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ABSTRACT

SAĞLAM, Harun Buğra 

Ph.D., Department of Electronic and Communication Engineering

Supervisor: Assoc. Prof. Dr. Klaus Werner SCHMIDT

September 2017, 140 pages

An important aim of intelligent transportation systems (ITS) is the full or partial

replacement of human driver functionality. Cooperative adaptive cruise control

(CACC) is a recent technology for automating the longitudinal vehicle motion.

Fulfilling the condition of string stability, CACC enables safe vehicle following at

small inter-vehicle spacings and hence supports the formation of tight vehicle strings

for improving the road capacity. In its classical realization, CACC is limited to the

case where vehicle strings are already formed and all vehicles in a string follow each

other on the same lane of a road. However, practical driving situations include the case

of vehicles entering or leaving a string and performing maneuvers different from only

vehicle following.

This thesis is concerned with the effect of additional maneuvers due to lane changes

(vehicles entering or leaving) on the safety of vehicle strings. Lane changes include

gap opening and closing maneuvers and are subject to measurement inaccuracies and

sensor errors due to changes of the vehicle locations. Accordingly, the effect of these

maneuvers on the longitudinal vehicle motion has to be analyzed.
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As the first contribution, the thesis argues that the described measurement 

inaccuracies during lane changes can be modeled by input signal impulses of the 

respective vehicle. Moreover, opening/closing gap maneuvers can be realized by the 

generation of suitable feedforward input signals that are nonzero for a limited time. 

Respecting that multiple lane changes can occur in a vehicle string, the thesis 

proposes to study the effect of repeated input signals (impulses or time-limited input 

signals) on the output signal norm of LTI systems. The second contribution of the 

thesis is extending the definition of string stability to additional disturbances that can 

be applied to any vehicle in the string. Respecting the same idea, the third 

contribution of the thesis shows that a bound on the output signal norm of stable LTI 

systems exists if the repeated input signals (impulses or time-limited signals) are 

separated by a non-zero dwell-time. Additionally, an original computational 

procedure for finding a tight bound on the output signal norm is provided. The fourth 

contribution is the adaptation of these computational methods to the case of stable 

LTI systems with multiple inputs and outputs. The fifth contribution is the 

application of the obtained results to vehicle strings. It is shown that suitable 

analytical bounds for the relevant output signals such as distance error or 

acceleration can be determined and the results are validated by simulations. The last 

major contribution is the development of new numerical methods for bounding the 

matrix exponential function for large LTI systems based on the Jordan canonical 

form and the Schur decomposition. The evaluation of such norms is needed when 

computing the output signal norm of large LTI systems such as long vehicle strings. 

 

 

Keywords: Intelligent Transportation System, platooning, cooperative adaptive 

cruise control, linear systems, impulse inputs, time-limited inputs, vehicle following, 

string stability, driving safety, feedforward signal, matrix exponential bound. 
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ÖZ

SAĞLAM, Harun Buğra 

Doktora, Elektronik ve Haberleşme Mühendisliği Anabilim Dalı 

Tez Yöneticisi: Doç. Dr. Klaus Werner SCHMIDT

Eylül 2017, 140 sayfa

Akıllı ulaştırma sistemlerinin önemli amaçlarından biri insan sürücü fonksiyonalitesini 

kısmi veya tümüyle devralabilmektir. Kooperatif otomatik seyir kontrolü (CACC) 

boylamsal araç hareketinin otomasyonu için yeni sayılabilecek bir teknolojidir. Dizi 

kararlılığı koşulunu sağlamak kaydıyla, CACC küçük araç arası boşluklarda güvenli 

araç takibini mümkün kılmakta ve yol kapasitesini iyileştirmek hedefiyle sıkı araç 

dizilerinin oluşumunu desteklemektedir. Klasik gerçeklenişiyle düşündüğümüzde, 

CACC araç dizilerinin oluşmuş olduğu ve tüm araçların yolun aynı şeridinde birbirini 

takip ettiği durumlarla sınırlandırılmıştır. Bununla birlikte pratik öngörülen sürüş 

durumları diziye giren ve çıkan araçları içermekte olup dizide sadece öndeki aracı 

takip etmenin yanı sıra farklı manevralar icra etmeyi gerektirir. 

Bu tez araç dizilerindeki (araçlar girerken ve çıkarken) şerit değişikliklerinden dolayı 

yapılan ek manevraların araç dizileri üzerindeki emniyet etkileri ile ilgilenmektedir. 

boşluk açma ve kapama manevralarını içerecek şekilde şerit değişikliklerini 

düzenleyen kontrolcüler araç lokasyonunun değişiminden dolayı ölçüm hataları ve 

sensör bozulmalarına maruz kalabilmektedir. Uygun şekilde, bu manevraların aracın 

boylamsal hareketi üzerine etkileri analiz edilmelidir.
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İlk önemli katkısı olarak bu tez, şerit değişikliği sırasında tanımlanan bu ölçüm 

hatalarının ilgili aracın girdi sinyal impulse’ları olarak modellenebildiğini 

tartışmaktadır. Bunun yanında, takip boşluğu açma/kapama manevraları uygun 

tanımlanmış, sınırlı bir süre sıfır-dışı olan ileribesleme girdi sinyallerinin üretimi ile 

gerçekleştirilebilmektedir. Bir araç dizisinde birden fazla şerit değişikliği olabileceği 

fikrine sadık kalarak, bu tez tekrar eden girdi sinyallerinin (impulse’lar veya zaman-

sınırlı girdi sinyalleri) LTI sistemlerin sinyal çıktı normları üzerindeki etkilerinin 

çalışılmasını önermektedir. Bu tezin ikinci katkısı dizi kararlığı tanımına herhangi bir 

araç üzerindeki ek bozulmaları uygulayarak genişletmesidir. Aynı fikre sadık kalarak 

bu tezin yaptığı üçüncü katkıysa, eğer tekrar eden girdi sinyalleri (impulse veya 

zaman-sınırlı sinyaller) sıfır-harici bir ikamet-zamanı ile ayrılmışsa kararlı LTI 

sistemlerin çıktı sinyal normu üzerinde bir sınır göstermesidir. Ek olarak, çıktı sinyal 

normu üzerinde orijinal şekilde, sıkı bir sınır hesaplama prosedürü sunmaktadır. 

Dördüncü katkısı ise, bu hesaplama yöntemlerini kararlı çok-girdili çok-çıktılı LTI 

sistemler üzerine adapte edebilmesidir. Beşinci katkısıysa, elde edilen sonuçların 

araç dizilerine uygulanabilmesidir. Mesafe hatası, ivme hatası gibi çıktı sinyallerin 

uygun analitik sınırlarını belirlenebildiği gösterilmekte ve sonuçlar simülasyonlarla 

geçerli kılınmaktadır. Son büyük katkısıysa, büyük LTI sistemler için matris 

eksponansiyel fonksiyonların Jordan kanonik form ve Schur kırılımı temelinde yeni 

numerik metodlar geliştirmesidir. Bu normların değerlendirme ihtiyacı, uzun araç 

dizileri gibi büyük LTI sistemlerin çıktı sinyal normunun hesaplanması sırasında 

ortaya çıkmıştır. 

 

 

 

Anahtar Kelimeler: Akıllı Ulaştırma Sistemleri, araç dizileri, kooperatif otomatik 

seyir kontrolü, lineer sistemler, impulse girdileri, zaman-sınırlı girdiler, araç takibi, 

dizi kararlılığı, sürüş emniyeti, ileri beslemeli sinyal, matris exponansiyel sınır. 
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CHAPTER 1

INTRODUCTION

Transportation systems form the backbone of national economic prosperity, which

provides reliable transportation of passenger traffic and freight movement for do-

mestic and international trade. The ever-growing demands of traffic during the

last few decades exceeds existing road transportation infrastructure and resources.

This leads to an increased frequency and severity of traffic problems, such as traf-

fic congestion, traffic accidents and environmental pollution [1]. Additionally,

a considerable number of people die from roadway crashes on highways, and

growing traffic demand causes significant congestion on major urban areas and

corridors in each country. While driver error has been considered as the leading

cause of most crashes, limited transportation infrastructure capacity is one of the

primary reasons of congestion.

For these reasons, a robust solution in the future lies in efficient application

of presently available means of road transportation and infrastructure [2]. Intelli-

gent Transportation Systems (ITS) are a possible solution to reduce these issues,

maximize the efficiency of existing transportation system capacity, and to improve

traffic safety [3, 4, 5]. ITS can be classified as traffic infrastructure based, vehicle

categories based, diverse roads based, vehicle to road based or vehicle to vehi-

cle based technologies [6, 7, 8, 9]. In particular, the introduction of automation

into vehicles [10, 11, 12] and wireless communication in a connected vehicular

environment can improve safety and mobility efficiency. They can also reduce

environmental impact of transportation systems.

It is observed that the most important factor for traffic breakdown is the hu-

man driving behavior [7]. That is, the design of control strategies for automatic

1



driving is essential to avoid traffic breakdown. Starting from automation of vehi-

cles and highways, protocols for coordination of vehicle strings are established.

Such protocols can either be entirely distributed based on vehicle to vehicle (V2V)

communication or they can include a central roadside unit for vehicle to infras-

tructure (V2I) communication. This thesis focuses on cooperative adaptive cruise

control (CACC) as a vehicle to vehicle based technology. The functionality of

CACC is based on signal communication and distance measurement among vehi-

cles in a platoon. Its main aim is to improve the highway traffic flow and driving

safety [13, 14, 15] by increasing the road capacity by small inter-vehicle distances

(traffic throughput).

In the recent literature, CACC is commonly realized using predecessor fol-

lowing [14, 16]. That is, each vehicle obtains data from its direct predecessor

vehicle [8, 13, 17, 18, 19, 20, 21, 22, 21, 23]. When realizing vehicle follow-

ing, it is important to ensure driving comfort and safety. Hence, it is important

that fluctuations in the motion of any vehicle are attenuatedalong a vehicle string.

This intuitive requirement is formally described by the condition of string stability

[8, 24, 25, 26, 27]. Hence, CACC has to be designed so as to fulfillstring stability

and the literature provides various methods. Designs basedon PD-controllers

are proposed in [8, 13, 20, 23] andH∞-control is employed in [22]. Model-

predictive control is applied in [9], [28] uses consensus control and [29] uses

receding-horizon control to achieve string-stability forspeed-change maneuvers.

It is important to note that all the cited research works are based on the assump-

tion that vehicle strings are already formed. That is, all vehicles in a string already

travel back to back on the same lane of a road and disturbancesto the string are

only introduced by the leader vehicle. However, the case of vehicles entering or

leaving a string and the case of vehicles performing maneuvers different from only

following in a string are not considered.

Accordingly, this thesis identifies that it is important to analyze the effect of

additional disturbances within vehicle strings. Hereby, the main focus is the ef-

fect of lane changes (vehicles entering or leaving) in vehicle strings. Consider the

case of a new vehicle entering in front of some vehicle V. When completing such
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maneuver, it is the case that the leader vehicle of vehicle V changes. Due to mea-

surement inaccuracies, this has the effect of a jump in the state of vehicle V (for

example distance error) and can be modeled by an impulse input signal. In addi-

tion, the preparation of lane changes requires opening gaps, which are achieved by

applying certain feedforward signals to vehicle V. Since such maneuvers can be

performed in a bounded time, time-limited input signals aresuitable for this task.

Following the previous discussion and respecting the fact that the described ma-

neuvers can occur many times in a vehicle string, the thesis extends the classical

setting of CACC to scenarios including repeated state jumps (impulse inputs) and

repeated exogenous time-limited input signals within vehicle strings. In addition,

the thesis provides a detailed analysis of the effect of suchadditional maneuvers

on the successor vehicles in order to establish driving safety.

The main contributions of the thesis are listed as follows:

1. In the existing literature, the notion of string stability is defined for the case

of vehicle strings, where the only disturbance signal is introduced by the

leader vehicle. The thesis extends the definition of string stability to addi-

tional disturbances that can be applied to any vehicle in thestring. In partic-

ular, the case of impulsive and time-limited exogenous disturbance inputs

is considered and conditions for the verification of the extended version of

string stability are derived.

2. It is necessary to quantify the effect of additional disturbances for the prac-

tical application of CACC in vehicle strings. Modeling a vehicle string

with CACC by a stable LTI system, the thesis develops general methods

for computing norm bounds on output signals when applying repeated in-

put impulses and time-limited input signals to stable LTI systems. In this

context, it is desired that output signals such as the distance error between

vehicles remain bounded in order to ensure driving safety even if maneuvers

are repeatedly executed. Accordingly, the thesis first shows that a bound

on the output signal norm exists if the repeated input signals (impulses or

time-limited signals) are separated by a non-zero dwell-time. Moreover, an
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original computational procedure for finding a close (fitting tightly) bound

on the output signal norm is developed.

3. Vehicle strings have a special interconnection structure and each vehicle is

associated with an input and output signal. To this end, the computational

methods in item 2. are adapted to the case of stable LTI systems with mul-

tiple inputs and outputs.

4. The bound computations in item 2. and 3. are formulated forgeneral LTI

systems. In accordance with the aim of studying lane changesin vehicle

strings, the developed methods are applied to vehicle strings as the second

main contribution of the thesis. Suitable analytical bounds for the relevant

output signals such as distance error or acceleration are determined and

validated by simulations. Together, it is shown that a safe and comfortable

driving distance is guaranteed even if an arbitrary number of longitudinal

maneuvers is performed in vehicle strings with many vehicles.

5. The developed computational methods require the numerical computation

of a certain bounding function for the norm bound of the impulse response

matrix. It turns out during the thesis study, that this boundcomputation

becomes infeasible for large LTI systems. To this end, the thesis proposes

new numerical methods based on the Jordan canonical form andthe Schur

decomposition for bounding the matrix exponential function for large LTI

systems.

This thesis is organized as follows. Chapter 2 provides background infor-

mation regarding vehicle strings, CACC and string stability.In Chapter 3, lane

change maneuvers in vehicle strings are described, suitable models are presented

and string stability under additional disturbance signalsis investigated. Chapter 4

determines analytical bounds for the effect of repeated input signals on the output

signal norm of LTI systems. Chapter 5 applies the general bound computations to

vehicle strings and evaluates driving safety under repeated lane changes. Chap-

ter 6 develops computational methods for bounding the impulse response matrix

norm. Chapter 7 gives conclusion and discusses directions for future work.
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CHAPTER 2

BACKGROUND

The main subject of this thesis is the use of cooperative adaptive cruise control

(CACC) during lane changes. This chapter provides the necessary background

information about vehicle following and CACC. Section 2.1 introduces the con-

cept of vehicle following together with CACC. A state space model for the CACC

control loop is derived in Section 2.2 and string stability is introduced as an im-

portant condition for safe vehicle following in Section 2.3. Section 2.4 provides

simulations of vehicle strings for illustration.

2.1 CACC and Vehicle Following

CACC is an extension of standard Adaptive Cruise Control (ACC) [30,31], feed-

ing additional data by wireless communication to allow short-distance automatic

vehicle following. CACC takes an important role in the future traffic control,

where vehicles follow each other in so-calledvehicle stringsat small inter-vehicle

spacing [13, 26, 32] as shown in Fig. 2.1. As a special feature, data is commu-

nicated from one or more predecessor vehicles. Different versions such as the

leader-following, the predecessor following or the leader-predecessor following

strategy are investigated in the literature. In this thesis, we employ the predecessor

following strategy, where vehiclei −1 provides state information to vehiclei via

V2V communication. The practical advantage of this strategy is that communica-

tion is only required with the closest vehicle, which increases the reliability and

allows for small response times. Hence, this is the most basic strategy [14, 16, 33]

that is most frequently used in the recent literature.

