
 

 iv 

 

 

 

A COMPREHENSIVE COMPARISON OF NOSQL AND RELATIONAL 

DATABASE MANAGEMENT SYSTEMS 

 

 

 

Ihsan Ahmed Taha 

 

 

 

 

 

 

 

 

January 2017 

 

 

 

 



 

 v 

 

 

A COMPREHENSIVE COMPARISON OF NOSQL AND RELATIONAL 

DATABASE MANAGEMENT SYSTEMS 

 

 

A THESIS SUBMITTED TO  

THE GRADUATE SCHOOL OF NATURAL AND APPLIED 

SCIENCES OF 

ÇANKAYA UNIVERSITY 

 

 

 

BY 

IHSAN AHMED TAHA 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF 

MASTER OF SCIENCE 

IN 

THE DEPARTMENT OF  

MATHEMATICS AND COMPUTER SCIENCE   

INFORMATION TECHNOLOGY PROGRAM 

 

 



 

 vi 

 

  



 

 vii 

 

 



 

 viii 

 

 

ABSTRACT 

A COMPREHENSIVE COMPARISON OF NOSQL AND RELATIONAL 

DATABASE MANAGEMENT SYSTEMS 

 

 

Ihsan Ahmed Taha 

M.Sc., Department of Information Technology 

Supervisor: Assist. Prof. Dr. Murat SARAN 

In the last four ’decades, relational database management systems have been used 

widely to manage structured data in different disciplines. Nowadays, data resources 

increase rapidly in different forms (including structured, semi-structured and even 

unstructured data), requiring us to find another way to manage data. NoSQL database 

management systems previously were exhibited a few years ago, to meet the 

requirements of a variety of data forms. Many papers, and blogs have claimed that 

there is a trade-off between using relational database systems and non-relational 

database systems (NoSQL). In this study, we propose a novel investigation of the 

performance of relational and non-relational database systems in terms of the main 

operations that every database performs, such as insertion, reading, updating, and 

deleting by using the recent version of Yahoo Cloud Serving Benchmark (YCSB-

0.9.0) in order to evaluate the performance of MySQL (RDBM) versus Mongo DB 

and Apache Cassandra (NoSQL). A testing environment is set up for each workload 

and the responses for each database management system used in the study are 

examined for each workload. It is worth mentioning that, although we use the latest 

version of Yahoo Cloud Serving Benchmark, it does not support the latest release of 

most database management systems, be they relational or non-relational. The results 

of this study show that the performance of each system differs due to the differences 

in their respective data storing mechanisms. In addition, the results of this study 

present the weaknesses and strengths of each database system used in the study. 



 

 ix 

 

Keywords: Relational Database Management system, Non-relational Database 

system, NOSQL, Performance comparison 



 

 x 

 

ÖZ 

 

NOSQL VE İLİŞKİSEL VERİTABANI YÖNETİM SİSTEMLERİNİN 

KAPSAMLI KARŞILAŞTIRILMASI 

 

Ihsan Ahmed Taha 

Bilgi Teknolojileri Yüksek Lisans Bölümü 

Danışman: Yrd. Doç. Dr. Murat SARAN 

Son kırk yıllık sürede ilişkisel veri tabanı yönetim sistemleri, farklı alanlardaki 

yapılandırılmış verileri yönetmek için geniş çapta kullanılmıştır. Bugünlerde, farklı 

yapılardaki (yapılandırılmış, yarı yapılandırılmış ve hatta yapılandırılmamış) veri 

kaynaklarının büyüklüğü hızlı bir şekilde artış göstermiştir. Birçok kaynak ilişkisel 

veri tabanı sistemleri ve ilişkisel olmayan veri tabanı sistemlerinin tercih edilmesi 

hususunda farklı görüşler ortaya koymuşlardır. Bu çalışmada Yahoo Cloud Serving 

Benchmark (ycsb-0.9.0 sürümü) uygulamasını kullanarak; veri ekleme, okuma, 

güncelleştirme ve silme gibi temel işlemler bakımından ilişkisel veri tabanı sistemleri 

(MySQL (RDBM)) ve ilişkisel olmayan veri tabanı sistemlerinin (Mongo DB ve 

Apache Cassandra) performanslarının detaylı karşılaştırılması sunulmaktadır. Bu 

amaçla, temel veri tabanı işlemlerini içeren farklı iş yükleri tasarlanmış ve her bir iş 

yükü için bir test ortamı oluşturulmuştur. Bu çalışmada kullanılan her bir veri tabanı 

yönetim sistemi için her bir iş yükü test edilmiş ve sonuçlar raporlanmıştır. Bu 

çalışmada, Yahoo Cloud Serving Benchmark uygulamasının en son sürümünü 

kullanıyor olmamıza rağmen, ilişkisel veya ilişkisel olmayan çoğu veri tabanı 

yönetim sistemlerinin son sürümlerinin bu uygulama tarafından destelenmediğini 

belirtmek gerekir. Bu nedenle, bu çalışmada Yahoo Cloud Serving Benchmark 

uygulamasının desteklediği en güncel sürümler kullanılmıştır. Bu çalışmanın 

sonuçları, her bir sistemin performansının kendi veri depolama mekanizmalarındaki 

farklılıktan dolayı değişiklik gösterdiğini ortaya koymaktadır. Bunun yanında, bu 

çalışmanın sonuçları bu çalışmada kullanılan her bir veri tabanı sisteminin zayıf ve 

güçlü yanlarını sunmaktadır. 



 

 xi 

 

Anahtar kelimeler: İlişkisel Veritabanı Yönetim Sistemi, İlişkisel Olmayan 

Veritabanı Sistemi, NOSQL, Performans Karşılaştırma 

 

 

 

 

 

  



 

 xii 

 

ACKNOWLEDGEMENTS 

 

I would first like to thank my thesis advisor, Dr. Murat Saran of the Computer 

Engineering Department at Çankaya University, without whose helpful advice, 

valuable comments and guidance this thesis could not be completed. His door was 

always open for me whenever I needed his help. To whom who lighted up my way 

through darkness, to whom who made me what I'm today and yet didn't have the 

chance to see what a great man he left behind, my dear father god bless u. I owe you 

my past and I owe you my future, with my best regards and love to you father Rest in 

Peace. To whom who stayed up late many nights and could never blink an eye from 

me. To Allah's paradise on earth, my mother god bless you wish you many years 

ahead by my side. And Finally, I would like to thank my wife, friends and teachers 

for everything. 



 

 xiii 

 

TABLE OF CONTENTS 

 

STATEMENT OF NON PLAGIARISM.................................................................... iv 

ABSTRACT................................................................................................................ v 

ÖZ …...……………………………………………………………………………… vii 

ACKNOWLEDGEMENTS………………………………………………………..... ix 

TABLE OF CONTENTS…………………………………………………………… x 

LIST OF FIGURES.....................................................................................................   xiii 

LIST OF TABLES...................................................................................................... xiv 

LIST OF ABBREVIATIONS …………..……………………….………………..... xv 

 

CHAPTERS: 

1. INTRODUCTION ................................................................................................... 1 

         1.1 Aim of the study ............................................................................................ 2 

         1.2 Significance of the study ............................................................................... 2 

         1.3 Research Questions........................................................................................3 

         1.4 Relational database management systems (RDBM)......................................3 

         1.5 NoSQL database............................................................................................ 4 

         1.6 Related work. ................................................................................................ 4 

2. DISTRIBUTED DATABASES.... ......................................................................... 10 

         2.1 Massive Data. .............................................................................................. 10 

         2.2 Technical terms………………………………………………………........11 

             2.2.1. ACID... ................................................................................................ 11 

             2.2.2. Scaling ................................................................................................. 12 

             2.2.3. Sharding .............................................................................................. 13 

             2.2.4. Replication .......................................................................................... 14 

             2.2.5. MapReduce  ........................................................................................ 16 

             2.2.6. CAP Theorem ..................................................................................... 16 

3. DATABASES SYSTEMS ..................................................................................... 19 



 

 xiv 

 

        3.1 NoSQL Database classification.................................................................... 19 

        3.2 Relational database types ............................................................................. 20 

        3.3 Mongo DB .................................................................................................... 21 

             3.3.1. Models of Data .................................................................................... 21 

             3.3.2. CRUD in Mongo DB .......................................................................... 22 

             3.3.3. Mongo DB Aggregation ...................................................................... 23 

             3.3.4. Mongo DB Characteristics .................................................................. 23 

             3.3.5. Replication in Mongo DB ................................................................... 24 

             3.3.6. Mongo DB Sharding ........................................................................... 25 

             3.3.7. Mongo DB Failure  ............................................................................. 27 

        3.4 Apache Cassandra ........................................................................................ 28 

                  3.4.1. Data Model in Cassandra  .............................................................. 28 

                  3.4.2. Apache Cassandra Architecture ..................................................... 29 

                  3.4.3. Cassandra writing ........................................................................... 31 

                  3.4.4. Fault Tolerance Handling in Cassandra ......................................... 32 

         3.5 MySQL  ....................................................................................................... 32 

             3.5.1. MySQL Architecture ........................................................................... 33 

                     3.5.1.1. Application Layer..................................................................... 34 

                     3.5.1.2. Logical Layer ........................................................................... 34 

                     3.5.1.3. Storage Management ................................................................ 36 

             3.5.2. Storage Engine .................................................................................... 36 

             3.5.3. MySQL Replication ............................................................................ 38 

4. TEST ENVIRONMENT  ....................................................................................... 39 

        4.1 Nodes Features  ............................................................................................ 39 

        4.2 Yahoo cloud serving benchmark .................................................................. 40 



 

 xv 

 

