output bit is the 

same as the input bit. 

• After the thk  shift, the parity bits of the shift register are shifted to the output. 

•The number of states is equal to 2n k−  increasing exponentially, n k−  

increases. 

By this information, it can be introduced that the Trellis structure of Block 

code to use in Viterbi algorithm. At the next topic, this option will be the focus 

point. 

 

3.2 Trellis Decoding of Block Codes 
 

For the previous example for the BCH (7,4,3) code , 3n k− =  and the total 

number of encoder states is 32 8= . By using the shift register shown in 

Figure 3.2, it can be found that all the subsequent states when the register is 

in a particular state. Figure 3.5 shows all possible state transitions at any 

encoder state for the BCH(7,4,3) code [9,22].  

                     

                   Figure 3.5 State Transition Diagram for BCH (7,4,3) . 
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The branch emanating from the present state to the next state indicates the 

state transition. The broken line branch is the transition initiated by a data bit 

of logical 0, whereas the continuous branch is due to the data bit being 

logical 1. The number of branches emanating from the present state is 2, 

which corresponds to the number of possible input bits. State transition 

diagram can also be illustrated via state diagram the state diagram of Figure 

3.5 is shown in Figure 3.6. By using the state diagram in Figure 3.6, data bits 

1011d =   can be encoded, without using the shift register shown in Figure 

3.3. The first data bit is a logical 1, hence the state changes from 000 to110, 

as illustrated by the solid branch emanating from state 000 in Figure 3.6. The 

encoder output is the same as the input data bit, which is a logical 1. At the 

next instant, the present state becomes 110 and the data bit is logical 1. This 

causes the state transition from 110 to101. The encoding cycle is repeated 

for subsequent data bits, which change the states. By following the change of 

states throughout the first k  cycles of the encoding process, a particular path 

associated with states 000 110 101 100 100→ → → →  can be observed [9, 22]. 

 

                       Figure 3.6 State Diagram for the BCH (7,4,3) code  
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After the thk cycle, the state changes correspond to shifting out the parity bits 

from the shift register. In our example, the parity bits are 100 at the thk cycle. 

In the following cycle, the parity bits are shifted to the right. The rightmost bit 

of the parity bits is shifted out to become the output bit and the leftmost bit is 

filled with logical0 . As a result, the state changes are100 010 001 000→ → → . 

The whole encoding process can be associated with state transitions of 

000 110 101 100 100 010 001 000→ → → → → → → . 

Notice that if the binary value of the state number becomes input, the parity 

bits provide by the final n k−  bits of the codeword. Therefore, it can be found 

that all of the BCH (7,4,3)  code’s states with the MATLAB code in Appendix 

A. Also we can use this code for BCH (31,21,5) code which has 

31 21 102 2 2 1024n k− −= = =  states. This MATLAB code is written for our BCH 

(31,21,5) which will be used in this thesis.  

Using state transition diagram of Figure 3.5 trellis diagram of BCH (7,4,3) can 

be obtained as in Figure 3.7. 

 

 

                     Figure 3.7 Trellis Diagram for the BCH (7,4,3) code  
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Thus, both Convolutional and Block Codes have a Trellis Diagram 

representation. It can be constructed thatf turbo codes whose constituent 

codes are BCH codes. Block turbo encoder and decoder structures 

constructed with BCH codes are shown in Figures 3.8 and 3.9. 

 

 

                  Figure 3.8 BCH Block Turbo Encoder Schematic 

 

                             

Figure 3.9 BCH Block Turbo Decoder Schematic 

 

This chapter presented the idea of Block Turbo Codes including the way they 

are encoded and decoded.  
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3.3 Simulation Results 

BCH (31,21) codes was used as constituent codes in turbo code encoder. 

The simulation results are depicted in Figure 3.10. The rate of block turbo 

code is 0.68cR = . The number of iterations is limited to 8. AWGN channel is 

used. It can be clearly depicted from Figure 3.10 that iterative decoding 

achieves more than 4.5 dB gain when compared to non-iterative Hard-Viterbi 

decoding and 2.5 dB gain when compared to non-iterative Soft-Viterbi 

decoding. 