Fig. 2.1 shows the common vehicle following scenario.Li, qi andvi denote
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Figure 2.1: Vehicle following scenario in a vehicle string.

the length, rear bumper position and velocity of vehiclei, respectively. Heredi is

the gap between vehiclei−1 and vehiclei that is defined as

di(t) = qi−1(t)−qi(t)−Li . (2.1)

It is assumed thatdi can be measured by vehiclei via sensors (RADAR or LIDAR)

[6, 13, 33]. In addition, data such as the acceleration or velocity of the predeces-

sor vehicle can be obtained via wireless (V2V) communication. Introducing the

desired distancedi,r of vehiclei, the distance errorei is evaluated as

ei = di,r − (qi−1−qi). (2.2)

In this scenario, the vehicle spacingqi−1−qi should be small in order to in-

crease the traffic capacity. On the other hand, a sufficient vehicle spacing must

be guaranteed in order to ensure driving safety. This task can be accomplished by

usingcooperative adaptive cruise control(CACC) with the property ofstring sta-

bility that ensures the attenuation of fluctuations in the motion ofa leader vehicle

along the vehicle string [8, 26, 27]. In particular, bounds for theL2-norm or the

L∞-norm of the distance errorei can be established [8].

A frequently used spacing policy for CACC is given by the constant headway

time policy [33] as shown in (2.3).

di,r = r i +hvi . (2.3)
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Here,di,r in (2.2) represents the desired spacing between vehiclei−1 and vehicle

i. It depends on thedistance at standstill ri and theheadway time hi. That is, at

zero velocity, the desired distance isr i anddi,r increases proportional tovi. The

spacing errorei(t) is then equal to:

ei(t) = di(t)−di,r(t) = (qi−1(t)−qi(t)−Li)− (r i +hvi(t)). (2.4)

Regarding the vehicle plant, we employ the linear model

Gi(s) =
Qi(s)
Ui(s)

=
e−φi s

(1+sτi)s2 , (2.5)

that is frequently used in the recent literature [21, 23, 33]. τi is the time constant

of the driveline dynamicsandφi is theactuator time delaythat can be different

for each vehiclei. This model is obtained from a nonlinear model of the driveline

dynamics based on feedback linearization and low-level control [34, 35, 36]. The

low-level control loop ensures thatτi is constant over a wide range of normal driv-

ing situations [13, 37] which are predominant for CACC. The control objective in

this chapter is, as in the literature, only for the case of homogeneous strings, where

all vehicles have the same dynamic properties and use the spacing policy in (2.3)

[20, 33]. That is, we assume thatGi = G with τi = τ andφi = φ for all vehiclesi.

CACC controller is designed for the feedback loop in Fig. 2.2. Here, the input

signalui−1 of vehicle i is transmitted to vehiclei via V2V communication and

D = e−θ s represents a potential communication delay.H = 1+ hs is used to

implement the spacing policy in (2.3) with the constant headway h andK is the

controller transfer matrix which can be written as

K =
[

K f f K f b

]

. (2.6)

K f f is a feedforward controller transfer function for controlling acceleration data

by wireless communication andK f b is a feedback controller transfer function for

controlling the spacing errorei(s) between the desired distance and the actual

distance. Then, the transfer functionΓ is found from Fig. 2.2 for alli:
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Figure 2.2: Feedback loop for CACC.

Γ(s) :=
Ui(s)

Ui−1(s)
=

DK f f +GKf b

H (1+GKf b)
. (2.7)

2.2 State Space Model of the CACC Loop

Consider the feedback loop in 2.2. No communication delay is assumed, where

D(s)= 1. As a basis for state-space design, the following vehicle model is adopted:







ėi

v̇i

ȧi







=







vi−1−vi −hai

ai

−1
τ ai +

1
τ ui







(2.8)

The controller state-space model can now be formulated in accordance with

Fig. 2.2.

[

η̇i

YK,i

]

=









AKηi +
[

b1 b2

]
[

ui−1

ei

]

CKηi +
[

d1 d2

]
[

ui−1

ei

]









(2.9)

whereAK,CK,YK,i andb1, b2, d1, d2 depend onH∞ controller designed. Moreover,
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YK,i is the unfiltered controller output and its effect for the system can be generated

as

u̇i =−
1
h

ui +
d1

h
ui−1+

d2

h
ei +

CK

h
ηi (2.10)

Using (2.8) to (2.10) and defining the overall system state as

xi =
[

ei vi ai ui ηi

]T
with errorei, velocityvi, accelerationai , control input

ui and controller stateηi of vehiclei, the following vehicle model in the string, is

thus obtained:












ėi

v̇i

ȧi

u̇i

η̇i












=












0 −1 −h 0 0

0 0 1 0 0

0 0 −1
τ

1
τ 0

1
hd2 0 0 −1

h
1
hCk

b2 0 0 0 Ak












︸ ︷︷ ︸

A0












ei

vi

ai

ui

ηi












+












0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1
hd1 0

0 0 0 b1 0












︸ ︷︷ ︸

A1












ei−1

vi−1

ai−1

ui−1

ηi−1












(2.11)

whereA0 is the part of the dynamic matrix that depends on the own statefor each

vehicle, whileA1 is the part of the dynamic matrix that depends on the predecessor

state for each vehicle (interconnection).

The first vehicle in the platoon, not having a preceding vehicle, namely the

leader vehicle (i = r) employs the open-loop controller to direct the platoon.Using

the above state definition, the leader reference vehicle model may be formulated

as







q̇r

v̇r

ȧr






=







0 1 0

0 0 1

0 0 −1
τ







︸ ︷︷ ︸

Ar







qr

vr

ar






+







0

0
1
τ







︸︷︷︸

Br

ur
(2.12)

with Ar andBr , reflecting the dynamic matrix of the leader vehicle and the input
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vector for the exogenous inputur of the leader vehicle. The signal connections of

a vehicle string are shown in Fig. 2.3.

Figure 2.3: Normal string with input.

Individual models are derived in (2.11) and (2.12), considering the single state

space model for a vehicle. Regarding a vehicle string with theconnections in Fig.

2.3, a string withn vehicles and the output matrixC is modeled as

ẋr = Ar xr +Br ur

ẋ1 = A1,r xr +A0x1+B1ur

ẋi = A1xi−1+A0xi , i = 2, . . . .

ẋ= Ax+Bur (2.13)

yi =Ci x. (2.14)

with

x=












xr

x1

x2
...

xn












; A=












Ar 0 0 · · · 0 0

A1,r A0 0 · · · 0 0

0 A1 A0 · · · 0 0
...

... ... .. .
...

...

0 0 0 · · · A1 A0












; B=












Br

B1

0
...

0












Ci =
[

0 · · · 0 C 0 · · ·0
]

(2.15)

The control objective is to ensure that the (closed-loop) vehicle string dynam-
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ics exhibits an asymptotically stable equilibrium for which it holds that [38]

lim
t→∞

ei(t) = 0 (2.16)

for ur(t) = 0. This control objective implies that all intervehicle distance errors

ei(t) converge to zero when the velocity of the leader reference vehiclevr(t) goes

to a constant velocityvr (which is the case forur = 0). As a result, it holds that

lim
t→∞

vi(t) = vr (2.17)

Now, (2.16) and (2.17) together imply that all vehicles follow at the desired

inter-vehicle distance with equal velocityvr .

2.3 String Stability

2.3.1 Definition

The major goal of vehicle-following in dense traffic, (whichis essential using

CACC), is subject to requirements related to safety, comfort and scalability with

respect to string length [26]. In order to fulfill these requirements, the vehicle

string is desired to exhibit string-stable behavior. The CACCmust be designed

such that disturbances are attenuated along a vehicle string. That is, a small vari-

ation in the speed or acceleration of any vehiclei should not lead to increasing

variations in the motion of its follower vehicles. This is equivalent to distance

errors that are not amplified upstream from vehicle to vehicle in a vehicle string

[33].

The stated condition is captured by the notion of strict string stability in the

literature [20, 31, 33, 39]. Here, the most general definition of string stability

is given in [33] and is hence employed in this work. The definition considers a

state-space model of the vehicle string withN vehicles.1 The homogenous vehicle

string model (2.13) is a special, linear case of the following interconnected state-

1Note thatN ∈ N can be any integer and the dynamics of different vehicles canbe different in
the general definition.
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space system:

ẋr = fr(xr ,ur), (2.18)

ẋ1 = f1(x1,xr ,ur), (2.19)

ẋi = fi(xi ,xi−1), i = 2,3, . . . ,N, (2.20)

yi = h(xi). (2.21)

representing a general, possibly nonlinear, heterogeneous interconnected system

with the same state relation structure as the model (2.13). Here,ur is the external

input signal of the reference leader vehicle,xi is the state vector of each vehicle

andyi is the respective output signal fori = 1,2, . . . ,N. Note that,ur in (2.19)

might be dropped ifur is embedded intoAr as part of the system state such that

the reference input is moved in front of the spacing policy transfer function 1/H

of Fig. 2.2. The overall state vector is written as
[

xr x1 x2 · · · xN

]T
, where

•T denotes the transpose. Then, the general string stability definition starts from

an equilibrium solutionx for ur = 0 of the system in (2.18) to (2.21). Two notions

of string stability are defined as follows.

Definition 1 (Lp string stability). The system in(2.18)to (2.21)with the equilib-

rium solutionx is

1. string stable if there exist classK functionsα, β such that for any initial

state x(0), any exogenous input signal ur ∈ Lp and i∈ {1, . . . ,N}, it holds

that

||yi −Ci x||Lp ≤ α(||ur ||Lp)+β (||x(0)−x||).

2. strictly string stable if 1. holds and additionally for all i ∈{2, . . . ,N} it holds

that

||yi −Ci x||Lp ≤ ||yi−1−Ci−1x||Lp.

The string stability conditions can be explained as follows. 1. of Definition

1 considers theLp norm of the output deviation from the equilibrium output for

each vehicle. This deviation should be bounded by theLp norm of the applied
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input signalur (exogenous input) and theLp norm of the deviation of the initial

condition from the equilibrium point. In addition, strict string stability in 2. of

Definition 1 requires that disturbances along a vehicle string are attenuated along

the vehicle string. That is, theLp norm of the follower deviation must be smaller

than that of the predecessor.

The most relevant norms for the practical application of Definition 1 are the

L2-norm and theL∞-norm. Sufficient conditions for string stability are derived

for both norms in the following sections.

2.3.2 Conditions forL2 String Stability using CACC

Now, we look at the case of theL2 norm where the energy content of a signal

is measured.L2 string stability is defined such that the energy (represented by

theL2 norm) of the output signal is not larger than the energy of theinput signal

[40]. Limiting the discussion to the case of linear systems and consideringΓ(s) is

the frequency-domain equivalent of theL2-induced norm, then the conditions in

Definition 1 can be simplified to operator norms. To this end, we use the transfer

functions with the external inputu to the vehicle, the accelerationa or the veloc-

ity v as relevant output signal for string stability. Next, we define the so-called

string-stability transfer functionsΓη ,i whereη ∈ u,a,v. Assuming a linear system

representation with inputu or a or v of the preceding vehicle, we note that

Γi(s) =
Ui(s)

Ui−1(s)
=

Ai(s)
Ai−1(s)

=
Vi(s)

Vi−1(s)
. (2.22)

for the transfer function between the control inputs of eachpreceding and fol-

lower vehicles. Hereby,Ui(s) denotes the Laplace transform of the signalui(t),

Ai(s) denotes the Laplace transform of the signalai(t), Vi(s) denotes the Laplace

transform of the signalvi(t).

To this end, the model (2.15) is first formulated in the Laplace domain as

follows:

Yi(s) = Pi(s)Ui(s)+Oi(s)x(0), (2.23)
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with x(0) denoting the initial (time-domain) condition, andPi(s) =Ci(sI−A)−1B

andOi(s) =Ci(sI−A)−1. Pi(s) is the transfer function formulated in the Laplace

domain, according to interconnected system reference input ur and selected output

depending onCi.

Combining (2.22) and (2.23), by factorization, the string stability complemen-

tary sensitivity is

Γi(s) = Pi(s)Pi−1(s)
−1. (2.24)

Here, it is assumed that,Pi−1(s)
−1 exists. The following theorem can now be

stated.

Theorem 1(L2 Stability). The system isL2 string stable if:

1. ||P1( jω)||H∞ exists;

2. ||Γi( jω)||H∞ ≤ 1, i = 2,3, . . . ,N;

with Γi(s) as in(2.24). || • ||∞ denotes the H∞-norm.

A proof of Theorem 1 is given in [8]. When considering homogeneous strings

and assuming that 1. in Theorem 1 is fulfilled by the plant, it must hold that

||Γ( jω)||H∞ ≤ 1. (2.25)

2.3.3 Conditions forL∞ String Stability using CACC

Until now, onlyL2 string stability has been considered. As [33] suggested, phys-

ically, this can be motivated by the requirement of energy dissipation along the

string. Obviously, the inducedL∞ norm can be used instead. In the scope of ve-

hicle following, the motivation for using this norm would betraffic safety, since

theL∞ norm is directly related to maximum overshoot. The conditions forL∞

string stability can be analogous with Definition 1. The difference is taking the

L1 norm of string impulse response.

Theorem 2(L∞ Stability). The system isL∞ string stable if
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1. ||p1(t)||L1 exists

2. ||γi(t)||L1 ≤ 1.

p1(t) andγi(t) denote the impulse responses corresponding to P1(s) andΓi(s).

As [40] suggested, using||γ(t)||L1 in the time-domain to obtain analytical

results even in cases with relatively simple transfer functions can be quite diffi-

cult to analyze. Fortunately, it is possible to replace||γ(t)||L1 ≤ 1 by sufficient

conditions:

Corollary 1. The system isL∞ string stable if

1. ||p1(t)||L1 exists

2. ||Γi||H∞ ≤ 1

3. γi(t)≥ 0

That is, it is only required to check theH∞ norm ofΓi(s) and to verify if the

impulse responseγi(t) is non-negative.

In summary,L2 string stability is satisfied with proper controller synthesis in

accordance with||Γi(s)||∞ ≤ 1. L∞ string stability needs the additional condition

of a non-negative impulse response. Although it is difficultto fulfill this condition

by design, it turns out in this thesis that the used controllers automatically fulfill

this condition. Regarding the practical meaning of both conditions, withL2 string

stability, we only know that||ui||2 ≤ ||ui−1||2. ConcerningL∞ string stability, we

additionally know that||ui||∞ ≤ ||ui−1||∞.

There are various controller design methods for string stability using CACC.

Considering the feedback loop in Fig. 2.2, a recent method suggests to useH∞

controller synthesis [33]. The method is based on the requirement that

||Γ(s)||∞ ≤ 1. (2.26)

In addition, [33] considers the closed-loop sensitivity as

S(s) =
Ei(s)

Ui−1(s)
=

G(1−DK f f )

1+GKf b
. (2.27)
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In order to fulfill string-stability, (2.26) has to be fulfilled. At the same time, it is

desired to minimize the position errorei(t). Hence, theH∞ control problem

min
K

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

Γ(s)
S(s)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∞

≤ 1 (2.28)

is solved. Hereby, both the vehicle and the communication delay are described by

Pade approximations, yielding a sufficiently accurate phase in the frequency inter-

val of interest. The lower fractional transformation (LFT)and the corresponding

matrix P are shown in Fig. 2.4.

Figure 2.4: H∞ control design for CACC.