        4.3 Apache Cassandra ........................................................................................ 41 

        4.4 Mongo DB .................................................................................................... 42 

        4.5 MySQL ......................................................................................................... 43 

        4.6 User Table .................................................................................................... 44 

5. RESULTS  ............................................................................................................. 46 

        5.1 Load Phase  .................................................................................................. 47 

        5.2 Workload A (50% read, 50% write) ............................................................ 48 

        5.3 Workload B (95% read, 5% update) ............................................................ 51 

        5.4 Workload C .................................................................................................. 53 

6. CONCLUSIONS .................................................................................................... 55 

REFERENCIES ........................................................................................................R1 

APPENDIX................................................................................................................A1 

       CURRICULUM VITAE.....................................................................................A1 

  

  



 

 xvi 

 

LIST OF FIGURES 

 

FIGURES   

   

Figure 1 Testing database using two different size of workload............... 5 

Figure 2 Throughput versus increased number of nodes………......…..... 6 

Figure 3 
Relationship between the numbers of threads versus queries 

(simple query)…………………...……………........................... 7 

Figure 4 Using INNER JOIN QUERY (complex query).......................... 8 

Figure 5 Effect of increasing number of nodes.......................................... 8 

Figure 6 Scaling-up versus scaling-out...................................................... 13 

Figure 7 Sharding....................................................................................... 14 

Figure 8 Replication................................................................................... 15 

Figure 9 MapReduce functions for word counting …............................... 16 

Figure 10 CAP Theorem and databases....................................................... 17 

Figure 11 Documents in Mongo DB............................................................ 22 

Figure 12 BI tool in Mongo DB ….............................................................. 24 

Figure 13 Mongo DB Replication................................................................ 25 

Figure 14 Mongo DB Sharding.................................................................... 27 

Figure 15 Cassandra architecture................................................................. 30 

Figure 16 RDBM layers............................................................................... 33 

Figure 17 Logical Layer Subsystems........................................................... 35 

Figure 18 Replication in MySQL................................................................. 38 

Figure 19 YCSB Architecture...................................................................... 41 

Figure 20 Cassandra cluster......................................................................... 42 

Figure 21 Mongo DB Cluster...................................................................... 43 

Figure 22 MySQL Cluster........................................................................... 43 

Figure 23 Load phase................................................................................... 47 

Figure 24 Workload A 50%update.............................................................. 48 

Figure 25 Workload-A 50% read................................................................. 50 

Figure 26 Workload-B (mostly read)........................................................... 51 

Figure 27 Workload C (Read only).............................................................. 53 

 

 

  



 

 xvii 

 

LIST OF TABLES 

 

 

TABLES   

   

Table 1 Load Phase 47 

Table 2 Mongo DB update (W.A) 48 

Table 3 Cassandra update (W.A) 49 

Table 4 MySQL update (W.A) 49 

Table 5 Mongo DB Read (W.A) 50 

Table 6 Cassandra Read (W.A) 50 

Table 7 MySQL Read (W.A) 51 

Table 8 Mongo DB 95% Read (W.B) 52 

Table 9 Cassandra 95% Read (W.B) 52 

Table 10 MySQL 95% Read (W.B) 52 

Table 11 Mongo DB 100% Read (W.C) 54 

Table 12 Cassandra 100% Read (W.C) 54 

Table 13 MySQL 100% Read (W.C) 54 

  



 

 xviii 

 

 

 

 

LIST OF ABBREVIATIONS 

 

RDBMS Relational Database Management System  

NOSQL Non-Relational Database Management System  

CRUD Create, Read, Update, Delete  

ACID Atomicity, Consistency, Isolation, Durability  

CAP Consistency, Avilability, Partition Tolerance  

YCSB Yahoo Cloud Serving Benchmark 

 



 

 1 

 

 

CHAPTER 1 

 

INTRODUCTION 

 

Due to the revolution of technology, a huge number of different data sources have 

appeared, that produce huge data sizes, which is considered one of the biggest 

obstacles to managing giant data. A couple of decades prior, organizations began 

managing information by presenting Relational Database Management Systems 

(RDBM). In 2009, many different versions of database management systems 

appeared when NoSQL database systems appeared. Numerous establishments have 

asserted that their database managements systems are superior to others. In order to 

clarify these assertions, we have conducted a study to compare the performances of 

NoSQL and relational database management systems. In order to do such a 

comparison, the tool used to benchmark the database management systems in this 

study is the latest version of Yahoo Cloud Serving Benchmark (0.9.0). Two of the 

NoSQL database management systems we used in this study are Mongo DB and 

Cassandra. MySQL database management system represents the relational database 

management systems that have been used in this study. Although there have been 

many papers introduced in this field, our study considers a novel approach due to the 

latest releases of the database systems used in this study which is supported by the 

Yahoo Cloud Serving Benchmark (YCSB). Relational databases have been used for 

more than 40 years. Since the revolution of web applications that exploded in the 

1990’s, the need for efficient databases has become more important. NoSQL 

database was found in 1960, but it was not in wide use until 2009 [1]. The 

foundations built their databases in a variety of ways with different programming 

languages. This variation leads to different performances and responses even for the 

same type of databases. For instance, NoSQL database has more than 150 database 

management systems according to a blog in [2]; all these products ’do not share the 



 

 2 

 

same performance due to differences of design. Therefore, we need to investigate it 

in this field in order to clarify the characteristics of both relational database systems 

and non-relational database systems (NoSQL). 

 

1.1 Aim of the study 

 

Relational database management systems have been used in the last four decades to 

manage different types of data, but recently, a new era of managing data started upon 

the appearance of the NoSQL database. Our goal is to test the performances of two 

NoSQL database management systems against one relational database management 

system in terms of creating, reading, updating and deleting (CRUD) operations. We 

examined the performance of each system from different perspectives by applying 

different workloads via the Yahoo Cloud Serving Benchmark (YCSB). The 

performance of each system differs due to the differences in their respective data 

storing mechanisms. The results of this study show the weaknesses and strengths of 

each database system used in the study. We set up a testing environment for each 

workload and examined the responses for the three systems. 

 

1.2 Significance of the study 

 

Many papers and blogs introduced comparison studies between RDBM and NoSQL 

in order to clarify a number of claims about these two types of database. For 

instance, there is a claim saying that NoSQL displaces RDBM simply because 

NoSQL is a newer technology. The second issue that needs to be investigated is to 

see whether or not it is correct that NoSQL is better than RDBM. Another issue on 

which we focused in this study was to see how both NoSQL and RDBM responded 

to several requests. Nowadays, there are in excess of 150 different NoSQL databases 

with different characteristics [2]. Moreover, many relational databases have 

appeared. Due to this variation, it is not easy for IT managers to select the best 

database that meets requirements. The results of this study will help IT decision 



 

 3 

 

makers with regard to understanding the characteristics of both NoSQL and RDBM 

databases. In addition, the results will guide them while selecting a suitable NoSQL 

or RDBM database management system that best suits their needs. Although many 

studies have introduced comparisons between NoSQL and RDBM database 

management systems, in this study, we have used the latest versions of NoSQL 

database systems supported by the latest release of the Yahoo Cloud Serving 

Benchmark (YCSB-0.9.0). In this study, we have highlighted the most widely used 

NoSQL databases: MongoDB (3.2.4), Apache Cassandra (3+) and from RDBM we 

selected MySQL (5.5). 

 

1.3 Research Questions  

 

1. Which database management system (relational database systems, or NoSQL 

database systems) is better according to low average latency and high throughput in 

terms of create, read, update operations? 

2. Which NoSQL database (MongoDB (3.2.4) or Apache Cassandra (3+)) is better 

(according to low average latency and high throughput) than the other in terms of 

create, read, and update operations?  

3. Are the foundations presenting any improvements to their products comparing 

with the last published studies? 

  

1.4 Relational database management systems (RDBM) 

 

The relational model and the transactional model theories appeared during the ’1970s 

and ’1980s, which developed the concepts of these two theories to be considered the 

basics of relational database management systems. The relational model was used to 

present full access to the data stored in the databases while the transactional model 

was used to perform different operations on data reliably. These two concepts are 

explained in detail in the following chapter. In general, it is safe to say that RDBM is 



 

 4 

 

built to scale-up [3]. With a rapid increase of data every day, the challenge of 

producing a perfect database system becomes more difficult. 

1.5 NoSQL database 

 

NoSQL is a stand for (not only the SQL database). There are more than 150 different 

products [2], and this new type of database system appeared when large companies 

such as Google, Facebook and Amazon endeavored to discover how to create a new 

database that is able to support scaling-out beyond the limits of relational database 

systems. NoSQL database systems have the ability to scale-out up to more than a 

factor of hundreds [4]. It is worth mentioning that NoSQL database systems do not 

support relational and transactional models as there is no need for their services. 

NoSQL databases are practically designed to work on clusters comprised of 

computers (nodes). 