 

          Figure 3.10 Simulation Results of BCH (31,21) Block Turbo Code 
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Figure 3.11 Performance of Different Number of Iterations in  

Turbo BCH (31,21) Code
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CHAPTER 4 
 
 

 
CONCLUSION 

 
 
 

This master thesis reports iterative decoding method on block codes. In 

Chapter 2 the focus point was on those convolutional codes which are main 

component of turbo encoder. After that the Viterbi Algorithm which is the 

most important topic to understand the Hard-Decision, Soft-Decision and 

MAP Algorithms are considered. Then they were compared with each other. 

It was seen that Soft-Decision decoding is 2 dB better than Hard-Decision 

decoding. After that MAP Decoding was explained. With the modified Log-

Map Algorithm iteration decoding of turbo codes are considered next. The 

simulation results are depicted in Figure 2.16 where it was clear that iterative 

decoding of convolutional Turbo Codes achieves more than 4.5 dB gain than 

hard or soft Viterbi decoding methods. 

Turbo decoder is about four times as complex as decoding as the same code 

using a standard Viterbi Algorithm. Because in MAP Algorithmα , β , γ  and 

P  are calculated but in Viterbi algorithm only the distance is considered.   

One of the other parameter that affects the performance of Turbo codes is 

the number of decoding iteration. If the number of iterations used by the 

Turbo Decoder increases, the Turbo Decoder performs significantly better. 

However, after eight iterations there is little improvement achieved by using 

further iterations. For example, it can be seen from Figure 2.17 that using 16 

iterations rather than eight gives an improvement of only about 0.1 dB. Again 

there is little improvement in BER performance of the decoder from using 

more than eight iterations. Hence for complexity reasons usually only 

between about 4 and 12 iterations are used. 
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In the original paper on turbo coding by Berrou et al. [11], and in many of the 

subsequent papers, impressive results have been presented for coding with 

very large frame lengths. However, for many applications the large delays 

inherent in using high frame lengths are unacceptable. Therefore an 

important area of turbo coding research is achieving as impressive results 

with short frame lengths like had demonstrated for long frame length 

systems. Figure 2.18 shows how the performance of turbo codes depends on 

the frame length L  used in the encoder.  

The other parameter is the generator polynomials and constraint lengths of 

the component codes. The standard RSC component codes are constraint 

length 3K =  codes with generator polynomials 0 7G =  and 1 5G =  in octal 

representation which are shown in Fig 2.1. These generator polynomials are 

optimum in terms of maximizing the minimum free distance of the component 

codes [23]. 

In Chapter 3, Block Codes were described. The same decoding method was 

used which was referred before as Chapter 2. Than the block turbo code was 

constructed and decoded with iterative decoding principle. The simulation 

results are depicted in Figure 3.10 where it is seen that the advantages of 

block turbo codes as compared to their counterparts’ Convolutional Turbo 

Codes are their high code rate 
21

0.51
2 41

k
R

n k
= = =

−
 and short frame length 

to be decoded with high performance. Short frame length reduces the 

decoding latency and these results in increased throughput which is a critical 

issue for high speed communication which is essential especially for 

multimedia communication, i.e., video, image, music, speed, data, etc. The 

disadvantages of block turbo code are the large number of the states. For 

BCH (31,21) code the number of states is 1024. So, it increases the 

complexity of the Viterbi Algorithm but this situation may create a new 

workspaces. In Convolutional Turbo Code, the complexity is 4 4 1024x L x    and 

in block turbo code the complexity is 1024 4 31x L x     . The Block Turbo Code is 

about 8 times complex than the Convolutional Turbo Code. 
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One of the other parameter that affects the performance of BCH Turbo Code 

is the number of decoding iteration. As it can be seen in Figure 3.11, 

optimum iteration number is 8. Other parameter is the frame length while the 

1024-bit code would be suitable for video transmission. The larger frame 

length systems would be useful in data or non-real-time transmission 

systems.  