In this thesis, we generally useH∞ computations for LTI plants. The input

ui−1 is an exogenous input representing the disturbance acting on the system. The

outputui andei are outputs of the system, whose dependence on the exogenous

input ui which we want to minimize. The outputs are the measurements we make

on the system which we shall use to choose our inputei, which in turn is the tool

we have to minimize the effect ofui−1 to ui andei. At the same time, we do not

want the states to become too large while we try to regulate our performance. The

effect ofui−1 onui after closing the loop is measured in terms of the energy atten-

uation and the worst disturbanceui−1 in accordance with ourL2 string stability

criteria. Moreover, in line with theL2 string stability condition, theH∞ norm of
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the transfer functionΓ should be less or equal to a bound value, 1. In particular,

the function of Matlab/Simulinkhinfsyn is applied to minimize the infinity norm

in (2.28) while obtaining a stable feedback loop in Fig. 2.2.The partitioned plant

P in analogy to [33] is used for this purpose.

2.4 Simulations for CACC with String Stability Conditions

Our simulation platform is based on MATLAB/SIMULINK to evaluate the per-

formance of CACC for homogenous vehicle strings. Heterogeneous strings under

CACC are explicitly studied in [41]. An example experiment is accomplished for

7 vehicles as shown in Fig. 2.5. In order to quantify values ofτi , we refer to prac-

Figure 2.5: Vehicle string with 7 vehicles.

tical experiments in [26], where a value ofτ ≈ 0.4 is obtained. That is, we choose

τi = 0.4 for each vehicle, assume wireless communication time delay θ = 0.02s.

and designK according to (2.28). The string stability complementary sensitivity

Γi(s) = Γ(s) (independent ofi) is illustrated in Fig. 2.6 where (2.26) is satisfied.
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Figure 2.6: Impulse response ofΓ.
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Figure 2.7: Input signalur of the leader reference vehicle.

In our simulation, the leader vehicle is provided with the input signal in Fig.

2.7. That is, sharp accelerations of 3 m/s2 and−3 m/s2 are given in order to study

a difficult vehicle following scenario. The simulation result is shown in Fig. 2.8.

It can be seen from the vehicle positions that each vehicle follows its predecessor

at a safe distance. In addition, the velocity and acceleration plot suggest that the

disturbance provided by the input signal is attenuated along the string (the respec-

tive signal amplitudes decrease along the string). That is,strict string stability is

confirmed.

In contrast, string stability is violated in the scenario ofFig. 2.9. After chang-

ing the communication delay toθ = 0.5s., performing the same maneuver of the

leader vehicle 1, it now holds that the acceleration and velocity of the follower ve-

hicles are amplified which is clearly undesirable. This is very similar scenario of

ACC where this method is always criticized as creating trafficjams. It is evident

that the signals of vehicle 2 (which is represented by the green line) are ampli-

fied compared to its predecessor vehicle 1 (which is represented by the blue line)

and each vehicle follows its predecessor vehicle with amplification. In addition

the position plot (left-upper side) shows that the vehiclesfollow each other at an

extremely unsafe distance.
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Figure 2.8: Vehicle string with 7 homogenous vehicles performing an accelera-
tion/deceleration maneuver and CACC design that fulfillsL∞ strict string stabil-
ity. Each line represents the motion of one vehicle.
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tion/deceleration maneuver and CACC design that violatesL∞ strict string stabil-
ity. Each line represents the motion of one vehicle.
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CHAPTER 3

LANE CHANGE MANEUVERS IN VEHICLE STRINGS

This chapter considers the different phases during a lane change. Section 3.1 gives

a general description of lane change maneuvers. The completion of a lane change

and initiation of a lane change are addressed in Section 3.2 and 3.3, respectively.

A first result regarding the effect of multiple lane changes is derived in Section

3.4.

3.1 Lane Change Maneuver Description

The main motivation of this part of the thesis is the combination of results on

string-stability and the possibility of lane changes. To this end, we developed a

protocol for lane change between at most 3 vehicles. The basic idea is illustrated

in Fig. 3.1.

The lane change maneuver consists of the following sequential steps

1. Request of vehicle B to vehicle A (Fig. 3.1 (a)),

2. Vehicle A generates a sufficient gap for vehicle B (Fig. 3.1(b)),

3. Vehicle B performs the lateral motion into the gap and notifies vehicle E

when the lateral motion is completed (Fig. 3.1 (c)),

4. Vehicle E closes the gap to vehicle D (Fig. 3.1 (d)).

Hereby, it is important to note that steps 1 and 3 require communication among

the vehicles and steps 2 and 4 involve changes in the longitudinal motion on differ-

ent lanes. That is, the planning of the desired vehicle trajectories for these actions

without adverse effects on string stability is of utmost importance. Fig. 3.1 (a)-(b)
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Figure 3.1: Protocol for lane changes: (a) Initial situation, (b) Gap generation,(c)
Lane change, (d) Final approach.

describe the phase of initiating a lane change (gap opening). (c) is the phase of

completing lane change. Finally, (d) is the phase of final approach (gap closing).

An important topic on multi-lane highways is the possibility of lane changes

and their effect on the traffic flow. Usually, lane changing ismotivated by merging

behavior at on-ramps or off-ramps, bottlenecks and spontaneous driver decision

depending on the traffic situation and the desired speed. Throughout our study

we have focused on lane changes of particular vehicles, moreon the microscopic

models. Here, the main idea to study lane-changing behavioris to develop a lane-

changing rule set depending on the headway difference, velocity difference, safety

distance.

The recent literature [9, 13, 33, 42, 43] considers the longitudinal control of

vehicles so as to maintain string-stability of a platoon of vehicles based on CACC.

As a result, large fluctuations in the vehicle flow are avoided. As a shortcoming of

the approaches on CACC, it has to be noted that these approaches are formulated

for car motion on a single lane. That is, lane-changes of vehicles are not captured.

This thesis focuses on the effect of lane changes and we have investigated the

longitudinal motion during lane changes in detail. The vehicles affected by a lane

change maneuver are all the followers.

Moreover, various studies in the literature focus on the effect of lane changes
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on multi-lane highways. For example, the works in [44, 45, 46] provide different

models of the lane-changing process of human drivers and conduct extensive sim-

ulations. The main focus of these studies is the validation of traffic flow models

that include lane changing behavior based on empirical data. Although such stud-

ies potentially enable the analysis of different traffic situations incorporating hu-

man drivers, they do not include possible improvement of traffic flow by control.

Research on the control of lane changes is performed for the particular situation of

lane changing due to merging at on-ramps [47, 48, 49, 50, 51, 52]. These research

works propose different strategies for the pre-computation of vehicle trajectories

in order to enable safe merging without collisions. However, none of the existing

approaches includes an investigation of string-stabilitywhen performing merging

maneuvers.

Besides all, safety is the main important fact that after any number of lane

changes vehicle following safety margins should not be violated. Therefore, the

gap opening, lane change completion and gap closing phase should all be calcu-

lated for error accumulations.

3.2 Completing a Lane Change

3.2.1 Maneuver Description

The existing methods in [13, 33] focus on fluctuations in the case where a string

is already formed. [53] focuses on CACC based lane change design of interaction

protocols, which mimic the driver interactions as much as possible. However,

the effect of modifying a vehicle string by adding or removing one or multiple

vehicles after a lane change is not included in the discussion. We next consider

this problem in the framework developed in this thesis.

To this end, we analyze a lane change maneuver of vehiclei in Fig. 3.2. Before

the lane change, vehiclei+1 should follow vehiclei−1 at a distance 2di,r in order

to provide a sufficient gap for vehiclei to enter the lane. Using the CACC design

in Section 2.1, the motion of vehiclei +1 depends on the distance measurement

qi−1−qi+1−Li+1. After the lane change, vehiclei +1 should follow vehiclei at
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qi qi-1qi+1

Figure 3.2: Lane change scenario in a vehicle string.

the distancedi,r and now uses the distance measurementqi −qi+1+Li+1. That is,

the distance measurement of vehiclei +1 switches from vehiclei −1 before the

lane change to vehiclei after the lane change.

Assuming that vehiclei enters the gap precisely at the desired distanceqi−1−

qi = di,r such that alsoqi − qi+1 = di,r , the lane change does not generate any

disturbance for the motion of the vehicle string. Nevertheless, in practice, an

imprecise positioning of vehiclei after the lane change is to be expected. That

is, a jump from 2di,r − (qi−1 − qi+1) to di,r − (qi − qi+1) in the distance error

measurement is observed from the perspective of vehiclei+1.

Additionally, in accordance with the model (2.11), there can be jumps in ve-

locity and acceleration also. Vehicles are assumed to be coordinated by intelligent

road steering units and as expected from any sensor and control systems, their

speed measurementvi or accelerationai control may have errors practically at any

time.

3.2.2 Simulation Experiment Validation

Noteworthy is the observation that the main effect of switching is a state jump

when a vehicle joins or disappears. This can be modeled by an input impulse

δ (t) with an appropriate input vector. For example, consider a state jump of the

error e2(t) of vehicle 2. This corresponds to an input impulse with inputvector

b2 =
[

0 · · ·0 1 0 . . . 0
]T

where the 1 is at the position of the error state

e2. This means that we want to study the impulse response for each such impulse

input and the possible error jumps.

We know that the impulse response can be computed as the inverse Laplace
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transform of the corresponding transfer function. Hence, we evaluate the trans-

fer function from the impulse input to the relevant output signals (for example

impulse ate2 and effect one2, v2, a2, u2, e3, v3, etc.).

Figure 3.3: Lane change scenario in a vehicle string.

Focusing on a single vehicle merge scenario as illustrated in Fig. 3.3, second

vehicle enters in a very aggressive manner such that position error of 3m , velocity

error of 3m/sand acceleration error of 1m/s2. Initial velocity is 10m/sand desired

following distance isv0 · h+ r = 10· 0.8+ 5 = 13m. An error of more than 4m

is observed in Fig. 3.4 such that the safety distance for vehicle following may be

violated due to human reaction time in an emergency situation.
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Figure 3.4: Single vehicle merging into second(i = 2) position with errors.

In another scenario, it is assumed that the merger vehicle enters into the first

position following the leader. Selection of first vehicle employing the closed-loop
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controller, enables us to observe the worst-case scenario of the whole string.

Figure 3.5: Vehicle merge scenario into first (i = 1) position of the string.

Then, for our next scenario in Fig. 3.5, merger vehicles enter to the first posi-

tion of string following each other for a given time interval10sec, in other words

t = 0,10,20,30,40,50. In each merging maneuver, an acceleration error of 1m/s2

is given and the distance error and acceleration of each vehicle is observed in Fig.

3.6

0 10 20 30 40 50
−1.5

−1

−0.5

0

0.5

1
Error Response of all 4 vehicles

time [sec]

di
st

an
ce

 e
rr

or
 [m

]

 

 

0 10 20 30 40 50
−1

−0.5

0

0.5

1

1.5

2

2.5
Acceleration Response of all 4 vehicles

time [sec]

ac
ce

le
ra

tio
n 

[m
/s

2 ]

 

 
vehicle1(merger)
vehicle2

vehicle1(merger)
vehicle2

Figure 3.6: Repeated vehicle merging into leader position with 10sec time inter-
val and acceleration errors. The responses of vehicle 3,4 and 5 are not illustrated
because they are near to zero due to string stable design.

Now, the duration between each merge is shortened as 4sec, inother words

for 48sec., att = 0,4,8, ...,48 new vehicle merges into the first position of hte

string. The interesting result here is that, even we apply many impulses for very

short times, the output signal remains bounded/limited andacceptable in practice.
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From the string stability definition, norm of each disturbance might be expected

to be added cumulatively, e.g. for a number ofk impulse inputs,k times the norm

of jump could be expected. However, due to the time evolutionof the signals, the

superposition of each output is added up after a significant decay of the respective

signal. This bound can only be observed after simulation as given in Fig. 3.7 and

needs an analytical evaluation.
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Figure 3.7: Repeated vehicle merging into leader position with 4sec timeinterval
and acceleration errors.

When both Fig. 3.6 and 3.7 are compared, a bound will be computed analyti-

cally which we will define in Chapter 4 and 5.

3.2.3 Model

In this section, the particular interconnection structureof the vehicle string is de-

rived. First, we only need to consider vehicles that enter after the leader vehicle

i = r, illustrated in Fig. 3.5. Hence, we do not need to look at the full model but

only the part of the model starting from vehiclei = 1. Here, a state jump of any
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vehicle and output at any vehicle is modeled as
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yi =
[

0 Ci 0 · · · 0 0 0
]

x. (3.2)

We next evaluate the case of more than one input or the combined input sce-

nario which represents a simultaneous or asynchronous error and velocity jump

in a single or more than one vehicle. This scenario changes the input matrixB as

follows:
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un−1

un















(3.3)

3.2.4 Multiple Lane Changes

We would like to analyze the effect of multiple lane changes of different vehicles

in the string. Accordingly, the jump in any parameter error after a lane change

at a time can be represented by the impulse inputδ . The effect is observed in

the output signalyi(t). Moreover,k+1 lane changes in front of vehiclei +1 at

defined timest0, t1, . . . , tk in the input directionsv0,v1, . . . ,vk are represented by

the input signal∑k
ν=0δ (t − tν)vν . It has to be noted that the removal of a vehicle

from a vehicle string follows the same line of argument. Thatis, we identified the

problem of applying repeated impulse inputs to a linear timeinvariant system in
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order to represent the integration of multiple vehicles in or removal of multiple

vehicles from a vehicle string.

Assuming that theν-th impulse can be applied in an arbitrary input direction

vν ∈ R
p , the successive application of input signalsuν = δ (t − tν)vν for a given

time sequence(tν)∞
ν=0 is represented by the signal

u(tν )∞
ν=0

(t) =
∞

∑
ν=0

δ (t − tν)vν . (3.4)

In this expression, impulse input signaluν is applied at timetν .

3.3 Initiating-Preparing Lane Change

3.3.1 Maneuver Description

The vehicle string, CACC, stability and control structure was explained in Chapter

2. In addition to normal driving conditions for the string, it is trivial that some

vehicles would like to leave or merge into the string. Then, gaps between vehicles

have to be opened or closed if vehicles want to enter or leave an existing platoon as

illustrated in Fig. 3.8 (a)-(b). Here, vehiclei at positionqi opens a gap to vehicle

i−1 such that the new vehicleN can safely enter the platoon.

As discussed in Section 3.2.2, additional maneuvers causing state jumps can

have a negative effect on vehicle following. Similarly, it is expected that maneu-

vers such as opening/closing gaps have an effect on the follower vehicles. Closing

gaps in vehicle strings that are already formed are investigated in [54]. They an-

alyzed two controllers, one to manage the approaching maneuver to the leading

vehicle and the other to regulate car-following once the vehicle joins the platoon.

However, they have not considered a gap opening creating less disturbance for the

string. Moreover, [55] explains the effect of opening gaps on traffic flow stability.

Analyzing different scenarios for opening multiple gaps ina vehicle string, it is

concluded that gaps should not be opened simultaneously in order to avoid traffic

breakdown. Hence, they propose a method to schedule the maneuvers for opening

gaps while keeping the traffic throughput high. This schedule is directly related
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Figure 3.8: Vehicle Platoon: (a) vehicle following; (b) gap opening forpreparing
a lane change.

with our dwell-time findings for multi-merge and leave scenarios. To the best of

our knowledge, [55] is the first method for the feedforward design for opening

gaps and the scheduling of lane change maneuvers.