 

1.6 Related work 

 

Recently, many studies have introduced comparisons between NoSQL and RDBM in 

order to clarify the features of these two types of database. In [5], the author used the 

NoSQL database systems (Mongo DB, Apache Cassandra, and Apache HBase) with 

one RDBM database (MySQL) using the Yahoo Cloud Serving Benchmark (YCSB) 

to test their performance by applying the standard workloads that come with 

(YCSB). The results are shown in the Figure 1: 

 



 

 5 

 

   

 

Figure 1 Testing database using two different size of workload 

 

The author used two different sizes of data set, namely a small size (1, 000, 000) and 

large data set (100, 000, 000). The author concludes that, of all the systems, 

Cassandra performs better with large data sets, and the throughput is the highest with 

lowest average latency. MySQL performs well with small data sets. In addition, the 

author concludes that there is no good or bad database system, and that choice of 

database depends on need. HBase performed well in general, but not as well in the 

update. Cassandra has impressive throughput with latency cost, and Mongo dB 

performed well with small data sets. Although HBase and Cassandra were better than 

Mongo dB in terms of throughput and input, Mongo dB has a better read and update 

than Cassandra and HBase. The foundation of Apache Cassandra presented a 

comparison in [6] of several database systems as shown in the Figure 2: 



 

 6 

 

 

Figure 2 Throughput versus increased number of nodes 

 

According to these results the author concluded that as the number of nodes 

increases, the performance of some database systems also increases. Apache 

Cassandra ranks first with the highest throughput (operations per second) with an 

increase in the number of nodes. MySQL takes the second place during the (read 

write) operation; however, we ’do not see the same good performance during the 

(read, scan, write). In fact, there is no throughput at all. The other NoSQL databases 

show good reasonable throughput with an increase in the number of nodes. In [7], a 

comparison of a NoSQL database against RDBM databases was proposed. The 

author tested Mongo DB against MYSQL in terms of number of threads using Yahoo 

Cloud Serving Benchmark to analyze the performance of both systems while 



 

 7 

 

increasing the number of threads and its effect on the number of queries. The author 

found that when the number of threads was increased to 4, the winner was MYSQL. 

However, when the threads were increased past 4, the performance of both systems 

was almost identical.  

Figure 3 Relationship between the numbers of threads versus queries (simple query) 

 

Unlike Figure 3, we can see a significant difference in Figure 4 that shows that 

Mongo DB performs better when the author used complex queries which included an 

inner join in SQL terms. In contrast to Mongo DB performance, MYSQL showed a 

linear performance when compared with MYSQL performance without using the 

inner join in Figure 4. 



 

 8 

 

 

Figure 4 Using INNER JOIN QUERY (complex query) 

 

The team of end point in [8] performed a series of tests on several NoSQL database 

systems based on the number of nodes. They increased the number of nodes so as to 

be doubled in each test starting with 2 nodes and proceeding up to 32 nodes. They 

noticed that the performances changed with an increased number of nodes. Each 

system shows different responses for each number of nodes and for each workload, 

as can be seen in the Figure 5[8]. 

 

Figure 5 Effect of increasing number of nodes 



 

 9 

 

We can recognize that Cassandra throughput (operation/sec) increases more than the 

other systems when the number of nodes increases, which means that the number of 

nodes affects the system performance. In [9], the authors compared the relational and 

non-relational database systems of 14 different NoSQL databases in different 

perspectives, such as their data models, query possibilities, concurrency control, 

partitioning and replication opportunities. They concluded that NoSQL databases are 

better for operations that are very fast and simple for very large datasets than they are 

for relational database systems. 

  



 

 10 

 

 

CHAPTER 2 

 

DISTRIBUTED DATABASES 

 

The aim of this section is to clarify the obstacles facing distributed databases and the 

techniques that are ordinarily used to overcome them. It indicates how databases can 

be scaled and why distributed databases need to make a few trade-offs to accomplish 

this. We additionally concentrate on scaling, replication and sharing. 

 

2.1 Massive Data 

 

Due to the fast growth of data, which comes from a very large number of sources 

such as satellites, sensors, social media etc., it becomes almost impossible to manage 

this huge volume of complex data. Big data can be defined as the capability of 

managing a huge volume of data in a timely manner and at proper speed [11]. 

Massive data can be described in three terms: volume, velocity, and variety. Volume 

refers to the quantity of data stored and generated, velocity refers to how fast that 

data is generated and processed, and variety refers to the nature of the data and to 

various types of data. Foundations have attempted to find solutions to handle this 

huge volume data. The first action was to use better hardware; however, this 

approach was insufficient as the hardware enhancement reached a point where the 

growth of data volume outpaced computer resources [12]. There are three types of 

massive data, the first one being structured data, a term referring to the fact that the 

format of the data and the length are known. Examples of structured data include 

email, phone numbers, IDs, names, addresses, etc. There are two sources that provide 

structured data: data generated by human intervention such as gaming data and input 

data. The second source is the data generated by machines such as sensor data, web 

log data and financial data. The second type is unstructured data, which is the data 



 

 11 

 

that do not have specific formats or known lengths. These are found everywhere and 

are used widely. The sources of these unstructured data are human-generated and 

include website content, mobile data and social media. The data generated by 

machines are the second source of unstructured data, and these can be found as radar 

data, sonar data and satellite data. The third type is semi-structured data; this kind of 

data combines structured and unstructured data. Dealing with this degree of data 

complexity is not easy. Tall data and wide records lead to long running queries; 

therefore, new methods are needed in order to overcome this challenge and manage 

huge data. 

 

2.2 Technical terms 

 

In this section, we mention a number of terms used throughout this thesis and terms 

relevant to database systems in order to present a good understanding of database 

systems. 

 

2.2.1 ACID 

 

The term ACID stands for Atomicity, Consistency, Isolation, and Durability. The 

ACID acronym appeared in 1980 in order to present a static standard for the required 

properties which enable RDBM to run in such a way that prohibited data loss and 

exceptions. 

1. Atomicity: meaning that every transaction should be atomic. This 

feature is used to guarantee that whenever the database faces an error 

during the transactions, at that point, none of the calls made will be 

committed to that database. ’Therefore, a log file is used in Standard 

RDBMS to ensure these demands. If a write operation to a database 

occurs, either all the updates that occurred during the write operation 

will be available to every client or none will be available. 



 

 12 

 

2. Consistency: meaning that the database is always in a consistent state 

before and after transactions occur. If the changes of a transaction are 

against the consistency rule, then all changes of the transaction must be 

cancelled to ensure that only valid data is written to the database.  

3. Isolations: meaning that each transaction should be run separately from 

every other transaction. The importance of this property appears when 

there is a concurrent transaction. 

4. Durability: this property is important when an update occurs to the 

database and a system failure takes place. In other words, this property is 

used to ensure that the transaction is committed to the database and it 

will not be lost. 

 

2.2.2 Scaling 

 

Scalability can be achieved using two technologies: Sharding and replication. 

Scalability for databases can be done in three different ways: read operation, write 

operation and the volume of database. There are two terms related to databases that 

need to be explained: 

 Scale-up: this concept means that increasing the power of the machines, such 

as increasing their memories, using faster processors, increasing the number 

of cores, using faster memories, etc. in order for the database to be able to 

process more operations. 

 Scale-out: increasing the performance of database systems can be achieved 

by distributing the machines to work together in a distributed manner so as to 

serve the requests of managing data, as seen in the Figure 6: 



 

 13 

 

 

Figure 6 scaling-up versus scaling-out 

 

Although scaling-up and scaling-out are used to overcome the problem of increasing 

large amounts of data, scaling-up still has limits that cannot be passed. It is 

impossible to keep adding memory or cores to increase the power of a machine. 

Based on this fact, we can say that scaling-up is limited by hardware. In contrast, we 

can simply add more machines to clusters and expand our clusters to face the 

challenges of the tremendous increase of data. 

 

2.2.3 Sharding  

 

The concept of Sharding can be defined as the progress of splitting data inside a 

database into numerous shards; these shards can be distributed through the nodes. 

This definition leads us to another understanding: instead of saving data on one node, 

it will be stored within a cluster of nodes as shards and not as a single large volume 

of data. A very important advantage achieved while using Sharding is that nodes can 

be added to the cluster easily, which means that capacity will increase, thereby 

affecting the performance of the cluster positively. The performance of the read and 

write operations is enhanced while adding additional nodes without the need to 

modify the database system. 



 

 14 

 

 

Figure 7 Sharding 

 

On the other hand, there is also a downside to Sharding on some databases operations 

as Sharding makes these operations more complex and inefficient. For instance, the 

join operation in relational database systems (RDBM) is considered one of the most 

important operations. It is used to materialize the relations of data items [10]. A 

distributed join in a sharded database requires many requests over the cluster nodes 

to perform an operation on an item, ’leading to an increase in network traffic. 

 

2.2.4 Replication 

 

Replication means that the data in a distributed system is repeated through every 

node within a cluster, thereby leading to an increase in the performance of the read 

operation. This is due to the fact that the load balancer will distribute the read 

requests throughout the nodes. There are two techniques to execute replication: 



 

 15 

 

1. Master-slave replication: The possibility of this structure is to set one node as 

a master which handles write operations, and a slave which is synchronized 

with the master and conducts activities, such as read operations. 