Finally, Convolutional and Block Turbo Codes are constructed. Turbo Codes 

are compared with the other coding methods. The main goal is to constitute 

the Trellis form of the Block Codes and applying the Viterbi Algorithm for 

iterative decoding.  
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APPENDIX A 
 

 

STATE OF THE BCH(31,21) CODE 

 

 

x=0:1023;       →   decimal value of 1024 state 

y=de2bi(x,21,’left-msb’);   →  binary representation of state numbers 

msg=gf(y);  →  generates information bits in (2)GF  

codeword=bchenc(msg,31,21);  →bchen is the BCH(31,21) encoder 

states=codeword(512:1024,22:31)  →  it represents the final 10n k− =    

                                                                bits which is the states of the  

                                                               BCH(31,21,5) code 
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Appendix B 

 

 

TURBO CODE 

 

 
public class AWGNGenerator 
{      
 Random rn1=new Random(); 
 private int n=3080;  
 private double noiseArray[]=new double[n]; 
 private double uA=0; 
 private double uB=0; 
 private double s=0; 
  
 public void noiseOlustur(double sigmasquare){ 
  
  for(int i=0;i<n;i++){ 
   s=1; 
   while(s>=1){ 
    uA=1-2*rn1.nextDouble(); 
    uB=1-2*rn1.nextDouble(); 
    s=uA*uA+uB*uB; 
         } 
   noiseArray[i]=uA*Math.sqrt((-
2*sigmasquare*Math.log(s))/s);  
  } 
 } 
 public double getNoise(int i){ 
  return noiseArray[i]; 
 } 
} 
 
 
 
public class BPSKModulator{ 
 public double Mapping(int x){ 
  if(x==0) 
  return -1; 
  else  
  return 1; 
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 } 
  
 public int Demapping(double y){ 
  if(y>0) 
  return 1; 
  else 
  return 0; 
 } 
} 
 
 
  
 
 
 
import java.util.Random; 
public class encoder 
{ 
 private int state1=0; 
 private int state2=0; 
 private int A=0; 
 private int c1=0; 
 private int c2=0; 
 private int input[]=new int[1024]; 
 private int code[]=new int[2052]; 
 private int count=0;  
 public void encode() 
 { 
  Random sec=new Random();/**/ 
  for(int i=0;i<1024;i++) 
  { 
   input[i]=sec.nextInt(2);/**/ 
    
   
   A=makebinary(state1,state2); 
   c1=input[i]; 
   c2=makebinary(makebinary(input[i],state2),A); 
   code[count++]=c1; 
   code[count++]=c2; 
   state2=state1; 
   state1=makebinary(A,input[i]);  
  } 
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/* 
 *Trellis termination  
 */  if(state1==0&&state2==0){ 
   code[2048]=0;code[2049]=0; 
   code[2050]=0;code[2051]=0; 
  } 
  else if(state1==0&&state2==1){ 
   code[2048]=1;code[2049]=1; 
   code[2050]=0;code[2051]=0; 
  } 
  else if(state1==1&&state2==0){ 
   code[2048]=1;code[2049]=0; 
   code[2050]=1;code[2051]=1; 
  } 
  else if(state1==1&&state2==1){ 
   code[2048]=0;code[2049]=1; 
   code[2050]=1;code[2051]=1; 
  }/**/ 
    
 } 
 public int makebinary(int x,int y) 
 { 
  int z=x+y; 
  if(z==0||z==2) 
  return 0; 
  else  
  return 1; 
 } 
 public int[] getInput() 
 { 
  return input; 
 } 
 public int[] getCode() 
 { 
  return code; 
 } 
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public class Inter_encoder 
{ 
 okuyucu oku=new okuyucu(); 
 private int state1=0; 
 private int state2=0; 
 private int A=0; 
 private int c1=0; 
 private int c2=0; 
 private int input[]=new int[1024]; 
 private int Inter[]=new int[1024]; 
 private int Inter_input[]=new int[1024]; 
 private int code[]=new int[2052]; 
 private int count=0;  
 
 
 public void InterlieverDefinition(){ 
  oku.openFile("Interliever.txt"); 
  oku.readRecord(); 
  Inter=oku.getRecords(); 
  oku.closeFile(); 
  for(int i=0;i<1024;i++){ 
   Inter_input[i]=input[Inter[i]]; 
  } 
 } 
 