In our setting of initiating or preparing lane changes, we also extend the gen-

eral design by an additional feedforward input signal as an exogenous inputuff
i

similar to [55] as depicted in Fig. 3.9. This input signal provides a means to ad-

just the vehicle position for opening gaps as described in Fig. 3.9. In order to

preserve the possibility of safe following, we also introduce the feedforward ref-

erence distanceqff
i , wherebyqff

i anduff
i are computed such that

Qff
i (s) = G(s)U ff

i (s).

The feedback loop for vehicle following is not affected by the application ofuff
i

since the desired distance signal is adjusted according to the applied inputuff
i .

As a consequence, when applyinguff
i for opening a gap, vehicle i keeps following

vehiclei−1 but at an increasing distance.

Since this input signal is used together with the CACC design for vehicle fol-

lowing, the important property of string stability is preserved. Computation of
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Figure 3.9: Feedforward loop for each vehicle.

feedforward input signal is explicitly defined in [55] and assumed to exist in this

study. In summary, gap opening/closing feedforward vehicle following is realized

by the CACC architecture of Fig. 3.9

Vehiclei+1 follows vehiclei assuming that both vehicles have the same plant

transfer functionG. Vehiclei+1 receives the control signaluff
i via a filter transfer

function Kff from the predecessor vehicle by vehicle-to-vehicle communication.

Here,D represents a potential communication delay.

An example signal for closing a gap within 10 s is shown in Fig.3.10. It has

to be noted that, whileuff
i is computed for the maneuver of vehiclei, there is an

effect on the distance errorei+1 of the follower vehiclei+1 via the stable transfer

function

Ei+1(s)

U ff
i (s)

=
G−DKff G
1+Kfb G

. (3.5)

Here,Ei+1 andU ff
i are the Laplace transforms ofei+1 anduff

i , respectively. This

effect is small when closing a single gap as can be seen in Fig.3.10.

3.3.2 Simulation Experiment Validation

Now, we would like to compare gap opening and closing responses of the vehi-

cle string with and without the feedforward signal. The string is depicted in Fig.
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Figure 3.10: Input and error signal when closing a gap.

3.8 where theith vehicle opens the gap for entrance of vehicleN. In both sce-

narios, 6 vehicles simulation is given. Initial velocity for the vehicle platoon is

20 m/s. Vehicle lengths are 5 m and the bumper distance is assumed 10 m. Head-

way constant is taken as 0.8. Thus, the overall following distance evaluates as

0.8·20+10+5m= 31m. In this scenario vehiclei−1 is additionally analogous

to Vehicle C of 3.1. Entering/Leaving Vehicle is Vehicle B and vehiclei is Vehicle

A. The others are successive follower vehicles in the platoon.

Option 1: No feedforward (step reference change)

First, as illustrated in Fig. 3.11, simulation starts with gap generation maneuver

of vehiclei. At time=4 sec, a new vehicle (green) enters the string. After that, at

time=8 sec, the same vehicle (green) leaves the string and vehicle i starts to close

the gap. Just after the gap is closed, a gap open maneuver at time=12sec starts. At

time=16sec, the new vehicle once again enters and the stringcontinues to drive.

The simulation is very widely analogous to real life situation that in dense

traffic conditions people frequently enter and leave a string. That is, the realistic

case of a lane change occurring every 4 sec is simulated. The crucial observation

here is that the acceleration maneuvers done by vehiclei is not logical. Accel-

erations around 20m/s2 with the relevant velocities are not feasible for current
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Figure 3.11: Realizations of Gap Opening/Closing without Feedforward Input
Signal

vehicles on the road. Physical limitations, e.g. actuator saturation is discussed

in [56]. Additionally, as we consider accelerations of about 2−3m/s2 as com-

fort limit for human passengers while very sudden jump from 70km/h velocity

reaching 140km/h is not comfortable, that makes this scenario both not logical

and practical. Hence, this fact supports the usage of a feedforward input as will

be illustrated next.

Option 2: Computed feedforward signal for Gap Open/Close

Second, as illustrated in Fig. 3.12 we apply the gap opening scenario with feedfor-

ward input. Formulation of optimal control problem was addressed explicitly in

[57]. In this simulation gap open maneuver starts attime= 2 sec. This maneuver

continues untiltime= 12 sec, after then vehicles approach their normal following

positions with identical velocities. As observed from acceleration of each vehicle

the response of each vehicle is acceptable and comfortable for human passengers.

32



0 5 10 15 20 25
−200

−100

0

100

200

300

400

500

time [sec]

po
si

tio
n 

[m
]

0 5 10 15 20 25
45

50

55

60

65

70

75

time [sec]

ve
lo

ci
ty

 [k
m

/h
]

0 5 10 15 20 25
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time [sec]

ac
ce

lra
tio

n 
[m

/s
2 ]

Figure 3.12: Realizations of Gap Opening/Closing with Feedforward Input Sig-
nal

3.3.3 Model

The model is the same forA matrix of (2.15). Here, gap opening or closing input

on any vehicle is selected byBi and the output at any vehicle is modeled as

















ẋr

ẋ1
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u(t) (3.6)

yi =
[

0 Ci 0 · · · 0 0 0
]

x. (3.7)

We next evaluate more than one input or combined input scenario which repre-

sents simultaneous or succeeding gap open or close maneuvers for single or more
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than one vehicle. This scenario changes the input vectorB as follows:
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(3.8)

3.3.4 Multiple Gap OpeningClosing

Single vehicle and reference vehicle models are given in (2.11)-(2.12). Vehicle

string was, in lumped form, denoted by (2.15) withA ∈ R
n×n state matrix and

n= N×8+3 due to our specific plant model and controller synthesis,B∈ R
n×k

input matrix havingk inputs.Ci ∈ R
q×n output matrix havingq outputs.

Since (2.15) describes a controlled system, the matrixA0 is typically Hurwitz.

However, this may not be the case for the matrixAr , related to the leader reference

vehicle in case of vehicle following. As indicated by (2.12), for instance,Ar has a

marginally stable mode associated withv0. Hence, the system matrixA in (2.11)

is not Hurwitz. For our analysis, we remove the poles at zero (marginally stable

modes) by a specific choice of similarity transformation byT−1AT, T−1B, CT

for A, B andC respectively where system transfer function remains unchanged.

After the transform, now state matrix has two less states where we can call as

n−2.

We next evaluate the scenario of more than one input or multiple inputswhich

may be due to dynamic conditions of the string where several vehicles may enter

and exit consecutively.

We formally introduce the set of input signals with time-limit tl < ∞ as

Utl = {u : R→ R
p|u(t) = 0 for t < 0 andt > tl}. (3.9)

Then, the successive application of an input signalu ∈ Utl for a given time
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Figure 3.13: Vehicle String with additional exogenous inputs

sequence is represented by the signal

u(tν )∞
ν=0

(t) =
∞

∑
ν=0

u(t − tν). (3.10)

3.4 Extended String Stability

String stability notion is first explained in Section 2.3. When a disturbance occurs

at the beginning of the string it should not grow or amplify while propagating

through the string. In the extended case now, there are exogenous input signals

from any vehicle in addition to impulses (state jumps) whichshould not be ampli-

fied along the string.

As described in (3.4), the error introduced when switching between leader

vehicles affects the motion of the follower vehicles and needs to be quantified.

Hereby, the impulse signal is assumed to be composed of multiple impulses in the

following form

wi =
Ni

∑
j=1

r i j δ (t − ti j ) (3.11)

r i j represents the weight of thej−th impulse andti j represents the time of the

j−th impulse applied to vehiclei = 1, . . . ,N. Note that an initial conditionxi,0 of

vehiclei can be represented by an impulse input with weightr i0 = xi,0 and at the

time ti1 = 0.

Using the control architecture in Fig. 3.9, we extend the string stability con-

ditions in Definition 1 to the case of vehicle strings with additional exogenous

inputs and error impulses as depicted in Fig. 3.13. In this system, each vehicle is

affected by maneuvers of all its predecessor vehicles. To this end, we reformulate
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the state space model in (2.18) to (2.21) usinguff
i andwi for i = 1, . . . ,N:

ẋ1 = f1(x1,u
ff
1)+w1, (3.12)

ẋi = fi(xi ,xi−1,u
ff
i )+wi , i = 2,3, . . . ,N, (3.13)

yi = h(xi). (3.14)

Definition 2. Consider the vehicle string in Fig. 3.13 with the exogenous inputs

uff
i and error impulses wi for i = 1, . . . ,N and the corresponding state space model

in (3.12) to (3.14). Let x=
[

xT
r xT

1 · · · xT
N

]T
be the lumped state vector and

let x =
[

xT
r xT

1 · · · xT
N

]T
denote the constant equilibrium solution for ur = 0.

Then, the system fulfills

1. extendedLp string stability if there exist classK functionsα, β such that

for all input signals uffj ∈ Lp, j = 1, . . . ,N and i∈ {1, . . . ,N} and all error

signals wi in (3.11)such that||r i j ||< ∞, it holds that

||yi(t)−Ci x||Lp ≤ α(
i

∑
k=1

||uff
i (t)||Lp)+β (

i

∑
k=1

Ni

∑
j=1

||rk, j −xi ||) (3.15)

2. Extended strictLp string stability if 1) is fulfilled and for all i= 2, . . . ,N, it

holds that

||yi(t)−Ci x||Lp ≤ ||yi−1(t)−Ci−1x||Lp. (3.16)

That is, extended string stability requires that the outputdeviation (in terms of

theLp-norm) of each follower is bounded by the size of the predecessor inputs

(in terms ofLp-norm). Extended strict string stability requires the additional

condition that the output deviation (in terms of theLp-norm) of each follower is

bounded by the size of the output deviation of its predecessor vehicles (in terms

of theLp-norm) as in the previous Definition 1.

The conditions for extended string stability in Definition 2are formulated for

general interconnected nonlinear systems represented by astate-space model. We
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next derive the relevant conditions for the case of linear systems according to the

control architecture in Fig. 3.9. Here, the relevant transfer functions are

Yi(s)
U j(s)

= Pyi ,u j (s), i ∈ N, j ≤ i (3.17)

Yi(s)
Yi−1(s)

= Γyi (s) = Pyi ,u1(s)Pyi−1,u1(s)
−1, i ∈ N, (3.18)

Yi(s)
Yj(s)

= Θyi ,y j (s) = Pyi ,u1(s)P
−1
y j ,i1

(s) = Γyi · · ·Γy j+1, i ∈ N, j < i. (3.19)

Using these transfer functions, two theorems for extended string stability of

vehicle strings with linear vehicle modelsare derived for the case of theL2 norm

and the case of theL∞ norm.

3.4.1 Conditions for Extended String Stability and theL2 Norm

Theorem 3. Consider the control architecture in Fig. 3.9 with the exogenous in-

puts uffi for i = 1, . . . ,N. The system fulfills extended string stability if and only

if

max
i, j≤i

||Pyi ,u j ||∞ < ∞. (3.20)

and extended strictL2 string stability if and only if

||Pyi ,ui ||∞ < ∞ for i = 1, . . . ,N, (3.21)

||Γyi ||∞ ≤ 1, i = 2, . . . ,N. (3.22)

Proof. Extended string stability:(IF) Assume that (3.20) holds and letpmax :=

maxi, j≤i ||Pyi ,u j ||∞, θmax := maxi, j≤i ||Θyi,y j ||∞ andamax := maxi ||(sI−Ai)
−1||∞,

Ai represents the dynamics matrix of the state space model of vehicle i. Note

that pmax exists by assumption in (3.23),θmax exists because of (3.23) and (3.19)

and amax exists since(sI−Ai)
−1 is a stable and proper transfer matrix for all

i = 1, . . . ,N. It has to be shown that 1. in Theorem 3 is fulfilled. We know from

Fig. 3.9 and (3.17) that

37



Yi(s) =Pyi ,ui(s)U
ff
i (s)+ · · ·+Pyi ,u1(s)U

ff
1 (s)+Ci (sI−Ai)

−1Wi

+Γi Ci−1(sI−Ai−1)
−1Wi−1+ · · ·+Γi · · ·Γ2C1(sI−A1)

−1W1.

Then,

||yi(t)−Ci x||L2 ≤ pmax||u
ff
1 ||L2 + · · ·+ pmax||u

ff
i ||L2 + ||Ci||amax

Ni

∑
j=1

||r i j ||

+ ||Ci−1||θmaxamax

Ni−1

∑
j=1

||r i−1 j ||+ · · ·+ ||C1||θmaxamax

N2

∑
j=1

||r2 j ||.

(3.23)

Choosing the classK functionsα(z) = pmaxz andβ (z) = max{1,θmax}amaxz,

(3.15) directly follows.

(ONLY IF) Assume that there exists aj ∈ {1, . . . , i} such that||Pyi ,u j ||∞ does

not exist. Then, (3.23) directly implies that there is no classK function to fulfill

(3.15). Hence, extended strict string stability is violated. Hence, (3.20) is the

necessary and sufficient condition for extended string stability in the case of linear

models.

Extended strict string stability:(IF) Assume that (3.21) and (3.22) hold. It has

to be shown that (3.15) and (3.16) are fulfilled. First note thatPyi ,u j =Γyi · · ·Γy j+1 Py j ,u j .

Hence,||Pyi ,u j ||∞ ≤ ||Γyi ||∞ · · · ||Γy j+1||∞ ||Py j ,u j ||∞ ≤ ||Py j ,u j ||∞ <∞ for all i = 1, . . . ,N

and j ≤ i with (3.21). That is, maxi, j≤i ||Pyi ,u j ||∞ < ∞, which implies that (3.15) is

fulfilled. In addition, (3.16) directly follows from (3.22).

(ONLY IF) Assume that (3.21) is violated. In that case (3.20)is violated and

also (3.15) is violated according to the proof for extended string stability. Now

assume that (3.22) is violated. This directly implies that (3.16) is violated. Hence,

(3.21) and (3.22) are the necessary and sufficient conditions for extended strict

string stability in the case of linear models.

We finally show that a successful controller design satisfying the conditions

in Section 2.3 directly implies extended strict string stability if the output signals
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yi = ui or yi = ai are chosen. Considering the vehicle model in (2.5), it holds for

eachi = 1, . . . ,N that

• ||Pi,i(s)||∞ = ||1||∞ = 1 if yi = ui,

• ||Pi,i(s)||∞ = ||
1

1+sτi
||∞ = 1 if yi = ai.

In addition, ||Γyi(s)||∞ ≤ 1 for all i = 2, . . . ,N by design. That is, the control

architecture in Fig. 3.9 directly supports the achievementof extended strict string

stability with the suitable design method according to Section 2.3. Hence, we can

conclude that the signal norms of follower vehicles are bounded.

3.4.2 Conditions for Extended String Stability and theL∞ Norm

The conditions in Section 3.4.1 are formulated for the case of L2 string stability,

which is concerned with the energy dissipation along the string. In this section, we

derive conditions forL∞ string stability, which captures the maximum overshoot.

Theorem 4. Consider the control architecture in Fig. 3.9 with the exogenous in-

puts uffi for i = 1, . . . ,N and the error signals wi in (3.11). The system fulfills

extendedL∞ string stability if and only if

max
i, j≤i

||pyi ,u j ||1 < ∞. (3.24)

and extended strictL2 string stability if and only if

||pyi ,ui ||1 < ∞ for i = 1, . . . ,N, (3.25)

||γyi ||1 ≤ 1, i = 2, . . . ,N. (3.26)

Proof. ExtendedL∞ string stability:(IF) Assume that (3.24) holds and letpmax:=

maxi, j≤i ||pyi ,u j ||1, θmax :=maxi, j≤i ||θyi,y j ||1 andamax :=maxi ||L
−1
(
(sI−Ai)

−1)
)
||1,

Ai represents the dynamics matrix of the state space model of vehicle i andL −1(•)

represents the inverse Laplace transform. Note thatpmax exists by assumption in

(3.27),θmax exists because of (3.27) and (3.19) andamax exists since(sI−Ai)
−1
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is a stable and proper transfer matrix for alli = 1, . . . ,N. It has to be shown that

1. in Theorem 4 is fulfilled. We know from Fig. 3.9 and (3.17) that

Yi(s) =Pyi ,ui(s)U
ff
i (s)+ · · ·+Pyi ,u1(s)U

ff
1 (s)+Ci (sI−Ai)

−1Wi

+Γi Ci−1(sI−Ai−1)
−1Wi−1+ · · ·+Γi · · ·Γ2C1(sI−A1)

−1W1.