2. Peer-to-peer replication: This provides the capacity to remain in contact with 

any node and to synchronize data crosswise over nodes. Master-slave 

replication diminishes the likelihood of update conflicts, while peer-to-peer 

replication prevents loading all writes onto a single server and creating a 

single point of failure. Nowadays, a system may use either technique or both 

techniques. 

Replication is very useful as it renders database systems immune to a number of 

catastrophic occurrences. On the other hand, there is a disadvantage such that once 

there is a write an operation, the data must be written on every other node, and 

acknowledgment will not be returned until the data is written through all the nodes. 

 

Figure 8 Replication 

 

 



 

 16 

 

2.2.5 MapReduce 

 

In 2004, Google presented a new technique called MapReduce, which is described in 

a corresponding article in [13]. MapReduce can be defined as a technique that is used 

to acquire a huge amount of data within a short time. Several computers are used to 

divide the tasks of filtering and fetching data. The MapReduce concept comprises 

two main functions, mapping and reducing. The map function is used to generate 

intermediate (key-value) pairs by combining a key and a value. After all the 

intermediate keys are generated, the reduced function will use these generated keys 

to move all the intermediate values with their intermediate keys. 

 

Figure 9 MapReduce functions for word counting [10] 

 

2.2.6 CAP Theorem 

 

CAP is an acronym that stands for three concepts: Consistency, Availability, and 

Partition tolerance. It was proposed by Dr. Brewer in a keynote speech it was then 

formalized by Gilbert and Lynch [14]. This theorem says that two out of the three 

features can be provided in any distributed system. 

1. Consistency: While performing read or write operations within a cluster 

from/to any node, the data will remain the same through the nodes in that 

cluster. 



 

 17 

 

2. Availability: In case a node within a cluster goes down, we can still access 

that information in the cluster. Failure of that node will not affect access to 

the data. 

3. Partition Tolerance: This concept means (connection loss) between the 

nodes of the cluster. Although there is a misconnection between nodes 

within a cluster, the cluster will continue working. For any distributed 

system, it is impossible to satisfy all the properties simultaneously. Partition 

tolerance must be available in every distributed system; otherwise, this 

system is not a distributed system. Therefore, any distributed system will 

have two properties at most, namely partition tolerance and one of 

availability or consistency. 

 

 

Figure 10 CAP Theorem and databases 

 

Based on this theorem, databases are divided into three categories: 

1. Availability and Partition Tolerance (AP) systems: This type of feature is 

found in Cassandra, Couch DB, and Simple DB. If there is a misconnection 

between nodes within a cluster, once the partition has resolved the nodes, 

they will communicate between each other and resync data; then the data 



 

 18 

 

will be available once again. It is difficult to know whether all nodes will 

sync their data. 

2. Consistency and Availability: Unlike distributed systems which should have 

partition tolerance, CA systems cannot be described as a distributed system 

because of the absence of the partition tolerance feature in these kinds of 

systems. RDBM database systems are good examples of CA systems. 

Consistency and Partition Tolerance: HBase and Big table are good examples of CP 

systems. Because there is no availability, once one of the nodes within a cluster goes 

down, the cluster will not be accessible. According to some studies, they consider 

Mongo DB a CP system. Other recent studies have refuted that claim because Mongo 

DB does not always behave identically to CP systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 19 

 

 

CHAPTER 3 

 

DATABASE SYSTEMS 

 

In this chapter, we present both the RDBM and NOSQL database system types and 

we present particularly the database systems used in this study, namely Mongo DB, 

Cassandra, and MySQL, and their respective characteristics. We present features 

such as their respective architectures, data models, and query models. We also 

discuss how each database deals with replication, Sharding and how they respond in 

the event of failure.  

 

3.1 NoSQL Database Classification 

 

There are more than 150 types of NoSQL database used in different disciplines, all of 

which can be classified into four main classes according to the mechanism of storing 

data. 

1. Key value store 

This type uses a hash table to manage data. The idea of the hash table is simple, 

as there is a unique key and pointer to point to a specific item of data. A key-

value is considered the simplest type of data store. It is also considered 

inefficient if the main purpose of using it is only for reading and writing. It 

is used in Riak, Tokyo Cabinet/Tyrant, Redis, Voldemort, Oracle BDB, and 

Amazon Simple DB. 



 

 20 

 

2. Documents data stores 

This deals with semi-structured data and is similar to the key-value store. 

However, it differs in the way it processes data. Documents are used to store 

data in the JSON format. It is sometimes called a document-oriented 

database. It is used in Couch DB, and Mongo DB. 

3. Column Family Stores 

The data in this type is stored in columns. There are keys, but they are used to 

point to columns instead of data items. The columns are arranged in column 

families. It can be found in Cassandra, and HBase. 

4. Graph data store 

Unlike the other three types of NoSQL, the graph data store provides a graph 

model to store data instead of rows, and columns. It is used in Neo4J, and 

InfoGrid. 

 

3.2 Relational Database Types 

 

There are several classifications for the (RDBM). For instance, we can categorize 

(RDBM) based on the relationships between tables as follow: 

1. One-to-one: ’meaning a record in the database table is connected to one, and 

only one, record in another table. For instance, if we have table A and table 

B, each record in table A is linked to each row in table B, which means the 

number of rows in both tables should be equal. 

2. One-to-many: In this relationship, each record in table A might be linked to 

one, or many records, in table B. It is useful when saving data once in one 

table and referenced several times to every other table. In this case, the 

number of records in table A is usually less than the number of records in 

table B. 



 

 21 

 

3. Many-to-many: One record, or many, in table A is linked to one, or many, 

records in table B. It is important to mention that a third table is used to 

implement such a relationship, known as a mapping table. 

3.3 Mongo DB 

 

Created by the 10gen foundation, Mongo DB is an NOSQL database system which 

appeared in the last couple of years. Mongo DB is considered a schema less 

document-oriented database. It is an open source build using the C++ language and it 

is used to store large volumes of data with a vast range and variety of data types. 

Mongo DB is considered to be fast and scalable. 

 

3.3.1 Models of Data 

 

The format used to store documents as Binary JSON (BSON) objects. Unique keys 

“_id” in documents in each collection in order to avoid collision and manage the data 

efficiently. MongoDB is both case and type sensitive. There are common features for 

these keys that can be stated as follows: 

1. Keys are unique so there is no possibility of duplication. 

2. Null characters cannot be used to generate keys as they are used 

to indicate the ends of keys. 

3. To define a scenario, dots and dollar signs are used. 



 

 22 

 

 

Figure 11 Documents in Mongo DB 

 

3.3.2 CRUD in Mongo DB 

 

In this section, we focus on the performance of Mongo DB in terms of the four main 

operations that every database uses: create, read, update, and delete.  Create, update 

and delete operations are considered data modification operations. The read 

operation is considered to be a query and in Mongo DB, it is a query that deals with a 

specific document within a collection. To read from a specific field from a document, 

a Mongo DB query may use a projection to specify that field. MongoDB is bundled 

with several types of queries. The query model of MongoDB allows queries over all 

documents inside a collection, including embedded objects and arrays [15]. Mongo 

DB shows several query behaviors as follows: 

1. Mongo DB queries address one collection. 

2. Queries in Mongo DB can be modified to put limits, sort orders, and skips. 

3. To obtain the order of documents by query, a sort method should be used. 

 



 

 23 

 

3.3.3 Mongo DB Aggregation 

 

The processing of data and the returning the computed results of that data is called 

the aggregation process. Values are collected from several documents; several 

operations are applied on any data that is not similar to each other, and one result is 

returned. Mongo DB presents a vast set of aggregation operations. The input to the 

aggregation operation is the documents within collections and the results are 

returned. 

 

3.3.4 Mongo DB Characteristics 

 

Mongo DB is considered an elite database system. It is an open source database 

which, is also a capable and adaptable document oriented database. Data is put away 

in records and collections rather than in tables. This enables the process of 

representing complex collections more effectively. Mongo DB is an adaptable 

database with rich auxiliary files including geospatial and TTL records. It is able to 

store different types of data such as structured, semi-structured, and unstructured 

data. It can also perform very large numbers of operations. It shows high scalability 

due to the architecture that is used to design Mongo DB. It is suitable to be used in 

vastly different applications such as social networks, Internet of Things, and cloud 

computing. In cases of failure, it is easy to administer and overcome any issues. 

Version 3.2 of MongoDB is packaged with a memory mapped storage engine. With 

every update for Mongo DB, we can see improvements, such as a new connector for 

business intelligence, which was added to Mongo DB recently, thereby giving users 

the ability to visualize enterprise data in Mongo DB by using relational business 

intelligence tools such as Tableau. The aim is to connect these tools to a datacenter 

and to find data in tabular form. This is not an easy task when working with 

MongoDB. The purpose of creating a MongoDB connector for BI components is to 



 

 24 

 

connect the MongoDB server with Business Intelligent tools without storing any 

data. We can describe how the tool works in the Figure 12: 

 

Figure 12 BI tool in Mongo DB [16] 

 

In addition, Mongo DB is designed to visualize a scheme, which means it uses a 

graphical interface. Mongo scout is used to deal with several operations, including 

analyzing collections in order to visualize the availability of fields and the cardinality 

of their values. It also supports dynamic lookups, which is a new method for 

modeling data and providing great flexibility. Another feature was added to Mongo 

DB is document validation, which is simply used to ease the burden for companies 

during the process of verifying data types. Security is one of the greatest concerns in 

all data base management systems. Mongo DB is considered to be a reliable database 

system due to how it is used to deal with data by encryption of the data at reset. 