 
 
 
public class TurboEncoder{ 
 private int[] Turbocode=new int[3080]; 
 private int[] input=new int[1024]; 
 public void MakeAll(){ 
  encoder encoder1=new encoder(); 
  Inter_encoder IE=new Inter_encoder(); 
  encoder1.encode(); 
  input=encoder1.getInput(); 
  IE.setInput(input); 
  IE.InterlieverDefinition(); 
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  IE.encode(); 
  int[] code1=encoder1.getCode(); 
  int[] code2=IE.getCode(); 
  
  for(int i=0;i<1024;i++){ 
   Turbocode[3*i]=code1[2*i]; 
   Turbocode[3*i+1]=code1[2*i+1]; 
   Turbocode[3*i+2]=code2[2*i+1]; 
  } 
  Turbocode[3072]=code1[2048]; 
  Turbocode[3073]=code1[2049]; 
  Turbocode[3074]=code1[2050]; 
  Turbocode[3075]=code1[2051]; 
  Turbocode[3076]=code2[2048]; 
  Turbocode[3077]=code2[2049]; 
  Turbocode[3078]=code2[2050]; 
  Turbocode[3079]=code2[2051]; 
 } 
 public int[] getTurbocode(){ 
  return Turbocode; 
 } 
 public int[] getInput(){ 
  return input; 
 } 
} 
 
 
 
 
 
 
 
 
public class MAP1 
{ 
 private double sigmasqr=1; 
 private double[] CodeArray=new double[2052]; 
 private int[] uArray=new int[1026]; 
 private double[] prioriP0=new double[1026]; 
 private double[] prioriP1=new double[1026]; 
 private double[] a_posPr0=new double[1026]; 
 private double[] a_posPr1=new double[1026]; 
 private double[] alfa00=new double[1026]; 
 private double[] alfa01=new double[1026]; 
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 private double[] alfa10=new double[1026]; 
 private double[] alfa11=new double[1026]; 
 private double[] beta00=new double[1027]; 
 private double[] beta01=new double[1027]; 
 private double[] beta10=new double[1027]; 
 private double[] beta11=new double[1027]; 
 private double[] branch0_0=new double[1026]; 
 private double[] branch0_2=new double[1026]; 
 private double[] branch1_0=new double[1026]; 
 private double[] branch1_2=new double[1026]; 
 private double[] branch2_1=new double[1026]; 
 private double[] branch2_3=new double[1026]; 
 private double[] branch3_3=new double[1026]; 
 private double[] branch3_1=new double[1026]; 
  
  
 public void setCodes( double[] car){ 
  CodeArray=car; 
  for(int i=0;i<1026;i++){ 
   prioriP0[i]=Math.log( 0.5 ); 
   prioriP1[i]=Math.log( 0.5 ); 
  } 
 } 
  
 public int[] getCikis(){ 
  return uArray; 
 } 
 public void setsigma(double sigma){ 
  sigmasqr=sigma; 
 } 
 public void setPrioriPr0(double[] xxx){ 
  for(int i=0;i<1024;i++) 
  prioriP0[i]=xxx[i]; 
 } 
 public void setPrioriP1(double[] xxx){ 
  for(int i=0;i<1024;i++) 
  prioriP1[i]=xxx[i]; 
 } 
 public double[] getP0(){ 
  double[] P0=new double[1024]; 
  for(int i=0;i<1024;i++){ 
   P0[i]=a_posPr0[i]+CodeArray[2*i]/sigmasqr-prioriP0[i]; 
  } 
  return P0; 
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 } 
 public double[] getP1(){ 
  double[] P1=new double[1024]; 
  for(int i=0;i<1024;i++){ 
   P1[i]=a_posPr1[i]-CodeArray[2*i]/sigmasqr-prioriP1[i]; 
  } 
  return P1; 
 } 
  
 public double[] getMAPP0(){ 
   
  return a_posPr0; 
 } 
 public double[] getMAPP1(){ 
   
  return a_posPr1; 
 } 
  
 public double takeDifference(double x1,double x2,double c1,double c2){ 
  return ( (x1*c1)+(x2*c2) )/(sigmasqr); 
 } 
  
 public void fillbranchs(){ 
  for(int i=0;i<1026;i++){ 
  branch0_0[i]=prioriP0[i]+takeDifference(-1,-
1,CodeArray[2*i],CodeArray[2*i+1]); 
 
 branch0_2[i]=prioriP1[i]+takeDifference(1,1,CodeArray[2*i],CodeArray[2*i
+1]); 
 