Using Young’s inequality for convolutions, it follows that

||yi(t)−Ci x||L∞ ≤ pmax||u
ff
1 ||L∞ + · · ·+ pmax||u

ff
i ||L∞ + ||Ci||amax

Ni

∑
j=1

||r i j ||

+ ||Ci−1||θmaxamax

Ni−1

∑
j=1

||r i−1 j ||+ · · ·+ ||C1||θmaxamax

N2

∑
j=1

||r2 j ||.

(3.27)

Choosing the classK functionsα(z) = pmaxz andβ (z) = max{1,θmax}amaxz,

(3.15) directly follows.

(ONLY IF) Assume that there exists aj ∈ {1, . . . , i} such that||pyi ,u j ||1 does

not exist. Then, (3.27) directly implies that there is no classK function to fulfill

(3.15). Hence, extended strictL∞ string stability is violated. Hence, (3.24) is the

necessary and sufficient condition for extended string stability in the case of linear

models.

Extended strict string stability:(IF) Assume that (3.25) and (3.26) hold. It has

to be shown that (3.15) and (3.16) are fulfilled. First note thatPyi ,u j =Γyi · · ·Γy j+1 Py j ,u j .

Hence,||pyi ,u j ||1≤ ||γyi ||1 · · · ||γy j+1||1 ||py j ,u j ||1≤ ||py j ,u j ||∞ <∞ for all i = 1, . . . ,N

and j ≤ i with (3.25). That is, maxi, j≤i ||pyi ,u j ||1 < ∞, which implies that (3.15) is

fulfilled. In addition, (3.16) directly follows from (3.26).

(ONLY IF) Assume that (3.25) is violated. In that case (3.20)is violated and

also (3.15) is violated according to the proof for extended string stability. Now

assume that (3.26) is violated. This directly implies that (3.16) is violated. Hence,

(3.25) and (3.26) are the necessary and sufficient conditions for extended strict

string stability in the case of linear models.

We finally show that a successful controller design according to Section 2.3

40



0 5 10 15 20 25
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Sawtooth feedforward input

time [sec]

[m
/s

2 ]

0 5 10 15 20 25
−6

−4

−2

0

2

4

6
x 10

−4Position Error Output

time [sec]

[m
]

0 5 10 15 20 25
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Acceleration Output

time [sec]

[m
/s

2 ]
Figure 3.14: Gap Opening Simulation Satisfying Extended String Stability

can be used to address extended strict string stability if the output signalsyi = ui

or yi = ai are chosen and the additional condition ofγ(t) ≥ 0 is fulfilled. It is a

general fact [40] that

||Γ||∞ ≤ 1 andγ(t)≥ 0⇒ ||γ||1 ≤ 1. (3.28)

Considering the vehicle model in (2.5), it holds for eachi = 1, . . . ,N that

• ||pi,i(s)||1 = ||1||1 = 1 if yi = ui,

• ||pi,i(s)||1 = ||
1

1+sτi
||1 = 1 if yi = ai .

In addition,||γyi(s)||1 ≤ 1 for all i = 2, . . . ,N because of (3.28). That is, the con-

trol architecture in Fig. 3.9 directly supports the achievement of extended strict

string stability with the suitable design method in Section2.3 and the additional

condition thatγ(t)≥ 0.

3.4.3 Simulation Experiment and Discussion

An illustrative practical scenario is simulated for bothL2 andL∞ cases of ex-

tended string stability. A sawtooth signal for opening a gapwithin 10s is applied
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Figure 3.15: Gap Opening Simulation with 5times Repeated Sawtooth Input Sat-
isfying Extended String Stability

to vehiclei as shown in Fig. 3.14. The effect on the physically relevant distance

error and acceleration to follower vehiclei +1 is observed in the same Fig. 3.14.

In numerical comparison terms, then the computed norm values are tabulated in

Table 3.1.

Table 3.1: L2 andL∞ norm comparison for input output signals of platoon

L2 Norm L∞ Norm
Sawtooth Input 45.58 2.5
Distance Error 0.01 0.0006
Acceleration 38.85 1.91

Let class-K term coefficient isα(z) = z for being simple, then the differ-

ence in the left and right hand-side of equation is 45.58− 0.01 = 45.57 and

2.5− 0.0006= 2.4994 forL2 andL∞ cases respectively. In summary, the en-

ergy and maximal values of both signals for vehiclei +1 is bounded by the input

sawtooth signal in the same figure, that conforms to (3.15), it is shown that ex-

tended string stability satisfied. Next, we run the same input repeated five times

within 5sec as shown in Fig. 3.15.
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In numerical comparison terms, then the computed norm values are tabulated

in Table 3.2.

Table 3.2: L2 andL∞ norm comparison for 5times repeated input output signals
of platoon

L2 Norm L∞ Norm
Sawtooth Input 72.02 2.5
Distance Error 0.02 0.0007
Acceleration 44.67 1.64

It can be observed that numeric difference or ratio of input to output is getting

higher (from single input to five times repeated input case, 45.58/38.85=1.17 to

72.02/44.67=1.61) when the repetition of input signal increased. It is clear that

superposition of repeated inputs makes the difference higher depending on the

number of feedforward inputs applied, which is practicallyforeseen in big traffic

platoons. Then it is evaluated as using only (3.15) is insufficient for the calculation

of a bound. Besides that, it is observed in the simulations that there should be a

computed bound which we will elaborate in the Chapter 5.

43



CHAPTER 4

GENERAL BOUND COMPUTATION

We briefly addressed vehicle strings and their internal effects in Chapter 3. We

discussed maneuvers, had simulations and confirmed the string stability notion.

We have observed the simulation of multiple lane changes andgap open or close

maneuvers. Intuitively, we observed a bound for each scenario instead of an ac-

cumulation of the output signals then applying repeated maneuvers.

Oriented from LTI vehicle models we will analytically compute LTI signal

bounds and first establish existence results and then compute numeric bound val-

ues in the forthcoming sections. In Section 4.1 we look at impulses which would

be related to completing lane changes and in Section 4.2, a similar task will be

related to gap open-close maneuvers. Since these two scenarios only study indi-

vidual systems (single vehicle), we will extend the resultsto cover multiple inter-

connected systems in analogy to general strings with multiple vehicles in Section

4.3.

4.1 Impulse Input Repetitions

In this section, we consider the case of repeated input impulses for the case of

completing lane changes as discussed in Section 3.2. We firstprovide a general

development for LTI systems and then show how the developed results can be

applied to lane changes of vehicles.
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4.1.1 Notation and Problem Statement

We focus on LTI systems with the parameters in Table 4.1 and the state space

representation

ẋ = Ax+Bu

y =Cx.
(4.1)

Table 4.1: Relevant parameters and functions of the linear system in (4.1).

A∈ R
n×n dynamics matrix

B∈ R
n×p input matrix

C∈ R
q×n output matrix

x(t) ∈ R
n system state

u(t) ∈ R
p input signal

y(t) ∈ R
q output signal

Γ(s) =C(sI−A)−1B transfer matrix
γ(t) =CeAt B impulse response matrix
L subspace of stable LTI systems

In addition, we use the notation in Table 4.2 for matricesA ∈ R
n×n, vectors

v∈ R
n and functionsf : R→ R.

Table 4.2: Notation for matrices, vectors and functions.

ai j entry ofA in row i and columnj
spec(A) set of eigenvalues of matrixA
σmax(A) maximum singular value of matrixA
α(A) := max{Reλ |λ ∈ spec(A)} spectral abscissa of matrixA
vi i-th entry of vectorv
||v||2 =

√

∑n
i=1 |vi|2 vector 2-norm of vectorv

|| f ||L∞ = supt≥0 | f (t)| L∞-norm of functionf
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4.1.2 Norm Definition and Verification of Norm Properties

Norms for the impulse response of the LTI system in (4.1) are considered in [58,

59, 60]. Specifically, [58] introduces

||Γ||L∞ = sup
t≥0

{σmax(γ(t))}= sup
t≥0

{σmax(CeAt B)}. (4.2)

as the maximum excursion of the impulse response matrix of the LTI system in

(4.1).

In this section, we study the case where repeated impulses that are sepa-

rated by adwell-time∆ > 0 are applied to the LTI system in (4.1).1 We write

(tν)N
ν=0 = (t0, t1, . . . , tN) for a sequence withN+1 terms and introduce the setQN

∆

of monotonically increasing finite time sequences with dwell-time ∆

QN
∆ = {(tν)

N
ν=0|t0 ≥ 0, tν+1− tν ≥ ∆,∀ν = 0, . . . ,N−1}. (4.3)

Then, the set of monotonically increasing infinite time sequences with dwell-time

∆ is

Q∆ = {(tν)
∞
ν=0|t0 ≥ 0, tν+1− tν ≥ ∆,∀ν = 0,1, . . .}. (4.4)

We assume that theν-th impulse can be applied in an arbitrary input direction

vν ∈ R
p and define

||Γ||L∞,∆ = sup
(tν )∞

ν=0∈Q∆,t≥0

(σmax
(

∑∞
ν=0γ(t − tν)vν

)

maxν ||vν ||2

)

= sup
(tν )∞

ν=0∈Q∆,t≥0,||vν ||2≤1

(

σmax
( ∞

∑
ν=0

γ(t − tν)vν
))

. (4.5)

In words, ||Γ||L∞,∆ quantifies the maximum amplification of an input signal in

the form of an arbitrary number of repeated impulses, that isapplied to the LTI

system in (4.1). Hereby, impulses of the formvν δ (t − tν) that are separated by

1The application to the case of vehicle strings is found in 5.1.

46



at least∆ are applied at timestν , ν = 0,1, . . .. Accordingly, the excursion of the

output signaly(t) is bounded by the maximum magnitude maxν ||vν ||2 of the input

impulses:

||y(t)||2 ≤ ||Γ||L∞,∆ max
ν

||vν ||2. (4.6)

The main subject of this chapter is the solution of two problems regarding

||Γ||L∞,∆ in (4.5). First, it is desired to identify a subspace of LTI systems with

transfer matrixΓ such that (4.5) defines a norm. Second, it is intended to compute

a close bound for||Γ||L∞,∆.

We first present a new result for the summation of right-shifted monotonically

decreasing non-negative functions that will be used for theevaluation of||Γ||L∞,∆

in (4.5).

Lemma 1. Let f : R→R be a function with f(t) = 0 for t < 0, f (t)≥ 0 for t ≥ 0

and f(t)≥ f (t ′) for all t , t ′ with t ≤ t ′. Assume that∆ > 0. Then, it holds that

sup
(tν )∞

ν=0∈Q∆,t≥0

∞

∑
ν=0

f (t − tν) =
∞

∑
ν=0

f (ν ∆). (4.7)

Proof. We first show that, for anyk∈ N,

sup
(tν )kν=0∈Qk

∆,t≥0

k

∑
ν=0

f (t − tν) =
k

∑
ν=0

f (ν ∆). (4.8)

It holds that f (t − tk) assumes its maximum value fortk = t since f (t) is mono-

tonically decreasing. In addition, since the time instantstν are separated by the

dwell-time ∆ for ν = 0, . . . ,k, the maximum value off (t − tν) is obtained for

tν = tk− (k−ν)∆ = t − (k−ν)∆. That is,

sup
(tν )kν=0∈Qk

∆,t≥0

k

∑
ν=0

f (t−tν)=
k

∑
ν=0

f (t−t+(k−ν)∆)=
k

∑
ν=0

f ((k−ν)∆)=
k

∑
ν=0

f (ν ∆).

Taking the limit fork→ ∞, (4.7) directly follows.
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It is now possible to show that||Γ||L∞,∆ constitutes a norm for stable LTI sys-

tems inL .

Theorem 5. Assume that the LTI system in(4.1) belongs toL and let∆ > 0.

Then||Γ||L∞,∆ is bounded and||Γ||L∞,∆ is a norm forL .

The proof of Theorem 5 uses the following lemma that is adapted from [61].

Lemma 2. Consider the LTI system in(4.1)and writeµ =−α(A). Then, for all

ε > 0, there exists an m> 0 such that for all t≥ 0,

σmax(γ(t))≤ me−(µ−ε) t . (4.9)

We next prove Theorem 5.

Proof. We first show that there exists aK < ∞ such that||Γ||L∞,∆ ≤ K. Using

(4.5), the triangle inequality forσmax andσmax(vν) = ||vν ||2 ≤ 1 for ν = 0,1, . . .,

it holds that

||Γ||L∞,∆ = sup
(tν )∞

ν=0∈Q∆,t≥0,||vν ||2≤1

(

σmax
( ∞

∑
ν=0

γ(t − tν)vν
))

≤ sup
(tν )∞

ν=0∈Q∆,t≥0

( ∞

∑
ν=0

σmax
(
γ(t − tν)

))

.

Additionally, there arem,ε > 0 such thatσmax(γ(t)) ≤ me−(µ−ε) t (Lemma 2).

Then, f (t) := me−(µ−ε) t fulfills the conditions in Lemma 1. Hence,

sup
(tν )∞

ν=0∈Q∆,t≥0

( ∞

∑
ν=0

σmax
(
γ(t−tν)

))

≤ sup
(tν )∞

ν=0∈Q∆,t≥0

( ∞

∑
ν=0

f (t−tν)
)

=
∞

∑
ν=0

f (ν ∆).

Applying the geometric series, we get

||Γ||L∞,∆ ≤
∞

∑
ν=0

f (ν ∆) =
∞

∑
ν=0

m′e−(µ−ε)ν ∆ =
m′

1−e−(µ−ε)∆ =: K < ∞. (4.10)

We finally show that||Γ||L∞,∆ is a norm forL .
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Absolute Homogeneity:Let k∈ R. Then,

||kΓ||L∞,∆ = sup
(tν )∞

ν=0∈Q∆,t≥0,||vν ||2≤1

(

σmax
( ∞

∑
ν=0

kγ(t − tν)vν
))

=|k| sup
(tν )∞

ν=0∈Q∆,t≥0,||vν ||≤1

(

σmax
( ∞

∑
ν=0

γ(t − tν)vν
))

= |k| ||Γ||L∞,∆.

Triangle Inequality:Let Γ1,Γ2 be transfer matrices of stable LTI systems. Then,

||Γ1+Γ2||L∞,∆ = sup
(tν )∞

ν=0∈Q∆,t≥0,||vν ||2≤1

(

σmax
( ∞

∑
ν=0

(
γ1(t − tν)+ γ2(t − tν)

)
vν
))

≤ sup
(tν )∞

ν=0∈Q∆,t≥0,||vν ||2≤1

(

σmax
( ∞

∑
ν=0

γ1(t − tν)vν
))

+ sup
(tν )∞

ν=0∈Q∆,t≥0,||vν ||2≤1

(

σmax
( ∞

∑
ν=0

γ2(t − tν)vν
))

=||Γ1||L∞,∆ + ||Γ2||L∞,∆.