 

3.3.5 Replication in Mongo DB  

 

As explained in Chapter 2, the concept of replication in Mongo DB is similar to 

master-slave. The replica set composed of several mongod processes which are used 

to maintain the data set [17]. The Figure 13 shows replication in Mongo DB. Unlike 

master-slave, a replica set has an automatic failover mechanism in case the primary 

node becomes unavailable. If any connection problems occur between the primary 



 

 25 

 

and secondary nodes, one of the secondary nodes will become the primary. Because 

of this mechanism, a replica set provides redundancy and availability. A replica set 

can be expressed as a cluster of nodes of size N. A replica set cannot have more than 

one primary node, which is the only node that can accept writing operations. When 

the client starts sending data to the primary replica, these data will be copied and 

passed to the secondary replica nodes. Replication is very important to reduce the 

risks of losing data. 

 

Figure 13 Mongo DB Replication 

 

3.3.6 Mongo DB Sharding 

 

Mongo DB presents a Sharding procedure which can be characterized as a way of 

putting away data on a few machines, which is an excellent position with quick 



 

 26 

 

incrementing of data. A solitary machine that is utilized to store data may not be 

suitable due to low throughput between the read/write processes. Sharding 

overcomes this issue by utilizing even scaling. The Mongo DB bunch has three parts: 

 Mongos (routing server) 

 Shards 

 Configuration server 

Mongo DB is designed to support Sharding, which is the process of breaking a huge 

volume of data into smaller volumes in order to overcome the limits of hardware, as 

was explained in Chapter 2. Bottlenecks in RAM or disk I/O are considered 

examples of hardware limitations. Mongo DB consequently adjusts the data in the 

sharded cluster as the data develops to the extent of the group increments or 

abatements. Unlike in social databases, Sharding is programmed and incorporated 

with the database, minimizing the weight for designers and operations groups. Every 

shard contains a replica set and the shards are utilized to store real information. 

Expanding the quantity of nodes inside every shard prompts expanding repetition and 

accessibility. Configuration servers (mongod) are utilized to hold metadata which 

contain mappings for the genuine data in the shards. Directing servers utilize 

metadata to course operations to specific shards. Mongo DB disperses data, or 

shards, at the collection level. Sharding allots a collection’s data with the shard key 

[18]. The initial step to shard a collection can be done with a Sharding key. A shard 

key is not unlike ordering. A shard key is partitioned into chunks equitably over the 

shard by Mongo DB. Every chunk contains a few records all together. The 

fundamental advantage of the pieces lies in adjusting the shards. In the event that a 

shard estimate becomes larger than the alternate shards, a few substances of the piece 

will be relocated to other smaller shards so as to rebalance the sizes of the shards. In 

the event that another node is included or expelled from the cluster, the pieces will 

redistribute the information over the group. 



 

 27 

 

 

Figure 14 Mongo DB Sharding 

 

3.3.7 Mongo DB Failure 

 

A Mongo DB cluster may fail for many different reasons, so Mongo DB is designed 

in such way as to overcome node failure while managing data. If a node within a 

cluster goes down, the cluster will not be affected by this problem and it will 

continue to perform. In the crashed node, the data may be corrupted, so whenever 

this node recovers and works correctly, the data in it will need to be maintained. The 

worst-case scenario occurs when every node within a shard is broken. MongoDB 

then will not be able to execute any operation on the data in this shard. The same 

situation occurs when one of the configuration servers fails. MongoDB will also lose 

the ability to split and merge data between shards. In general, Mongo DB is 

considered to be a reliable system due to the ways it follows to prevent data loss. 



 

 28 

 

3.4 Apache Cassandra 

 

Apache Cassandra is an open source database management system, written in Java 

and one of the NoSQL database systems used widely in many disciplines. Cassandra 

presents high scalability and it is described as being a reliable database system, that 

also it supports fault tolerance. Facebook originally represented the developer of 

Cassandra in order to deal with the inbox search feature that provides users with the 

ability to search through their Facebook index [19]. After that it took all the 

concentration of Apache foundation. Cassandra does not require the matching of a 

column within a row. Due to Cassandra’s decentralized architecture, any node can 

respond to requests, thereby enabling Cassandra to avoid single node failure. 

 

3.4.1 Data model in Cassandra 

 

In Casandra, the data model composed of the following items: 

1. Keyspace: In a Cassandra hash, the first dimension is represented by the 

keyspace; the family columns are contained in the Keyspace. 

2. The rows in Cassandra comprise collections of columns with keys for 

identification purposes. Each row contains several files and each file contains 

a column family. In order to know which node stores data, a key row is used. 

3. Columns comprise three parts, timestamp, name and value. A timestamp is 

used to clarify the resolution during the last stage of writing. 

4. Super columns is a term that refers to a column whose values are columns.  

Apache Cassandra a covers wide range of data that deals with the following: 

 ASCII 

 Lexical UUID 



 

 29 

 

 Long 

 Timer UUID 

 UTF8 

 Integer 

 Bytes 

 

3.4.2 Apache Cassandra Architecture 

 

A Cassandra cluster is based on a peer-to-peer relationship. This approach to 

designing such a relationship is very useful because it can be used to overcome the 

problems that occur from time to time in some database systems using master-slave 

relationships. The master represents the part which handles data management, while 

the slave synchronizes data with the master. Therefore, in cases of the master going 

down, the relationship will crash. In Cassandra, the peer-to-peer relationship avoids 

or solves such problems. Every node in the cluster plays an identical role. There is no 

master in the Cassandra architecture which represents a point of failure. The data are 

split among all the nodes within the cluster. Due to peer-to-peer networking, the 

performance of the database improves. We should mention that the node 

characteristics within Cassandra clusters, the first feature of the node, and each node 

within the clusters perform the same function. Although the query data is not located 

on a specific node, every node in the cluster responds for different operations, such 

as read/write. In addition, if a node fails, the cluster continues to perform. There are 

some terms and concepts related to Cassandra architecture. 



 

 30 

 

 

Figure 15 Cassandra architecture  

 

We highlighted the concepts related to Cassandra architecture as follows:  

1. Nodes: the place where data are stored. 

2. Data center: a group of connected nodes. There are two types of 

datacenter: physical and virtual. 

3. Cluster: A cluster is composed of one or more datacenters. 

4. Commit log: For durability, the data are first written to the commit log. 

When the data are flushed to the SSTable, they can be updated, deleted, 

or even archived. 

5. Table: a group of columns organized in order that can be fetched by 

using a key. Each row has a primary key. 

6. SSTable: an acronym for Stored String Table which is a permanent data 

file to which Cassandra composes memtables intermittently. 

7. Boom filter: a term concocted in 1970 by Burton sprout. It is a 

probabilistic data structure that is utilized to inform the user regardless 

of whether data for a specific row exists in the SSTable by utilizing a 

quick, non-deterministic calculation. It assumes an imperative part 

particularly with vast volumes of information as a sponsor. It is thought 

to be a store memory which permits fast inquiries.  



 

 31 

 

There is a configuration for the key in Cassandra, and we present the components 

with details as follow: 

1. Gossip: used to open connections between nodes so that they can 

communicate with each other. It used for broadcasting and receiving data 

every second through the cluster. 

2.  Partitioner: used to determine where the first copy of data takes place within 

a cluster. It is used to manage how the data are distributed over the cluster. It 

is a hash function used for token evaluation. The partition key is used to 

identify every data row. 

3. Replica placement mechanism: As explained in the previous chapter, 

replication means saving copies of data on more than one node to guarantee 

reliability in addition to fault tolerance. Once a keyspace is created, the 

number of replicas needs to be determined. 

 

3.4.3 Cassandra writing 

 

In order to understand the functions of the Cassandra structure, we state how the 

writing operation is performed in Cassandra. Cassandra’s durability is accomplished 

with the aid of commit logs; therefore, if a writing operation is taking place, it will be 

quickly caught by the commit logs, which present a crash-recuperation instrument. A 

write operation will not be considered successful until it is written to the commit log. 

The advantage of a commit log becomes apparent when a write operation fails the in-

memory store. However, it is still possible to recover that data. After the data is 

written to the commit log, it is written to the MemTable, which is designed in such 

way to flush the values to disk in a file called SSTable when the number of values 

stored in the MemTable reaches the threshold; then a new MemTable will be created. 

For each memTable, there is a bit flag to determine whether it needs flushing. To 

determine the number of copies for each piece of data in the system, we can simply 

set the replication factor to the required number of copies, which is not based on the 



 

 32 

 

number of nodes in the cluster. The replication assists Cassandra to achieve high 

scalability and durability. Consistency in Cassandra comes with different levels that 

can be set. It is maintained by the quorum. The consistency level determines the 

number of replicas on which to write and which must succeed before returning an 

acknowledgment to the client application [20]. 