 branch1_0[i]=prioriP1[i]+takeDifference(1,1,CodeArray[2*i],CodeArray[2*i
+1]); 
  branch1_2[i]=prioriP0[i]+takeDifference(-1,-
1,CodeArray[2*i],CodeArray[2*i+1]); 
  branch2_1[i]=prioriP1[i]+takeDifference(1,-
1,CodeArray[2*i],CodeArray[2*i+1]); 
  branch2_3[i]=prioriP0[i]+takeDifference(-
1,1,CodeArray[2*i],CodeArray[2*i+1]); 
  branch3_1[i]=prioriP0[i]+takeDifference(-
1,1,CodeArray[2*i],CodeArray[2*i+1]); 
  branch3_3[i]=prioriP1[i]+takeDifference(1,-
1,CodeArray[2*i],CodeArray[2*i+1]); 
  } 
  branch1_0[0]=-100; 
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  branch1_2[0]=-100; 
  branch2_1[0]=-100; 
  branch2_3[0]=-100; 
  branch3_1[0]=-100; 
  branch3_3[0]=-100; 
  branch1_0[1]=-100; 
  branch1_2[1]=-100; 
  branch3_1[1]=-100; 
  branch3_3[1]=-100; 
 } 
 public void fillalfas(){ 
  alfa00[0]=0; 
  alfa01[0]=-100; 
  alfa10[0]=-100; 
  alfa11[0]=-100; 
  alfa00[1]=alfa00[0]+branch0_0[0]; 
  alfa01[1]=-100; 
  alfa10[1]=alfa00[0]+branch0_2[0]; 
  alfa11[1]=-100; 
  alfa00[2]=alfa00[1]+branch0_0[1]; 
  alfa01[2]=alfa10[1]+branch2_1[1]; 
  alfa10[2]=alfa00[1]+branch0_2[1]; 
  alfa11[2]=alfa10[1]+branch2_3[1]; 
  for(int i=3;i<1026;i++){ 
  alfa00[i]=Math.log(Math.exp(alfa00[i-1]+branch0_0[i-
1])+Math.exp(alfa01[i-1]+branch1_0[i-1])); 
  alfa01[i]=Math.log(Math.exp(alfa10[i-1]+branch2_1[i-
1])+Math.exp(alfa11[i-1]+branch3_1[i-1])); 
  alfa10[i]=Math.log(Math.exp(alfa00[i-1]+branch0_2[i-
1])+Math.exp(alfa01[i-1]+branch1_2[i-1])); 
  alfa11[i]=Math.log(Math.exp(alfa10[i-1]+branch2_3[i-
1])+Math.exp(alfa11[i-1]+branch3_3[i-1])); 
 
//normalization of alfas 
  double 
SS=Math.log(Math.exp(alfa00[i])+Math.exp(alfa01[i])+Math.exp(alfa10[i])+Math.e
xp(alfa11[i])); 
  alfa00[i]=alfa00[i]-SS; 
  alfa01[i]=alfa01[i]-SS; 
  alfa10[i]=alfa10[i]-SS; 
  alfa11[i]=alfa11[i]-SS;  
  } 
 } 
 public void fillbetas(){ 
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  beta00[1026]=0; 
  beta01[1026]=-100; 
  beta10[1026]=-100; 
  beta11[1026]=-100; 
  beta00[1025]=beta00[1026]+branch0_0[1025]; 
  beta01[1025]=beta00[1026]+branch1_0[1025]; 
  beta10[1025]=-100; 
  beta11[1025]=-100; 
  beta00[1024]=beta00[1025]+branch0_0[1024]; 
  beta01[1024]=beta00[1025]+branch1_0[1024]; 
  beta10[1024]=beta01[1025]+branch2_1[1024]; 
  beta11[1024]=beta01[1025]+branch3_1[1024]; 
  for(int i=1023;i>0;i--){ 
 
 beta00[i]=Math.log(Math.exp(beta00[i+1]+branch0_0[i])+Math.exp(beta10[
i+1]+branch0_2[i])); 
 
 beta01[i]=Math.log(Math.exp(beta00[i+1]+branch1_0[i])+Math.exp(beta10[
i+1]+branch1_2[i])); 
 
 beta10[i]=Math.log(Math.exp(beta01[i+1]+branch2_1[i])+Math.exp(beta11[
i+1]+branch2_3[i])); 
 
 beta11[i]=Math.log(Math.exp(beta01[i+1]+branch3_1[i])+Math.exp(beta11[
i+1]+branch3_3[i])); 
  