Zero Vector Condition:

||Γ||L∞,∆ = 0⇒ sup
(tν )∞

ν=0∈Q∆,t≥0,||vν ||2≤1

(

σmax
( ∞

∑
ν=0

γ(t − tν)vν
))

= 0

⇒∀t ≥ 0,γ(t) = 0⇒ Γ(s) = 0.

Since we know that||Γ||L∞,∆ ≤ ∞ from before,||Γ||L∞,∆ is indeed a norm for

L .

The theorem states that the vector 2-norm of the output signal remains bounded

when applying an arbitrary number of impulses with a boundedmagnitude that are

separated by a dwell-time∆ to a stable LTI system.

We illustrate Theorem 5 by an LTI system with the impulse response matrix
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γ1 and the state space model

A1 =









−0.5 1 0 −2

0 −6.5 0 5

4 4 −2.5 −8

0 −2.5 0 1









, B1 = I , C1 = I , (4.11)

wherebyI denotes the identity matrix. Consideringspec(A1) = {−0.5, −1.5,

−2.5, −4}, it holds thatµ = 0.5. Choosingε = 0.1, a bound forγ1(t) according

to (4.9) is 5e−(0.5−0.1) t as shown in Fig. 4.1.
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Figure 4.1: Example in (4.11): Comparison ofσmax(γ1(t)) and exponential bound
f (t) (top); comparison of simulated response andK in (4.10) for∆ = 5 (left) and
∆ = 1 (right).

We computeK =
5

1−e−0.4∆ in (4.10) such thatK = 5.8 for ∆ = 5 andK =

15.2 for ∆ = 1. Fig. 4.1 shows a simulation of the LTI system in (4.11) with

repeated impulses of magnitude 1 for∆ = 5 and∆ = 1. It can be seen that the

maximum value of||y(t)||2 stays well belowK, that is, the bound is conservative.2

2Section 4.1.5 shows that the simulation result is close to the actual values of||Γ1||L∞,5 and
||Γ1||L∞,1.
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Second, we consider an LTI system with the transfer function

Γ2(s) =
40s6+240s5+2616s4+9632s3+46744s2+70000s+186120

(s+5)2(s2+2s+17)3 .

(4.12)

A corresponding bound according to (4.9) hasµ = 1, ε = 0.3 andm′ = 50 (see

Fig. 4.2).
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Figure 4.2: Example in (4.12): Comparison ofγ2(t) and exponential boundf (t)
(top); comparison of simulated response andK in (4.10) for∆ = 5 (left) and∆ =
0.7 (right).

Accordingly,K =
50

1−e−0.7∆ in (4.10) withK = 51.6 for ∆ = 5 andK = 129.1

for ∆ = 0.7. Again, the bound is conservative as can be seen in Fig. 4.2.
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4.1.3 Exact Bound Computation

We focus on the LTI system in (4.1) with a single inputu(t) ∈ R, a single output

y(t) ∈ R and a monotonically decreasing impulse responseσmax(γ(t)) = |γ(t)| in

order to compute the exact value of||Γ||L∞,∆. Then, (4.5) and Lemma 1 imply that

||Γ||L∞,∆ = sup
(tν )∞

ν=0∈Q∆,t≥0,||vν ||2≤1

{ ∞

∑
ν=0

∣
∣γ(t − tν)vν

∣
∣

}

=
∞

∑
ν=0

|γ(ν ∆)|. (4.13)

We use the general representation ofγ(t) as

γ(t) =
k

∑
i=1

l i

∑
j=0

ai, j t
j e−λi t +

K

∑
i=k+1

l i

∑
j=0

ai, j t
j cos(ωi t +φi)e−λi t (4.14)

with coefficientsai, j ∈ R for i = 1, . . . ,K and j = 0, . . . , l i, the real poles−λi < 0

for i = 1, . . . ,k, the complex poles−λi ±ωi j and the phase shiftφi, j for i = k+

1, . . . ,K and j = 0, . . . , l i. Then, the following theorem states sufficient conditions

for the exact analytical computation of||Γ||L∞,∆.

Theorem 6. Consider a stable LTI system in(4.1) for p = q = 1. If |γ(t)| is

monotonically decreasing, then

||Γ||L∞,∆ =
∣
∣

k

∑
i=1

l i

∑
j=0

ai, j ∆ j (−1) j d j

d(λi∆) j

1

1−e−λi ,∆

+
K

∑
i=k+1

l i

∑
j=0

ai, j ∆ j (−1) j d j

d(λi∆) j

cos(φi, j)−e−λi∆ cos(ωi −φi, j)

1−2e−λi∆ cos(ωi)+e−2λi∆

∣
∣.

(4.15)

We use the following general result about exponential series for proving The-

orem 6.
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Lemma 3. Let β ,ω > 0, φ ∈ R and j∈ N. Then, it holds that

∞

∑
ν=0

ν je−β v =(−1) j d j

dβ j

1

1−e−β (4.16)

∞

∑
ν=0

ν j cos(ω ν +φ)e−β v =(−1) j d j

dβ j

cos(φ)−e−β cos(ω −φ)
1−2e−β cos(ω)+e−2β . (4.17)

We next provide the proof of Theorem 6.

Proof. We use (4.13), (4.14) and Lemma 3:

||Γ||L∞,∆ =
∞

∑
ν=0

|γ(ν∆)|= |
∞

∑
ν=0

γ(ν∆)|

=
∣
∣

∞

∑
ν=0

k

∑
i=1

l i

∑
j=0

ai, j (ν ∆) j e−λi ν ∆

+
∞

∑
ν=0

K

∑
i=k+1

l i

∑
j=0

ai, j (ν∆) j cos(ωi ν∆+φi, j)e−λi ν∆∣∣

=
∣
∣

k

∑
i=1

l i

∑
j=0

ai, j ∆ j
∞

∑
ν=0

ν j e−λi ∆ν

+
K

∑
i=k+1

l i

∑
j=0

ai, j ∆ j
∞

∑
ν=0

ν j cos(ωi ν∆+φi, j)e−λi ∆ν ∣∣

=
∣
∣

k

∑
i=1

l i

∑
j=0

ai, j ∆ j(−1) j d j

d(λi∆) j

1

1−e−λi ∆

+
K

∑
i=k+1

l i

∑
j=0

ai, j ∆ j (−1) j d j

d(λi∆) j

cos(φi, j)−e−λi∆ cos(ωi −φi, j)

1−2e−λi∆ cos(ωi)+e−2λi∆

∣
∣.

We emphasize that Theorem 6 applies to stable SISO LTI systems with a

monotonic impulse response. Examples for such systems are general LTI sys-

tems, whose transfer function has alternating negative real poles and zeros [62].

In addition, certain vehicle following applications as described in Section 5.1 have

this property.
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We consider the example system with the transfer functionΓ3 and the impulse

responseγ3:

Γ3(s) =
(s+5)(s+10)

(s+4)(s+8)(s+15)
, (4.18)

γ3(t) =
3
22

e−4t +
3
14

e−8t +
50
77

e−15t . (4.19)

Using (4.15) withk= 3, l i = 0 for i = 1, . . . ,k anda1,0 =
3
22, a2,0 =

3
14, a3,0 =

50
77,

λ1 = 4, λ2 = 8, λ3 = 15, we obtain

||Γ3||L∞,∆ =
3

22(1−e−4∆)
+

3
14(1−e−8∆)

+
50

77(1−e−15∆)
.

We compute||Γ3||L∞,5 = 1.0 for ∆ = 5 and||Γ3||L∞,0.1 = 1.64 for ∆ = 0.1. The

exactness of the result is verified by the simulated responses in Fig. 4.3.
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Figure 4.3: Comparison of simulated response and||Γ3||L∞,∆ for ∆ = 5 (left) and
∆ = 0.1 (right).

4.1.4 Close Bound Computation

We next approximate||Γ||L∞,∆ by a close upper bound in the general case of

multiple-input multiple-output (MIMO) LTI systems. Referring to Lemma 1, we

intend to find such bound by constructing a monotonically decreasing function

f (t) such thatf (t)≥ σmax(γ(t)) for all t ≥ 0. In addition,f must be chosen such

that the infinite sum in (4.7) converges. We make use of an impulse response
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bound according to [58, 63].

Lemma 4. Consider the LTI system in(4.1) and writeµ = −α(A). Then, there

exist n and ak > 0, k= 0, . . . ,n−1 such that for all t≥ 0,

σmax(γ(t))≤ b(t) := e−µ t(
n−1

∑
k=0

ak tk). (4.20)

It is readily observed thatb(t) for stable LTI systems has a single maximum

for t ≥ 0 sinceµ > 0 andak > 0 for k = 0, . . . ,n−1. We denote the maximum

value ofb(t) asbm and the corresponding time instant astm such thatb(tm) = bm.

Using (4.16) and (4.20), it follows that the infinite sum in (4.21) converges:

∞

∑
ν=0

b(ν ∆) =
n−1

∑
k=0

ak ∆k(−1)k dk

d(µ ∆)k

1
1−e−µ ∆ < ∞ (4.21)

Nevertheless,b is not suitable for computing a close bound on||Γ||L∞,∆, since

it does not fulfill monotonicity in Lemma 1. In additionb(t) is generally very

conservative.

In order to circumvent the stated issues, we use a threshold valueψ > 0 and

definetψ as the smallest time instant aftertm such thatb(tψ) remains belowψ:

tψ = min
t≥tm,b(t)≤ψ

t. (4.22)

Sinceb(t) is monotonically decreasing and smaller thanψ after tψ , we consider

b(t) as a suitable bound forσmax(γ(t)) aftertψ .

We further propose to determine a monotonically decreasingbounda(t) ≥

σmax(γ(t)) for t ∈ [0, tψ) by simulation. Consider an impulse response simulation

run of the LTI system in (4.1) with the solution valuesγ̂i at the timesτi, i = 1, . . . ,F

and a maximum simulation erroresim for σmax(γ̂i). Then, we define the bounda(t)

for eacht ∈ [0, tψ) as

a(t) = max
i=1,...,F,τi≥t

{γ̂i}+esim. (4.23)
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By construction, it holds thata is a monotonically decreasing staircase function

anda(t)≥ σmax(γ(t)) for all t ∈ [0, tψ). Together, we define the bound

c(t) =

{

a(t) for 0≤ t < tψ

b(t) for t ≥ tψ .
(4.24)

We revisit the example in (4.11). Using (4.20) and the definition of ak in [63],

we obtain

b(t) = e−0.5t (4+88.2t +973t2+7154t3) (4.25)

with a maximum valuebm = b(5.95) = 7.9 · 104 at tm = 5.95 sec. That is,b is

indeed very conservative. Using (4.22), we findt0.1 = 45.24s> tm for the thresh-

old ψ = 0.1. We further determinea(t) based on a simulation in Matlab/Simulink

2013a (solverode45 at a relative tolerance 10−3). σmax(γ(t)) is shown in Fig.

4.4. Considering that the maximum value is below 3,esim < 0.003 can be as-

sumed. According to (4.24),a(t) is used as a bound beforetψ = 45.24 sec and

b(t) is used afterwards.

Using c(t), the computation of a close bound for||Γ||L∞,∆ is performed as

stated in Theorem 7.

Theorem 7. Assume that the LTI system in(4.1) belongs toL . Let ∆ > 0, let

tψ > 0 be computed with(4.22)and let c(t) be given as in(4.24). Write N= ⌊
tψ
∆
⌋.

Then, it holds that

||Γ||L∞,∆ ≤
N−1

∑
ν=0

a(ν ∆)+e−µ tψ
n−1

∑
k=0

ak

k

∑
i=0

(
k
i

)

tk−i
ψ ∆i(−1)i di

d(µ ∆)i

1
1−e−µ ∆ <∞.

(4.26)
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Figure 4.4: Monotonic bound computation forσmax(γ1(t)) (top); comparison of
simulated response and||Γ1||L∞,∆ for ∆ = 5 (left) and∆ = 1 (right).

Proof. By definition,

||Γ||L∞,∆ = sup
(tν )∞

ν=0∈Q∆,t≥0,||vν ||2≤1

(

σmax
( ∞

∑
ν=0

γ(t − tν)vν
))

≤ sup
(tν )∞

ν=0∈Q∆,t≥0

( ∞

∑
ν=0

c(t − tν)
)

= sup
(tν )∞

ν=0∈Q∆,t≥0,t−tν<tψ

( ∞

∑
ν=0

a(t − tν)
)

+ sup
(tν )∞

ν=0∈Q∆,t≥0,t−tν≥tψ

( ∞

∑
ν=0

b(t − tν)
)

.

Considering thattν+1− tν ≥ ∆ for all ν = 0,1, . . . ,, there can be at mostN = ⌊
tψ
∆
⌋

values such thatt − tν < tψ . Recalling thata is monotonically decreasing, (4.8) in

the proof of Lemma 1 shows that

sup
(tν )∞

ν=0∈Q∆,t≥0,t−tν<tψ

( ∞

∑
ν=0

a(t−tν)
)

= sup
(tν )

N−1
ν=0∈QN−1

∆ ,t≥0

(N−1

∑
ν=0

a(t−tν)
)

=
N−1

∑
ν=0

a(ν∆).

In addition, sinceb(t) is monotonically decreasing fort ≥ tψ , b̂(t) := b(t + tψ) is
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monotonically decreasing fort ≥ 0. Using Lemma 1, we compute

sup
(tν )∞

ν=0∈Q∆,t≥0,t−tν≥tψ

( ∞

∑
ν=0

b(t − tν)
)

= sup
(tν )∞

ν=0∈Q∆,t−tν≥0

( ∞

∑
ν=0

b̂(t − tν)
)

=
∞

∑
ν=0

b̂(ν∆) =
∞

∑
ν=0

b(tψ +ν∆).

Hence,

||Γ||L∞,∆ ≤
N−1

∑
ν=0

a(ν ∆)+
∞

∑
ν=0

b(tψ +ν ∆)

=
N−1

∑
ν=0

a(ν ∆)+
∞

∑
ν=0

e−µ (tψ+ν∆)
n−1

∑
k=0

ak (tψ +ν ∆)k =

=
N−1

∑
ν=0

a(ν ∆)+e−µ tψ
n−1

∑
k=0

ak

k

∑
i=0

(
k
i

)

tk−i
ψ ∆i

∞

∑
ν=0

ν i e−µ ν ∆ =

=
N−1

∑
ν=0

a(ν ∆)+e−µ tψ
n−1

∑
k=0

ak

k

∑
i=0

(
k
i

)

tk−i
ψ ∆i(−1)i di

d(µ ∆)i

1
1−e−µ ∆ .

In this computation, we used the binomial theorem and Lemma 3. Considering

that all summations in the above expression are finite, it follows that||Γ||L∞,∆ <

∞.

Theorem 7 divides the computation of a bound on||Γ||L∞,∆ into the finite sum

S1 := ∑N−1
ν=0 a(ν ∆) and the infinite sumS2 := ∑∞

ν=0b(tψ + ν ∆). Here, the close

monotonic bounda(t) can be easily found by simulation fort ∈ [0, tψ). Moreover,

the infinite sumS2 can be evaluated analytically based on the monotonic bound

b(tψ + t). Its contribution toS1+S2 is small when choosingψ small enough as is

justified by the subsequent examples.