 

3.4.4 Fault Tolerance Handling in Cassandra 

 

Cassandra shows high reliability due to the architecture of Apache Cassandra, which 

is a peer-to-peer relationship (as shown in Figure 15). The data in Cassandra is 

distributed equally between the nodes across the cluster. The nodes within the cluster 

are similar to each other in terms of the functions that they perform, so if we have a 

specific number of nodes (for instance X nodes), the data will be distributed 

throughout all these nodes. The system in charge of choosing a leader of the group is 

known as the zookeeper. After a leader is selected, the X – 1 node will receive the 

keys. In case one of the nodes goes down, different nodes inside the cluster will 

receive the information by having a place with the fizzled nodes. At the point when 

the fizzled node returns to the ring again, the information having with it a place will 

be moved back to it from an alternate node. In the event that the leader node goes 

down, another node will be selected as leader. Purposes behind disappointment may 

incorporate equipment bugs, control, cuts or common calamities. 

 

3.5 MySQL 

 

MySQL is a well-known RDBMS owned by the Oracle Corporation. Its people 

group adaptation is open source and it can continue to run on a wide assortment of 

working systems. MySQL stores every item of data on one machine and uses B-Tree 

for indexing. It was initially created by the Swedish organization MySQL AB and 



 

 33 

 

now it is own by the Oracle Corporation [21]. InnoDB is a productive stockpiling 

motor which is outlined to give higher execution vast measure of database. InnoDB’s 

approach to sorting data on the circle is productive for serving any questions which 

channels utilizing essential key. Therefore, selecting an essential key which is 

utilized as a part of most questions will help to accomplish higher execution. MySQL 

gives the greater part of the elements that accompanies a RDBMS database. MySQL 

has a specific correspondence convention which is utilized for verification, 

questioning and dealing with the server utilizing a subset of the standard Structured 

Query Language (SQL) orders. Customer libraries with different libraries which 

actualize the convention are composed for JDBC (Java Database Connectivity) and 

for the .NET stages. MySQL gives APIs to the C, C++, Eiffel, Java, Perl, PHP and 

Python dialects. Furthermore, OLE DB and ODBC suppliers can likewise interface 

with MySQL in the Microsoft environment. 

 

3.5.1 MySQL Architecture 

  

In general, most relational databases share the same basic architecture, comprising 

three components, as shown in the Figure 16: 

 

Figure 16 RDBM layers 

 



 

 34 

 

MySQL also shares this feature with other RDBM. It has three layers as follows: 

 

3.5.1.1 Application Layer 

 

This layer is used to enable MySQL to interact with a client. It is composed of three 

elements: administrator, clients, and query users. The administrator uses several 

different administrative interfaces and utilities, including isamchk, mysqladmin, etc. 

The client also communicates with the MySQL RDBM using different interfaces 

such as MySQL APIs, while query users communicate with MySQL RDBM by 

using MySQL. We can conclude that MySQL is a query interface because it allows 

users to issue SQL statements; then it will show the results. 

 

3.5.1.2 Logical Layer 

 

This layer consists of four subsystems: query processor, transaction management, 

recovery management, and storage management. All these subsystems work to 

handle requests issued to the MySQL database server. We highlight these systems as 

follows: 

1. Query processor: when the user wants to view the implicit data within 

storages the number of interaction in the systems will increase. The query 

processor used to analyze and optimize these requests.  

2. Transaction management: A transaction can be defined as a unit of work 

which contains one or several MySQL commands within it. The main 

purpose of the transaction manager is to guarantee that the transaction can be 

executed atomically and logged. In addition, it is also in charge of removing 

deadlock cases that might occur especially when two transactions are in 

progress and they need to process the same data. Another responsibility of 

the transaction manager is to issue the ROLLBACK SQL commands and 



 

 35 

 

COMMIT commands. ROLLBACK commands take place when crashes 

occur while performing a transaction. On the other hand, the transaction 

cannot be considered completed until the COMMIT command executes a 

transaction.  

3. Recovery management: This subsystem consists of two parts: the log 

manager and the recovery manager. The log manager is responsible for 

logging all the operations that are performed in the database by keeping the 

log on disk by using the buffer manager. Each operation in the log is saved 

as a MySQL command. To bring the database back to the last stable state 

when a crash occurs, commands within the log are executed. The recovery 

manager is used to bring back the database to the last stable state. This can 

be achieved by logging the database that is fetched from the buffer manager 

followed by performing the operations within the log. 

  

Figure 17 Logical Layer Subsystems 

 

 



 

 36 

 

3.5.1.3 Storage Management: 

 

Storage Management is composed of three elements: the storage manager, the buffer 

manager, and the resource manager. 

1. Storage manager: The storage manager is used as an interface with the 

operating system. Its major function is to write data existing in user tables, 

logs, internal system data and indexes to disk efficiently. 

2. Buffer Manager: The buffer manager is used to reserve the memory 

resources in order to view and manage the data. Based on formatted 

requests, the buffer memory makes a decision to evaluate the memory that 

should be allocated to each buffer and it calculates how many buffers are 

needed for the requests. 

3. Resource manager: Once the execution engine sends requests, the resource 

manager accepts these requests, followed by putting them into a table called 

table requests. The second task is to request the tables that exist in the buffer 

manager. It is also used to pass data from the buffer manager to the upper 

layers. 

 

3.5.2 Storage Engine 

 

There are several storage engines that come with the MySQL database system: 

1. InnoDB: This is one of the storage engines that MySQL uses. It contains 

standard ACID-compliant transaction characteristics. These features are 

capable of performing several tasks, including commit, data recovery after 

crash, and rollback. For all the previously mentioned abilities of data 

managing, data in InnoDB considers protected data. The InnoDB engine is 

suitable for dealing with large volumes of data because it can be configured 

for maximum performance. We should mention that InnoDB in different 



 

 37 

 

disciplines (for instance, in some famous sites such as Slashdot.org and the 

storing capacity of data in this site) has reached 1 TB. In 2005, InnoDB was 

owned by the Oracle Corporation [22]. In MySQL, to know whether InnoDB 

is supported, we can use the command: 

Mysql>show engines; 

2. MyISAM: This engine is considered the default engine which was used in the 

previous release of MySQL, more specifically before the (5.5) version of 

MySQL. It supports many extensions. Tables in MyISAM are divided into 

three variant files on disk. Within these three files, there are useful 

descriptions of the table’s format, data and information on indexes. 

3. Tina: This storage engine does not support indexing and the format file used 

to store the data in it is CSV. 

4. HEAP: This engine is in-memory data store and it cannot keep any data after 

rebooting. 

Although there are several engines dealing with MySQL, they share a number of 

features, as follows:  

 Providing full table scans 

 A look up through the index 

 Scanning through all rows 

 Dealing with text entries 

 Searching in row levels 

 Row updating 

 Automatic incrementing 

 The ability to perform unique index checks 

 



 

 38 

 

3.5.3 MySQL Replication 

 

The concept of replication means repeating data through a cluster of nodes as 

explained previously. MySQL, similar to other database systems, supports this 

concept. The master (MySQL database server) copies the data to the slaves. We 

should mention that the default replication in MySQL is asynchronous replication, 

which means slaves do not always need to be connected in order to obtain updates 

from the master. Based on the method used to configure the cluster, it is possible to 

replicate the database completely, or select one database from many in order to 

update it. Alternatively, we can even select a table in a database to update it. There 

are several advantages of replication, as follows: 

1. Scale-out solutions: Several slaves work together to perform a task on loads, 

which also leads to an increase in the overall performance and the efficiency 

of the cluster. 

2. Data-security: due to data replication within the cluster, and the ability of the 

slaves to maintain the replication process while running backup services 

without interrupting the master slaves.  

3. Analytics: data analysis occurs within the slaves while the live data take 

place in the master, and not affecting performance. 

4.  Data distribution for long distances: local copies of data may be used for 

remote sites. 

 

Figure 18 Replication in MySQL 



 

 39 

 

 

CHAPTER 4 

 

TEST ENVIRONMENT 

 

This chapter discusses the test environment of the used cluster in our study by 

focusing on the used nodes, their characteristics, the operating systems, and the 

benchmark tool used in this study with the Yahoo Cloud Serving Benchmark 

(YCSB-0.9.0), and the configuration of each database system. The authors in many 

studies used Mongo DB, Apache Cassandra, Apache HBase and apache couch dB, as 

NoSQL database systems. For relational database systems, the most used system is 

MySQL database. We preferred to choose systems from these most widely used 

systems in our study, so we chose Mongo DB, Apache Cassandra and MySQL 

database systems. 

   

4.1 Nodes features 

 

The cluster is composed of four computers, each of which has the following 

specifications: 

 4 GB RAM 

 Intel Core i3 processor 

 3.33 GHz processor speed  

 Ephemeral storage in each unit.  

 Ubuntu 14.04 LTS (64-bit) 

 Java 8 



 

 40 

 

4.2 Yahoo cloud serving benchmark 

 

Performance evaluation were made less demanding by the promotion of the Yahoo 

Cloud Serving Benchmark (YCSB), proposed and executed by Cooper et al. [25]. 

Although there are several database benchmark tools such as Hammer DB, but still 

generally utilized today, permits testing the read/compose, inertness and versatility 

capacities of any database. The Yahoo! foundation created an open source tool in order 

to test database systems for both types of database, namely relational and non-relational 

database systems. There are several that have been released for this tool, and in our 

study, we used the latest version of Yahoo Cloud Serving Benchmark (version 0.9.0). 

We should mention that after we started our test on the cluster, another release of this 

tool was created by the Yahoo Foundation (i.e., 0.11.0). The YCSB is an open source 

benchmarking framework designed by Yahoo to compare the performance of distributed 

NoSQL data stores such as Cassandra, HBase, and PNUTS [23]. The first benchmark 

was designed in 2010 to simplify the performance comparisons of cloud data stores. 