 // Normalization of betas 
  double 
SS=Math.log(Math.exp(beta00[i])+Math.exp(beta01[i])+Math.exp(beta10[i])+Math.
exp(beta11[i])); 
  beta00[i]=beta00[i]-SS; 
  beta01[i]=beta01[i]-SS; 
  beta10[i]=beta10[i]-SS; 
  beta11[i]=beta11[i]-SS;  
 
  
  } 
 } 
 public void decode(){ 
  fillbranchs(); 
  fillalfas(); 
  fillbetas(); 
  for(int i=0;i<1026;i++){ 
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 a_posPr1[i]=Math.log(Math.exp(alfa00[i]+beta10[i+1]+branch0_2[i])+ 
          
Math.exp(alfa01[i]+beta00[i+1]+branch1_0[i])+ 
          
Math.exp(alfa10[i]+beta01[i+1]+branch2_1[i])+ 
          
Math.exp(alfa11[i]+beta11[i+1]+branch3_3[i])); 
  
 a_posPr0[i]=Math.log(Math.exp(alfa00[i]+beta00[i+1]+branch0_0[i])+ 
          
Math.exp(alfa01[i]+beta10[i+1]+branch1_2[i])+ 
          
Math.exp(alfa10[i]+beta11[i+1]+branch2_3[i])+ 
          
Math.exp(alfa11[i]+beta01[i+1]+branch3_1[i])); 
  } 
 } 
} 
 
 
 
 
 
public class MAPFrame{ 
 private int errorcounter=0; 
 private int frameerr=0; 
 private int framecounter=0; 
 private int temple=0; 
 private double sigmasquare=0.5; 
 public void yeniframe(){ 
  temple=0; 
  TurboEncoder encoder1=new TurboEncoder(); 
  TurboDecoder decoder1=new TurboDecoder(); 
  BPSKModulator bpsk=new BPSKModulator(); 
  AWGNGenerator awgn=new AWGNGenerator(); 
   
  encoder1.MakeAll(); 
  int[] inputArray=encoder1.getInput(); 
  int[] codes=encoder1.getTurbocode(); 
  awgn.noiseOlustur(sigmasquare); 
   
  double bpskcodes[]=new double[3080]; 
  for(int j=0;j<3080;j++){ 
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   bpskcodes[j]=bpsk.Mapping(codes[j])+awgn.getNoise(j); 
  } 
  decoder1.setSigma(sigmasquare); 
  decoder1.setCodes(bpskcodes); 
  decoder1.decode();  
  int cıkıs[]=decoder1.getCikis(); 
  for(int l=0;l<1024;l++){ 
   if(inputArray[l]!=cıkıs[l]){ 
   errorcounter++; 
   temple++; 
   } 
  } 
  if(temple!=0) 
  frameerr++; 
 } 
 public void Simulation(double Sigma){ 
  sigmasquare=Sigma; 
  errorcounter=0; 
  framecounter=0; 
  frameerr=0; 
  while(frameerr<100) 
  { 
   yeniframe(); 
   framecounter++; 
  }  
 } 
 public int getframecounter(){ 
  return framecounter; 
 } 
 public int geterrorcounter(){ 
  return errorcounter; 
 } 
 public int getframeerror(){ 
  return frameerr; 
 } 
} 
 
 
 