4.1.5 Academic Examples

Using (4.26) for the example in (4.11) with the bounds in Fig.4.4, we find||Γ1||L∞,5≤

3.53 for ∆ = 5 and||Γ1||L∞,1 ≤ 11.1 for ∆ = 1. The simulation in Fig. 4.4 also

shows that the 2-norm of the output signal remains below the bound, whereas the

bounds are much closer than the bounds in Fig. 4.1.
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We next evaluate the example in (4.12). Using (4.20), we obtain

b(t) = e−t (6+418t +14·103 t2+33·104 t3+58·105 t4+80·106 t5

+92·107 t6+91·108 t7).

with tm = 6.99 andtψ = 53.0> tm for ψ = 0.1. We further obtaina(t) by simu-

lation with esim < 0.01. γ2(t) and the resulting boundsa(t) andb(t) are shown in

Fig. 4.5.

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5

time [sec]

σ m
ax

(γ
2(t

))
, a

(t
),

 b
(t

)

 

 
σ

max
(γ

2
(t))

a(t)
b(t)

0 10 20 30 40
−4

−2

0

2

4

time [sec]

y(
t)

 

 

y(t)

K

0 10 20 30 40 50 60 70
−20

−10

0

10

20

time [sec]

y(
t)

 

 

y(t)

K

Figure 4.5: Monotonic bound computation forσmax(γ2(t)) (top); comparison of
simulated response and||Γ2||L∞,∆ for ∆ = 5 (left) and∆ = 1 (right).

Using (4.26),||Γ2||L∞,5 ≤ 3.8 for ∆= 5 and||Γ2||L∞,0.7 ≤ 15.5 for ∆= 0.7. The

simulation in Fig. 4.5 again confirms a close bound that is much less conservative

than the bound in Fig. 4.2.

4.2 Time-Limited Input Repetitions

Different from the previous section, this section considers the case of repeatedly

applying time-limited input signals to an LTI system. As discussed in Section 3.3,
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such signals are used when opening/closing gaps in a vehiclestring.

4.2.1 Notation and Problem Statement

We focus on LTI systems with the state space model

ẋ = Ax+Bu

y =Cx.
(4.27)

A∈ R
n×n is thedynamics matrix, B∈ R

n×p is the input matrixandC ∈ R
q×n is

the output matrix,x(t) ∈ R
n is thesystem state, u(t) ∈ R

p is theinput signaland

y(t) ∈ R
q is theoutput signal. We further writeγ for the impulse response matrix

of the system in (4.27).

Regarding matrices, we use the same notation as in Section 4.1.1. A∈ R
n×n,

we writespec(A) for theset of eigenvaluesof A, σmax(A) for themaximum sin-

gular valueof A, α(A) := max{Reλ |λ ∈ spec(A)} for thespectral abscissaof A

andA = Q(D+N)Q−1 for the Schur decomposition ofA with the unitary ma-

trix Q ∈ R
n×n, the diagonal matrixD ∈ R

n×n and the upper triangular matrix

N ∈ R
n×n. For vectorsv ∈ R

n, we writevi for the i-th entry and use thevector

2-norm||v||=
√

∑n
i=1 |vi|2.

As described in our motivating example in Section 3.3, we consider stable LTI

systems with repeated time-limited input signals that are separated by a minimum

dwell-time∆. Using a boundumax, we formally introduce the set of bounded input

signals with time-limittl < ∞ as

Uumax,tl = {u : R→ R
p|u(t) = 0 for t < 0 andt > tl , ||u(t)||

≤ umax for 0≤ t ≤ tl}. (4.28)

In order to formulate the successive application of input signals inUumax,tl , we

define the setQ∆ of monotonically increasing infinite time sequences with dwell-

time ∆ as

Q∆ = {(tν)
∞
ν=0|t0 ≥ 0, tν+1− tν ≥ ∆,∀ν = 0,1, . . .}. (4.29)
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Then, the successive application of input signalsuν ∈Uumax,tl for a given sequence

(tν)∞
ν=0 ∈ Q∆ is represented by the signal

u(tν )∞
ν=0

(t) =
∞

∑
ν=0

uν(t − tν). (4.30)

In this expression, the time-limited input signaluν is applied at timetν .

Using the notions introduce above, the aim of this chapter isto determine a

bound on the output signal norm||y(t)|| over time when applying a repeated input

signalu(tν )∞
ν=0

(t) to the LTI system in (4.27) for arbitrary input signalsuν ∈Uumax,tl

and sequence(tν)∞
ν=0 ∈ Q∆. This aim is formalized in Problem 1.

Problem 1. Consider a stable LTI system with the impulse response matrixγ and

let u∈ Uumax,tl . Determine a bound Ky < ∞ such that

sup
(tν )∞

ν=0∈Q∆,t≥0

∣
∣
∣
∣y(t)

∣
∣
∣
∣= sup

(tν )∞
ν=0∈Q∆,t≥0

∣
∣
∣
∣γ(t)⋆u(tν )∞

ν=0
(t)

∣
∣
∣
∣< Ky, (4.31)

whenever such bound exists.

4.2.2 Bound Existence

In this section, we show that the boundKy < ∞ in (4.31) exists for anyu∈Uumax,tl

and any stable LTI system.

Theorem 8. Consider a stable LTI system with the impulse response matrixγ. Let

∆ > 0, tl > 0 and uν ∈ Uumax,tl for some tl. Then, there exists a bound Ky < ∞ such

that (4.31)holds.

Proof. We first show that the input signalu(tν )∞
ν=0

(t) is bounded, that is,||u(tν )∞
ν=0

(t)|| ≤

Ku < ∞ for some constantKu. Consider a time instantt and defineN∆ = ⌈
tl
∆
⌉.

If t ≥ tl, it holds that||u(tν )∞
ν=0

(t)|| ≤ N∆ umax since at mostN∆ successive in-

put signals can be non-zero and the norm of all input signals is bounded by

umax. If t < tl, less thanN∆ successive input signals can be non-zero such that

||u(tν )∞
ν=0

(t)|| < N∆ umax. Together, it is true that||u(tν )∞
ν=0

(t)|| ≤ N∆ umax for all t,
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that is,||u(tν )∞
ν=0

(t)|| is bounded. Since the LTI system is stable, this implies that

also sup(tν )∞
ν=0∈Q∆,t≥0

∣
∣
∣
∣y(t)

∣
∣
∣
∣ is bounded such that (4.31) holds.

4.2.3 General Bound Computation

In this section, we propose a method for computing a boundKy in (4.31). To

this end, we develop a new result that allows determining a bound of the output

response for any input signal inUumax,tl depending on a bound on the impulse

response of the LTI system.

Lemma 5. Consider a stable LTI system with the impulse response matrixγ and

let c(t) be a function that is zero for t< 0 and non-negative monotonically de-

creasing for t≥ 0 such that||γ(t)|| ≤ c(t) for all t ∈ R. Then, it holds for any

input signal u∈ Uumax,tl that the output signal norm is bounded by

||y(t)|| ≤ umax

∫ tl

0
c(t − τ)dτ (4.32)

Furthermore, the bound in(4.32) is zero for t< 0, has a maximum at t= tl and

non-negative monotonically decreasing for t≥ tl .

Proof. It holds that

||y(t)||= ||γ(t)⋆u(t)||= ||
∫ t

0
γ(t − τ)u(τ)dτ|| ≤

∫ t

0
||γ(t − τ)|| ||u(τ)||dτ

≤
∫ tl

0
c(t − τ)umaxdτ = umax

∫ tl

0
c(t − τ)dτ.

In addition, it holds that
∫ tl

0 c(t − τ)dτ = 0 for t < 0 sincec(t) = 0 for t < 0.

Consideringt ≤ tl, it holds that
∫ tl

0 c(t − τ)dτ =
∫ t

0 c(t − τ)dτ. That is, sincec(t)

is non-negative,
∫ tl

0 c(t − τ)dτ ≤
∫ tl

0 c(tl − τ)dτ for any t ≤ tl . In addition,c(t)

being monotonically decreasing implies that
∫ tl

0 c(t ′− τ)dτ ≥
∫ tl

0 c(t − τ)dτ for

any t ′ ≥ t ≥ tl. That is,
∫ tl

0 c(t − τ)dτ indeed has a maximum att = tl and is

monotonically decreasing fort ≥ tl.

Respecting the result in Lemma 5 it is now possible to define a non-negative
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and monotonically decreasing bound for||y(t)|| as

||y(t)|| ≤ f (t) := umax

{ ∫ tl
0 c(tl − τ)dτ for t ≤ tl
∫ tl

0 c(t − τ)dτ otherwise.
(4.33)

Using Lemma 1 and (4.33) and writingN0= ⌈
tl
∆
⌉, it is now possible to evaluate

(4.31). It holds that

sup
(tν )∞

ν=0∈Q∆,t≥0

∣
∣
∣
∣y(t)

∣
∣
∣
∣= sup

(tν )∞
ν=0∈Q∆,t≥0

∣
∣
∣
∣γ(t)⋆u(tν )∞

ν=0
(t)

∣
∣
∣
∣

= sup
(tν )∞

ν=0∈Q∆,t≥0

∣
∣
∣
∣

∞

∑
ν=0

γ(t)⋆uν(t)
∣
∣
∣
∣

≤ sup
(tν )∞

ν=0∈Q∆,t≥0

∞

∑
ν=0

∣
∣
∣
∣γ(t)⋆uν(t)

∣
∣
∣
∣

≤ sup
(tν )∞

ν=0∈Q∆,t≥0

∞

∑
ν=0

umax

∫ tl

0
c(t − τ)dτ (4.34)

≤ sup
(tν )∞

ν=0∈Q∆,t≥0

∞

∑
ν=0

f (t) (4.35)

= umax
(
N0 ·

∫ tl

0
c(tl − τ)dτ +

∞

∑
ν=N0

∫ tl

0
c(ν ∆− τ)dτ

)
.

(4.36)

Here, (4.34) follows from Lemma 5, (4.35) follows from Lemma1 and (4.36)

follows from (4.33).

In order to ensure that the bound in (4.36) is finite, it is required to find a func-

tion c(t) ≥ ||γ(t)|| such that the infinite sum∑∞
ν=N0

∫ tl
0 c(ν ∆− τ)dτ converges.

According to Lemma 5,c(t) needs to be zero fort < 0, non-negative and mono-

tonically decreasing fort ≥ 0. In addition, it is desired thatc(t) constitutes a close

bound for||γ(t)|| such that the bound in (4.36) is as well close.

In the literature [58, 63], analytical bounds for||γ(t)|| exist in the form

||γ(t)|| ≤ b(t) := ||C|| ||B||e−µ t(
n−1

∑
k=0

ak tk), (4.37)
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wherebyak depends on the system matricesA, B, C in (4.27) andn depends on

the bounding method which we will elaborate based on matrix exponential in

Chapter 6. Such bound is non-negative, monotonically decreasing and close for

large enough values oft. Accordingly, we suggest to select a threshold valueθ
and employ the boundb(t) for timest ≥ tf , wherebyb(t) ≤ θ for t ≥ tf. In the

remaining bounded interval[0, tf], we find a monotonic bounda(t) ≥ ||γ(t)|| by

simulation similar to [64]. We perform a simulation run of||γ(t)|| for t ∈ [0, tf)

and determine a bounding functiona(t) ≥ ||γ(t)|| for t ∈ [0, tf] with a(tf) = b(tf).

In this work, we use a bounding function of the type

a(t) = me−η t . (4.38)

As a result,a(t) is non-negative and monotonically decreasing anda(t)≥ ||γ(t)||
for all t ∈ [0, tf). The overall bound for allt ≥ 0 is then

c(t) :=







0 for t < 0

a(t) for 0≤ t ≤ tf

b(t) for t > tf.

(4.39)

By construction,c(t) is zero fort < 0 and non-negative monotonically decreasing

for t ≥ 0. It remains to show that the infinite sum in (4.36) is bounded. This is

shown in the following theorem.

Theorem 9. Consider a stable LTI system with the set of input signalsUumax,tl and

the impulse response bound c(t) in (4.39). Let∆ > 0 and tf > 0. Write N0 = ⌈
tl
∆
⌉,

N1 = ⌈
tf
∆
⌉ and N2 = ⌊

tf + tl
∆

⌋. Then, it holds for any u∈ Uumax,tl that a suitable

bound in(4.31)is given by

Ky = umax
m
η
(
N0(1−e−η tl)+(eη tl −1)

N2

∑
ν=N0+1

e−η ν ∆)

+umaxe
−µ N1 ∆

n−1

∑
l=0

cl

l

∑
i=0

(
l
i

)

(N1∆)l−i(−∆)i di

d(µ ∆)i

1
1−e−µ ∆ , (4.40)
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whereby cl is computed with(4.41)for l = 0, . . . ,n−1.

cl =
n−1−l

∑
j=0

al+ j

(
l + j

j

)∫ tl

0
τ jeµ τ dτ. (4.41)

Proof. It has to be shown that

sup
(tν )∞

ν=0∈Q∆,t≥0

∣
∣
∣
∣y(t)

∣
∣
∣
∣≤ Ky < ∞

for all possible input signals inUumax,tl . Using (4.36), we compute

sup
(tν )∞

ν=0∈Q∆,t≥0

∣
∣
∣
∣y(t)

∣
∣
∣
∣≤ umax

(
N0

∫ tl

0
c(tl − τ)dτ +

∞

∑
ν=N0

∫ tl

0
c(ν ∆− τ)dτ)

= umax
(
N0

∫ tl

0
c(tl − τ)dτ +

N1−1

∑
ν=N0

∫ tl

0
a(ν ∆− τ)dτ+

(4.42)

+
N2

∑
ν=N1

(
∫ ν ∆−tf

0
b(ν ,∆− τ)dτ +

∫ tl

ν ∆−tf
a(ν ∆− τ)dτ

)

+
∞

∑
ν=N2+1

∫ tl

0
b(ν ∆− τ)dτ

)

This computation considers that the convolution integral is applied toa(t) before

t = tf (until ν = N1−1), toa(t) andb(t) for tf ≤ t ≤ tf + tl (N1 ≤ ν ≤ N2) and to

b(t) for t ≥ tf + tl (ν > N2). Further noting thata(t) andb(t) are non-negative, it

also holds that

sup
(tν )∞

ν=0∈Q∆,t≥0

∣
∣
∣
∣y(t)

∣
∣
∣
∣≤ umax

(
N0

∫ tl

0
a(tl − τ)dτ +

N2

∑
ν=N0

∫ tl

0
a(ν ∆− τ)dτ

(4.43)

+
∞

∑
ν=N1

∫ tl

0
b(ν ∆− τ)dτ

)
. (4.44)
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It can be directly computed fort ≥ tl that

∫ tl

0
a(tl−τ)dτ =

m
η
(1−e−η tl) and

∫ tl

0
a(t−τ)dτ =

∫ tl

0
me−η (t−τ)dτ =

m
η
(eη tl −1)e−η t .

(4.45)

In order to evaluate
∫ tl

0 b(ν ∆−τ)dτ, we use (4.37) and the binomial theorem and

write

∫ tl

0
b(ν ∆− τ)dτ =

∫ tl

0

n−1

∑
k=0

ak (t − τ)ke−µ (t−τ)dτ

= e−µ t
∫ tl

0

n−1

∑
k=0

ak

k

∑
i=0

(
k
i

)

tk−i(−τ)ieµτ dτ.