YCSB performs several types of operations, such as creation, deletion, updating and 

reading. We used the last release of the YCSB, (0.9.0) available on GitHub, which does 

not support the last versions of many database management systems. The YCSB comes 

with six standard workloads which mix different scenarios, such as read, write, update, 

and search. These workloads give us a good rounded picture of the performance of the 

database systems. There is also a second workload which can be generated by the client 

to highlight another aspect not covered by the core workloads. 



 

 41 

 

 

Figure 19 YCSB Architecture 

 

4.3 Apache Cassandra 

 

The cluster of Apache Cassandra was set up as shown in Figure 20. The architecture of 

Cassandra is a peer-to-peer ring-shaped structure [24]. According to the abilities of the 

Yahoo Cloud Serving Benchmark (YCSB-0.9.0), we tested the last version of Apache 

Cassandra (3.7) that can be supported by YCSB. During the configuration progress, we 

followed some important steps: in (Cassandra.yaml) we created three folders (data, 

commit log, saved cashes) and set their locations in Cassandra.yaml. We set the initial 

token value to 0. As mentioned previously, the Cassandra architecture is peer-to-peer and 

ring-shaped. Due to its structure, we selected two seeds for each local node as its 

neighbors, in addition to setting the listening address according to the local IP address of 

the nodes, we changed the simple snitch to Rack inferring snitch, and we enabled the 

broadcast-rpc-address. 



 

 42 

 

 

Figure 20 Cassandra cluster 

 

4.4 Mongo DB 

 

As mentioned previously, we used Mongo DB 3.2.7, which is the last release. Although 

we can configure the cluster in Mongo DB to enable the cluster to shard (Sharding) the 

data, we preferred the configure it to repeat the data (replication). In this case, the cluster 

comprises 4 nodes, three of which performed as secondary nodes, and the fourth as a 

primary node. The Figure 21 shows the architecture of the cluster. 



 

 43 

 

 

Figure 21 Mongo DB Cluster 

 

4.5 MySQL 

 

We installed MySQL (5.5), which is compatible with YCSB (0.9.0). We did this in 

order to use the MyISAM engine with a 6-GB key buffer size. The MySQL cluster 

consisted of 4 nodes, with the data distributed evenly throughout all the nodes in the 

cluster. The Figure 22 shows the architecture of the cluster. 

 

Figure 22 MySQL Cluster 



 

 44 

 

4.6 User Table 

 

In each system, we created a user table according to the requirements of YSCB. The 

default of this table consisted of 10 fields in each record, the length of each field was 

100. We created the user table in Mongo DB using the command: 

db.createCollection (“ycsb”); 

use ycsb; 

create usertable; 

In Cassandra, we used: 

Create keyspace ycsb 

  WITH REPLICATION = {'class': 'SimpleStrategy', 'replication factor': 3}; 

cqlsh> USE ycsb; 

cqlsh> create table usertable ( 

  y_id varchar primary key, 

  field0 varchar, 

  field1 varchar, 

  field2 varchar, 

  field3 varchar, 

  field4 varchar, 

  field5 varchar, 

  field6 varchar, 

  field7 varchar, 

  field8 varchar, 



 

 45 

 

  field9 varchar); 

 

Whereas the command used in MySQL is: 

Create table usertable 

( 

 ycsb_key varchar (100),  

 field1 varchar (100), field2 varchar (100),  

 field3 varchar (100), field4 varchar (100),  

 field5 varchar (100), field6 varchar (100),  

 field7 varchar (100), field8 varchar (100),  

 field9 varchar (100), field10 varchar (100),  

} primary key (ycsb_key); 

 

  



 

 46 

 

 

CHAPTER 5 

 

RESULTS 

 

We present the results of our study in this chapter. The results of the three tested 

database systems (MongoDB, Apache Cassandra, and MySQL) are illustrated in 

figures and tables, using the Yahoo Cloud Serving Benchmark (YCSB). The 

different specifications between relational database management systems (RDBM) 

and the NoSQL database systems have influenced the performance of the three 

systems. YCSB creates data to test performance. There are 6 inbuilt core workloads 

to simulate different operations related to database systems, including read, write and 

update operations. These workloads come in several scenarios: 

 Update heavy workload: This workload mixes 50% of read and 50% of write. 

 Read mostly workload: This workload mixes 95% reads and the remainder 

for writing. 

 Read only: In this workload, it is a 100% read. 

 Read latest workload: In this workload, the last inserted records are more 

famous.  

 Short range: In this workload, the query is for a short range of values instead 

of a particular record. 

 Read-Modify-Write: The client in this workload reads a record, modifies it 

and finally writes it. 

 



 

 47 

 

5.1 Load Phase 

 

We loaded 1000, 000 records and into each system MySQL ranked in the last place 

in terms of throughput but the lowest average latency (the highest throughput and 

lowest average latency are considered the best performance). Due to the improved 

architecture of Apache Cassandra, it showed good performance with the highest 

throughput of over 19, 200 operations/second. This high performance is due to 

Cassandra’s data update occurring in memory, while these data are simultaneously 

written to disk. Mongo DB ranked second in terms of throughput (see Table 1 and 

Figure 23) exhibited the values of load phase. 

 

Table 1. Load Phase 

Database Throughput 
Average 

latency 

Mongo DB 17919.86237 5.222317 

Apache Cassandra 19342.3452 4.84564 

MySQL 17020.4563 4.45184 

 

 

Figure 23 Load Phase 



 

 48 

 

5.2 Workload A (50% read, 50% update) 

 

There are two scenarios in this workload, which we present to show the differences 

that occurred in the average latency for the read and update (write) operations: 

 We can observe in Figure 24 that Cassandra performed well in comparison 

with the other two systems. Cassandra showed lower average latency, than 

both Mongo DB and MySQL. Tables 2, 3, 4 show values of workload A 

(update).  

 

Figure 24 Workload A 50%update 

 

Table 2. Mongo DB update (W.A) 

Throughput Average Latency 

1998.4252 2.501436 

3994.3759 3.7142846 

5988.848 5.245696 

7704.5345 5.844159512 

8692.4353 5.959048 

 



 

 49 

 

Table 3. Cassandra update (W.A) 

Throughput Average Latency 

1983.10788 2.5535343 

3933.74 2.6455234 

5855.31516 2.7498353 

7732.87554 3.2523443 

9125.2532 4.2431345 

 

 

Table4. MySQL update (W.A) 

Throughput Average Latency 

1982.3452 2.446246 

3856.5682 3.94562 

5732.9541 5.52346 

7834.9183 6.32546 

9045.3164 6.754356 

 

 

 In Figure 25, we can see a clear influence of the read operation on the 

average latency. For instance, Mongo DB showed a very high performance 

and compared in terms of average latency, Apache Cassandra performed 

better than MySQL with the small number of throughput. However, with the 

increase of throughputs, we can see that MySQL showed lower average 

latency than Cassandra’s average latency because MySQL makes good use of 

its key cache. Tables 5, 6, 7 show values of workload A (read). 

 

 

 



 

 50 

 

 

Figure 25 Workload-A 50% read 

 

Table 5. Mongo DB Read (W.A) 

Throughput Average Latency 

1998.4252 2.2505646 

3994.3759 4.5572932 

5988.848 5.6300574 

7704.5345 6.41566 

8692.4353 6.776194 

 

Table 6. Cassandra Read (W.A) 

Throughput Average Latency 

1983.10788 2.64534 

3933.74 4.789056 

5855.31516 7.765043 

7732.87554 8.967804 

9125.2532 10.4535 

 



 

 51 

 

Table 7. MySQL Read (W.A) 

 

 

 

 

 

 

 

 

 

5.3 Workload B (95% Read, 5% Update) 

 

Workload-B tested the ability of the read operation for different systems. In our 

study, MySQL showed poor performance (see Figure 26). Moreover, Cassandra did 

not perform very well while the reading process was occurring due to its key-row 

caching. MongoDB performed the best with lowest latency, which increased with the 

increase of the target throughput. This was due to its support of memory mapped 

caching. Tables 8, 9, 10 show values of workload B.  

 

 

Figure 26 Workload-B (mostly read) 

Throughput Average Latency 

1982.3452 3.44523 

3856.5682 5.6546 

5732.9541 7.2765 

7834.9183 8.5434 

9045.3164 9.05134 



 

 52 

 

Table 8. Mongo DB 95% Read (W.B) 

Throughput Average Latency 

1998.7367 2.61511 

3995.17383 3.9388724 

5987.4503 4.018284 

7977.3443 5.4060915 

9320.5331 8.57913459 

 

 

Table 9. Cassandra 95% Read (W.B) 

Throughput Average Latency 

1983.39108 2.5646 

3933.9257 4.5643 

5375.1881 6.45367 

6506.87 8.65479 

8304.534 10.643654 

 

 

Table 10. MySQL 95% Read (W.B) 

Throughput Average Latency 

1934.9865 2.53461 

3986.654 6.42345 

5894.543 8.463451 

7454.738 11.45436 

8584.564 13.05134 

 

 

 



 

 53 

 

5.4 Workload C 

 

By running this workload (100% read), we can conclude from the results illustrated 

in Figure 27 that Mongo DB, with its low throughout, exhibited a better performance 

in comparison with Cassandra and MySQL. However, at some point, Cassandra 

showed better performance than Mongo DB in terms of average latency even though 

the throughout in Mongo DB was slightly higher than in Cassandra. MySQL was 

reasonable with its low throughput, but once the average latency increased with the 

growth of throughput, MySQL showed poor performance. Tables 11, 12, 13 show 

values of workload C. 