public class MAPFrameTest 
{ 
 public static void main(String args[]) 
 { 
  MAPFrame fatih=new MAPFrame(); 
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  //0dB 
  fatih.Simulation(1.5); 
  System.out.printf("Eb/No:0dB(variance:1,500000)      HataliBit:%d  
HataliFrame:%d   
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/ 
  //0,2dB  
  fatih.Simulation(1.432489); 
  System.out.printf("Eb/No:0,2dB(variance:1,432489)    HataliBit:%d  
HataliFrame:%d   
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/ 
  //0,4dB 
  fatih.Simulation(1.368016); 
  System.out.printf("Eb/No:0,4dB(variance:1,368016)    HataliBit:%d  
HataliFrame:%d   
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/ 
  //0,6dB 
  fatih.Simulation( 1.306445 ); 
  System.out.printf("Eb/No:0,6dB(variance:1,306445)    HataliBit:%d  
HataliFrame:%d   
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/ 
  //0,8dB 
  fatih.Simulation( 1.247646); 
  System.out.printf("Eb/No:0,8dB(variance:1,247646)    HataliBit:%d  
HataliFrame:%d   
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/ 
  //1dB 
  fatih.Simulation( 1.191492); 
  System.out.printf("Eb/No:1dB(variance:1,191492)      HataliBit:%d  
HataliFrame:%d   
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/ 
  //1,2dB 
  fatih.Simulation( 1.137866); 
  System.out.printf("Eb/No:1,2dB(variance:1,137866)    HataliBit:%d  
HataliFrame:%d   
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/ 
  //1,4dB 
  fatih.Simulation( 1.086654 ); 
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  System.out.printf("Eb/No:1,4dB(variance:1,086654)    HataliBit:%d  
HataliFrame:%d   
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/ 
  //1,6dB 
  fatih.Simulation( 1.037746 ); 
  System.out.printf("Eb/No:1,6dB(variance:1,037746)    HataliBit:%d  
HataliFrame:%d   
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/ 
  //1,8dB 
  fatih.Simulation(  0.991040 ); 
  System.out.printf("Eb/No:1,8dB(variance:0,991040)    HataliBit:%d  
HataliFrame:%d   
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/ 
  //2dB 
  fatih.Simulation( 0.946436 ); 
  System.out.printf("Eb/No:2dB(variance:0,946436)      HataliBit:%d  
HataliFrame:%d   
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/ 
/*  //2,2dB 
  fatih.Simulation( 0.903839 ); 
  System.out.printf("Eb/No:2,2dB(variance:0,903839)    HataliBit:%d  
HataliFrame:%d   
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/ 
/*  //2,4dB 
  fatih.Simulation( 0.863160 ); 
  System.out.printf("Eb/No:2,4dB(variance:0,863160)    HataliBit:%d  
HataliFrame:%d   
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/ 
  //2,6dB 
  fatih.Simulation( 0.824311 ); 
  System.out.printf("Eb/No:2,6dB(variance:0,824311)    HataliBit:%d  
HataliFrame:%d   
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/ 
  //2,8dB 
  fatih.Simulation( 0.787211 ); 
  System.out.printf("Eb/No:2,8dB(variance:0,787211)    HataliBit:%d  
HataliFrame:%d   
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Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/ 
/*  //3dB 
  fatih.Simulation( 0.751781 ); 
  System.out.printf("Eb/No:3dB(variance:0,751781)      HataliBit:%d  
HataliFrame:%d   
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/ 
  //3,6dB 
  fatih.Simulation( 0.654774 ); 
  System.out.printf("Eb/No:3,6dB(variance:0,654774)    HataliBit:%d  
HataliFrame:%d   
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/ 
  //4dB 
  fatih.Simulation( 0.597161 ); 
  System.out.printf("Eb/No:4dB(variance:0,597161  )    HataliBit:%d  
HataliFrame:%d   
Frame:%d\n",fatih.geterrorcounter(),fatih.getframeerror(),fatih.getframecounter());/
**/ 
     
 } 
} 
 
 
 
 
import java.util.Scanner; 
import java.io.File; 
import java.io.FileNotFoundException; 
import java.lang.IllegalStateException; 
import java.util.NoSuchElementException; 
 
public class okuyucu{ 
 private Scanner oku; 
 private int[] records=new int[1024]; 
 private int rec=0; 
 public void openFile(String name){ 
  try 
  { 
   oku=new Scanner(new File(name)); 
  } 
  catch(FileNotFoundException fnfexc) 
  { 
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   System.err.println("Error opening the file"); 
   System.exit(1); 
  } 
 } 
 public void readRecord(){ 
  try{ 
   int i=0; 
   while(oku.hasNextInt()){ 
    rec=oku.nextInt(); 
    records[i++]=rec; 
   /* System.out.printf("okunan bilgiler:\n%s",records);/**/ 
   } 
  } 
  catch(NoSuchElementException nseexc){ 
   System.err.println("File improperly formed"); 
   oku.close(); 
   System.exit(1); 
  } 
  catch(IllegalStateException isexc){ 
   System.err.println("Error reading from file"); 
   System.exit(1); 
  } 
 } 
 public void closeFile() 
 { 
  if(oku != null) 
  oku.close(); 
 } 
 public int[] getRecords(){ 
  return records; 
 } 
} 
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