 

 

Figure 27 Workload C (Read only) 

 

 

 

 

 

 

 

 

 

 



 

 54 

 

Table 11. Mongo DB 100% Read (W.C) 

Throughput Average Latency 

1998.6529 2.178755 

3995.381 4.801241 

5989.4944 6.392678 

7941.0456 7.5707191 

9508.32453 7.992707 

 

 

Table 12. Cassandra 100% Read (W.C) 

Throughput Average Latency 

1982.9191 2.5658656 

3933.9257 5.27629 

5262.6039 5.9260831 

7647.5491 6.55022 

9046.6543 6.732 

 

 

Table 13. MySQL 100% Read (W.C) 

Throughput Average Latency 

1992.432 2.2432 

3958.345 6.95325 

5873.564 7.9345 

7935.654 10.6453 

9023.546 12.4345 

 

  



 

 55 

 

 

CHAPTER 6 

 

CONCLUSION 

 

In our study, we presented the comparison results of two NoSQL databases (Mongo 

DB and Apache Cassandra) and one relational database system (RDBM), namely 

MySQL. In order to answer the questions of the study as mentioned in the first 

chapter (see part 1.3), we created a test environment that is explained in Chapter 4.  

 

To answer the first question, it is safe to say that generally that we have noticed that 

NoSQL database systems performed better than the MySQL relational database 

management system. However, as a limitation of the study, we should mention an 

important thing, that according to the limitations of the used version of Yahoo Cloud 

Serving Benchmark (YCSB) which is version (0.9.0) (now there is a newer release 

0.11.0), the last supported version of MySQL is version (5.5) and in the present time 

the latest version is (8.0). 

 

The test results showed that in some cases, Mongo DB has better results than Apache 

Cassandra. For instance, Mongo DB has the lowest average latency while carrying 

out a reading operation. MySQL shows the highest average latency. However, it has 

the highest throughput during a read operation. In other cases, (see Figure 27), we 

see that Cassandra performed better than Mongo DB and MySQL, and we noticed 

that with high throughput, Cassandra has the lowest average latency between the 

other two databases and that is the answer of the second question. 

 

We found out that both the foundations of Mongo DB and Apache Cassandra 

improved their products comparing with the study in [5], which did not show any 

great difference between the MySQL database and the other NoSQL database used in 

our study and that is the answer of the third question. Mostly during the read 

operation, we noticed that Mongo DB took the lead with low throughput in contrast 

with the writing operation, when Cassandra took the lead. We can say that there is no 



 

 56 

 

linear relationship that describes the performance of the databases. However, we can 

conclude that for every database, be they relational or non-relational databases, there 

are strong and weak sides in terms of performance. Cassandra has a powerful design 

that influences the writing process to give high throughput with average latency. Due 

to the design of the NoSQL database which gives advantages to the database, such as 

overcoming the scalability limitation compared with the relational database, and 

according to the results that we achieved, we can say that NoSQL performed better 

than (RDBM) in this study due to the ability to overcome the scalability limitations 

in (RDBM) in addition to the performance. We cannot ignore the powerful features 

of (RDBM), such as the ability store structured data in tables, which enables the user 

to access data without the need to know how the data are structured. Moreover, 

(RDBM) uses SQL (structured query language) for defining and manipulating the 

data, which is very powerful. In addition, databases are a best fit for heavy duty 

transactional type applications. 



 

 R1 

 

 

REFERENCES 

 

[1] “SQL vs NoSQL: The Differences” retrieved from: 

https://www.sitepoint.com/sql-vs-      nosql-differences [accessed on 2 August 

2016]. 

[2] “NoSQL databases,” [Online]. Available: nosql-database.org [Accessed 10 2 

2016]. 

[3] S. Harizopoulos, D.J. Abadi, S. Madden, and M. Stonebraker. Oltp through the 

looking glass, and what we found there. In Proceedings of the 2008 ACM 

SIGMOD International Conference on Management of Data, pp. 981-992. ACM, 

2008. 

[4] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows, T. 

Chandra, A. Fikes, and R.E. Gruber. Bigtable: A distributed storage system for 

structured data. ACM Transactions on Computer Systems (TOCS), 26(2): 1–26, 

2008. 

[5] Christopher Jay Choi. 2014: “A Study and Comparison of Nosql Databases, 

California State University, Northridge”. 

[6] Apache Cassandra NoSQL Performance Benchmarks, Retrieved from 

http://www.planetcassandra.org/nosql-performance-benchmarks/ accessed on 

August 27, 2016. 

[7] RDBMS vs NoSQL: Performance and Scaling Comparison, retrieved from 

http://docplayer.net/6379950-Rdbms-vs-nosql-performance-and-scaling-

comparison.html. On August 3, 2016. 

[8] Benchmarking Top NoSQL Databases, Apache Cassandra, CouchBase, HBase, 

and MongoDB, retrieved from http://www.endpoint.com/ on June, 10, 2016. 

https://www.sitepoint.com/sql-vs-%20%20%20%20%20%20nosql-differences
http://www.planetcassandra.org/nosql-performance-benchmarks/
http://docplayer.net/6379950-Rdbms-vs-nosql-performance-and-scaling-comparison.html
http://docplayer.net/6379950-Rdbms-vs-nosql-performance-and-scaling-comparison.html


 

 R2 

 

[9] Hecht, R. and Jablinski, S. 2011. “NoSQL Evaluation A Use Case Oriented 

Survey”. Proceedings International Conference on Cloud and Service 

Computing, pp. 12-14. 

[10] Lith A, Mattson J (2013) Investigating storage solutions for large data: A 

comparison of well performing and scalable. 

[11] “Big data for dummies”, Dr. Fern Halper, Marcia Kaufman, Judith Hurwitz, 

Alan Nugent 2013. 

[12] “Challenges and Opportunities with Big Data”. CRA.org. Retrieved June 2016. 

[13] Jeffrey Dean, Sanjay Ghemawat, 2004, MapReduce: Simplified Data Processing 

on Large Clusters, OSDI’04: Proceedings of the 6th conference on Symposium 

on Operating Systems Design & Implementation Volume 6. 

[14] Gilbert, Seth and Nancy Lynch: Brewer’s conjecture and the feasibility of 

consistent, available, partition-tolerant web services. SIGACT News, 

33(2):51_59, 2002. 

[15] 10gen.com: Querying - MongoDB. 

http://www.mongodb.org/display/DOCS/Querying, 2009. [Online; accessed 14-

June-2016]. 

[16] Mongo DB Connector for Business Intelligence Retrieved from 

https://docs.mongodb.org/bi-connector on August, 17, 2016. 

[17] Mongo DB Inc. retrieved from https://docs.mongodb.org/manual/replication/ on 

/ (Accessed: September, 25, 2016). 

[18] Mongo DB Inc. retrieved from https://docs.mongodb.org/manual/ core/sharding-

introduction/ on / (Accessed: September, 2, 2016). 

[19] “Facebook’s Cassandra paper, annotated and compared to Apache Cassandra 

2.0”. DataStax.com. Retrieved April 2014. 

https://docs.mongodb.org/manual/


 

 R3 

 

[20] Teddyma, Learn Cassandra, retrieved from 

https://teddyma.gitbooks.io/learncassandra/content/replication/turnable_consiste

ncy.html on September, 12, 2016. 

[21] “Sun Microsystems Announces Completion of MySQL Acquisition; Paves Way 

for Secure, Open Source Platform to Power the Network Economy”. Sun 

Microsystems. 26 February 2008. 

[22] “Oracle Announces the Acquisition of Open Source Software Company, 

Innobase”. Oracle. Retrieved 2012-01-30. 

[23] Cooper, B. F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P., 

Jacobsen, H., Puz, N., Weaver, D., and Yerneni, R. PNUTS: py. 

[24] Kuldeep Singh. 2015. Survey of NoSQL Database Engines for Big Data, Aalto 

University 

[25] Cooper BF, Silberstein A, Tam E, Ramakrishnan R, Sears R (2010). 

Benchmarking      cloud serving systems with ycsb In: Proceedings of the 1st 

ACM Symposium on Cloud Computing, 143–154. ACM, Indianapolis, Indiana, 

USA. 



 

A1 

APPENDIX 

  CURRICULUM VITAE 

  

PERSONAL INFORMATION                                 

Surname, Name: Ihsan Ahmed Taha  

Nationality: Iraqi 

Date and Place of Birth: 25 Mar.1989, Salah El-Den, Iraq        

Marital status: Married 

Phone: 009647722203613 

E-mail: hololh@yahoo.com 

 

EDUCATION 

Degree Institution Year of Graduation 

M.Sc. 

Çankaya University 

Mathematics and Computer 

Science 

2017 

B.Sc. University of Tikrit 2013 

High School Al-Nedaa School 2006 

 

WORK EXPERIENCE 

Year Place Enrollment 

2013- Present Al-Esraa university Teaching Assistant 

 

FOREIGN LANGUAGES 

English 

 