Re-organizing the summations and the integral according to powers oft leads to

∫ tl

0
b(t − τ)dτ = e−µ t

n−1

∑
l=0

t l
n−1−l

∑
j=0

al+ j

(
l + j

j

)∫ t

0
(−τ) jeµ τ dτ||

t≥tl= e−µ t
n−1

∑
l=0

t l
n−1−l

∑
j=0

al+ j

(
l + j

j

)∫ tl

0
(−τ) jeµ τdτ

≤ e−µ t
n−1

∑
l=0

t l
n−1−l

∑
j=0

al+ j

(
l + j

j

)∫ tl

0
τ jeµ τ dτ

︸ ︷︷ ︸

=: cl

= e−µ t
n−1

∑
l=0

cl t
l .
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Then, the infinite sum in (4.43) results in

∞

∑
ν=N1

∫ tl

0
b(ν ∆− τ)dτ =

∞

∑
ν=N1

e−µ ν ∆
n−1

∑
l=0

cl (ν ∆)l

= e−µ N1 ∆
∞

∑
ν=0

e−µ ν ∆
n−1

∑
l=0

cl (N1∆+ν ∆)l

= e−µ N1 ∆
n−1

∑
l=0

cl ∆l
∞

∑
ν=0

e−µ ν ∆(N1+ν)l

= e−µ N1 ∆
n−1

∑
l=0

cl ∆l
l

∑
i=0

(
l
i

)

Nl−i
1

∞

∑
ν=0

ν i e−µ ν ∆

= e−µ N1 ∆
n−1

∑
l=0

cl ∆l
l

∑
i=0

(
l
i

)

Nl−i
1 (−1)i di

d(µ ∆)i

1
1−e−µ ∆

(4.46)

Here, the last two identities are derived based on the binomial theorem and the

geometric series. Using (4.45) and (4.46), the result in (4.40) directly follows.

Since all the summations in (4.40) are finite,Ky < ∞.

4.2.4 Illustrative Example

We illustrate the bound computation in Section 4.2.3 by a small example system

with the matrices

A=







1 0 1

1 −1 1

−32 16 −7






, B=







4

0

0






, C=

[

1 2 1
]

and the eigenvaluesλ1 = −5 andλ2,3 = −1±2i. Fig. 4.6 (a) shows the impulse

response norm and the corresponding boundc(t) in (4.39). Hereby,a(t) = 3e−t

in (4.38) andb(t) = 9.8e−t ∑2
k=0

36k tk

k!
in (4.37) are found suitable usingθ =

10−9 andtf = 35. In addition, Fig. 4.6 (b) and (c) show the bound in (4.32) and

the corresponding functionf (t) in (4.33) for tl = 4 andtl = 8, respectively. For

comparison, these figures also show example input responsesfor the time-limited

67



input signals inU1,tl

u1(t) =−square(2π/3t), u2(t) =−triang(2π/3t), u3(t) =−cos(2π/3t).

Hereby, square(t), triang(t) and sin(t) denote the square wave, triangular wave

and sine wave with period 2π, respectively. It can be seen that the corresponding

output signals all stay below the computed bound.
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Figure 4.6: Bounds: (a) Impulse response; (b)f (t) for tl = 4; (c) f (t) for tl = 8.

Using f (t), it is possible to evaluate the bound in (4.40). Example results for

different combinations oftl and∆ are shown in Table 4.3. It is readily observed

Table 4.3: BoundKy for different values oftl and∆

tl = 4, ∆ = 2 tl = 4, ∆ = 5 tl = 4, ∆ = 10 tl = 8, ∆ = 5 tl = 8, ∆ = 2 tl = 8, ∆ = 10
9.3 4.0 3.0 15.2 6.3 3.3

that the bounds decrease when increasing∆ and when decreasingtl. This is ex-

pected from the computation in (4.40). In addition, we compare a simulation with

the repeated inputu1(t) ∈ U1,tl for different combinations oftl and ∆ with the

respective boundKy as shown in Fig. 4.7.

It can be seen that a valid bound is obtained in all cases. Moreover, it can

be observed that the bound appears closer in cases where∆ > tl . This can be

explained by the conservativeness of the boundf (t) for t ≤ tl as can be seen in

Fig. 4.6.
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Figure 4.7: Comparison of repeated input response and close boundKy: (a)tl = 4,
∆ = 2; (b) tl = 4, ∆ = 5; (c) tl = 8, ∆ = 10.

4.3 Input Repetitions for Distributed Interconnected Systems

The case of repeated input signals for general LTI systems isinvestigated in Sec-

tion 4.1.1 and 4.2.1. Motivated by the vehicle string scenario, we next consider

the case of interconnected systems. The basic block diagramof such distributed

interconnected system is shown in Fig. 4.8.

Figure 4.8: Distributed interconnected system

Here, the LTI system defined in Section 4.1.1 and 4.2.1 is extended as a system

with g inputs,ui ∈ R
pi andh outputs,y j ∈ R

q j . In view of the vehicle string ap-

plication, the input signals can represent the impulse input signals in case of lane

change completion (Section 4.1 or the feedforward input signals in case of open-

ing/closing gap maneuvers (Section 4.2). From the application perspective, we

are interested in the effect of repeated lane changes on the relevant signals such as

distance errors of a vehicle string. Accordingly, we consider the effect of apply-
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ing repeated inputs (impulses or time-limited input signals) to the interconnected

system in Fig. 4.8. The main result is given in Theorem 10.

Theorem 10. Consider a stable distributed interconnected system with thein-

put signal vector u= [u1u2 · · ·ug]
T and the impulse responsesγi, j(t) where i∈

{i ∈ N|1≤ i ≤ g} and j∈ { j ∈ N|1≤ j ≤ h}. Here, assume||γi, j(t)||2 ≤ bi, j(t),

whereby

bi, j(t) := e−αi, j t
(

ni, j−1

∑
k=0

Hk
i, j t

k

k!

)
. (4.47)

Here, ni, j and Hi, j depend on the respective bounding method. Then, for each

ψ,∃tψ and H,α, n such that with

c(t) =

{

a(t) for 0≤ t < tψ

b(t) = e−α t
(

∑n−1
k=0

Hk tk

k!

)
for t ≥ tψ .

(4.48)

||γi, j(t)||2 ≤ c(t) for all i ∈ {i ∈ N|1≤ i ≤ g} and j∈ { j ∈ N|1≤ j ≤ h}.

Proof. Choose

H = max
i, j

∣
∣
∣
∣Hi, j

∣
∣
∣
∣
2

n = max
i, j

ni, j

α = min
i, j

αi, j

Together all of the above taken into computation, sinceH,n andα is chosen ac-

cordingly,b(t)≥ bi, j(t)∀i, j

Moreover, we choosetψ in the same way as (4.22), such thatb(t)≤ ψ for t ≥ tψ .

For a(t), we simulate allγi, j(t) until tψ . Takeâ(t) = maxi, j γi, j(t)∀t ≤ tψ and de-

termine a monotonically decreasing bounda(t)≥ â(t) for t ∈ [0, tψ) in analogy to

(4.23).

In words, Theorem 10 states that the impulse response norm between each in-
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put/output pair of an LTI system with multiple inputs and outputs can be bounded

by a single monotonically decreasing functionc(t) in (4.48). This bound is again

suitable for the application of Lemma 1.

Specifically, for the case of input impulses and time-limited inputs, the fol-

lowing corollaries are obtained.

Corollary 2. Assume that the LTI system illustrated in Fig. 4.8 belongs toL . Let

the input ui be given in(3.4), let ∆ > 0, let tψ > 0 be computed and let c(t) be

given as in(4.48). Write N= ⌊
tψ
∆
⌋. Then,∀ j ∈ 1, ...,h, it holds that

||y j(t)||2 ≤
N−1

∑
ν=0

a(ν ∆)+e−α tψ
n−1

∑
k=0

Hk

k!

k

∑
i=0

(
k
i

)

tk−i
ψ ∆i(−1)i di

d(α ∆)i

1
1−e−α ∆

< ∞. (4.49)

similar to Theorem 7.

That is, (4.49) represents an analytical bound for the norm of any output signal,

when applying repeated impulse signals to any of the inputs.

Corollary 3. Consider a stable LTI system with the set of input signals ui as given

in (3.10) in Uumax,tl and the impulse response bound c(t) in (4.48). m andη are

defined depending on a(t) of (4.48)with the bounding function logic of(4.38).

Let ∆ > 0 and tψ > 0. Write N0 = ⌈
tl
∆
⌉, N1 = ⌈

tψ
∆
⌉, N2 = ⌊

tψ + tl
∆

⌋ and ak =
Hk

k!
.

Then, it holds for any u∈ Uumax,tl that a suitable bound∀ j ∈ 1, ...,h is given by

||y j(t)||2 ≤ umax
m
η
(
N0(1−e−η tl )+(eη tl −1)

N2

∑
ν=N0+1

e−η ν ∆)

+umaxe
−α N1 ∆

n−1

∑
l=0

cl

l

∑
i=0

(
l
i

)

(N1∆)l−i(−∆)i di

d(α ∆)i

1
1−e−α ∆ , (4.50)

71



whereby cl is computed with(4.51)for l = 0, . . . ,n−1.

cl =
n−1−l

∑
j=0

al+ j

(
l + j

j

)∫ tl

0
τ jeα τ dτ. (4.51)

similar to Theorem 9.

That is, (4.50) represents an analytical bound for the norm of any output signal,

when applying repeated time-limited signals to any of the inputs.

As an interesting point, we determine the case of∆ → ∞ for both (4.49) and

(4.50). In the first case, it holds that

lim
∆→∞

||y j(t)||2 ≤ a(0) = max
t

γ(t)

sinceN0 = 0 and in the second case, we get

lim
∆→∞

||y j(t)||2 ≤ umax
m
η
(1−e−η tl)

sinceN0 = 1. That is, in both cases, the resulting bound corresponds tothe appli-

cation of a single input signal.

4.4 Summary and Discussion

The thesis study is motivated by lane changes in vehicle strings. The vehicle

strings could for example be traveling on a highway, where each vehicle would

move on its way and could perform lane changes at different time instants. Lane

changes require opening/closing gap maneuvers and are associated to potential

measurement errors and the corresponding jumps in state variables as discussed in

Section 3.2 and 3.3. The main interest of the thesis is the existence and computa-

tion of bounds for the output signal norm when repeatedly applying the mentioned

types of input signals. Finding such bounds allows quantifying the effect of lane

changes on the longitudinal vehicle motion in strings and hence is important for

the analysis of driving safety.

This chapter addresses the stated issues for both impulse inputs and time-
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limited input signals. Bound existence is shown for both cases if the LTI system

under consideration is linear.

Bounds for the lane change completion are computed based for arbitrary out-

put signal and repeated impulses in Section 4.1. These results are then extended to

the case of repeated impulses of systems with multiple inputs/outputs in Section

4.3. That is, the thesis provides an effective method for computing output bounds

in the case of vehicle strings with many vehicles and lane change completions at

different positions and times.

Results regarding opening/closing gaps for lane changes areobtained with a

general formulation using the set of time-limited inputs. Abound for the output

signal norm for repeated inputs is derived in Section 4.2. This scenario is ex-

tended to the case of repeated inputs of systems with multiple inputs/outputs in

Section 4.3. As a result, thesis proposes an effective method for computing output

bounds in the case of vehicle string with many vehicles and opening/closing gap

maneuvers at different positions and times.

The closeness of bound is related with selection of∆. That is to say, the

a(t) term of (4.48) add the contribution from the values where time is equal to

∆ multiples. In practice, the simple observation is that if∆ is sufficiently bigger

than the point wherea(t) is sufficiently small and converging to 0, then the bound

computed remains to be convergent for increasing∆.

Up to now, the two different cases of lane change completion and opening/closing

gaps were investigated separately. Similar to the combination of both maneuvers

in the definition of extended string stability in Section 3.4, we now combine the

bound for both maneuvers in order to properly capture the practical CACC vehicle

string lane change scenario. In doing so, we focus on the caseof distributed in-

terconnected systems since the vehicle string scenario will be special case of this

concept.

Corollary 4. Consider a stable LTI system with the set of input signals u1, . . . ,ug

as given in(3.10)in Uumax,tl and in(3.4). Let∆ > 0 and tψ > 0. Let c(t) be given

as in (4.48). Combining the bounds computed separately in(4.49), (4.50) and

(4.51), it holds that
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||y j(t)||2 ≤
N−1

∑
ν=0

a(ν ∆)+e−α tψ
n−1

∑
k=0

ak

k

∑
i=0

(
k
i

)

tk−i
ψ ∆i(−1)i di

d(α ∆)i

1
1−e−α ∆

+umax
m
η
(
N0(1−e−η tl)+(eη tl −1)

N2

∑
ν=N0+1

e−η ν ∆)

+umaxe
−α N1 ∆

n−1

∑
l=0

cl

l

∑
i=0

(
l
i

)

(N1∆)l−i(−∆)i di

d(α ∆)i

1
1−e−α ∆

(4.52)

That is, an analytical bound for the output signal norm in thecase of re-

peated lane changes is given by (4.52). This bound combines the effect of open-

ing/closing gaps and the lane change completion. An experimental evaluation of

the presented results by simulation will be given in Chapter 5.

As an interesting point for future study, we note that the current formulation

considers the case of impulse inputs and time-limited inputs separately. Nev-

ertheless, it has to be noted that both formulations are based on impulse trains

(repeated impulse inputs in Corollary 2) or convolutions with impulse trains (re-

peated time-limited inputs in Corollary 3). Hence, it would be interesting to de-

termine a unified representation based on convolutions withimpulse trains for the

bound computation.
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CHAPTER 5

LONGITUDINAL MANEUVER INPUTS TO VEHICLE STRINGS

The previous sections of the thesis provide new results for LTI systems that are

subject to repeated input signals. Specifically, bounds forthe output signal norm

of LTI systems with repeated input impulses and time-limited input signals are

determined in Section 4.1 and 4.2, respectively. Moreover,these results are ex-

tended to the case of LTI systems with multiple inputs and outputs in Section 4.3

and a combination of all results is achieved in Section 4.4.

Although these general results for LTI systems are motivated by performing

lane change maneuvers in vehicle strings, they were not directly applied to vehi-

cle strings up to now. This chapter shows that these results are indeed suitable

for quantifying the effect of repeated lane changes of multiple vehicles in a string.

Section 5.1 and 5.2 illustrate the case of applying repeatedimpulses and repeated

time-limited input signals, respectively, to a single vehicle. The general case of a

vehicle string with many vehicles and different repeated input signals is consid-

ered in Section 5.3

5.1 Application Example with Input Impulses for a Single Vehicle

5.1.1 Motivation and Description

We consider the scenario in Fig. 5.1 with a string of autonomous vehicles that

follow each other in dense traffic. Each vehiclei has a lengthLi, a positionqi ,

a velocityvi and a distanceqi−1−qi to its predecessor vehicle. Introducing the

desired distancedi,r , the distance errorei is

ei = di,r − (qi−1−qi). (5.1)
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Figure 5.1: Lane change scenario in a vehicle string.

In this scenario, the vehicle spacingqi−1−qi should be small in order to in-

crease the traffic capacity. On the other hand, a sufficient vehicle spacing must be

guaranteed for driving safety. This task can be accomplished by usingcooperative

adaptive cruise control(CACC) with the property ofstring stabilitythat ensures

the attenuation of fluctuations in the motion of a leader vehicle along the vehicle

string [8, 26, 27]. In particular, bounds for theL2-norm or theL∞-norm of the

distance errorei can be established as described in Section 2.3.

The existing methods focus on fluctuations in the case where astring is already

formed. However, the effect of modifying a vehicle string byadding or removing

one or multiple vehicles after a lane change is not included in the discussion. This

problem is investigated in the framework developed in this thesis.

To this end, we consider a lane change maneuver of vehiclei in Fig. 5.1. We

use the CACC design in [8] to model the described scenario for vehicle i+1. The

closed-loop system is represented by the state space model

ẋ =









0 −1 −h 0

0 0 1 0

0 0 −1
τ

1
τ

Kp
h −Kd

h −Kd −1
h









x+









1

0

0

0









u(t)

y(t) = Cx.

(5.2)

The state vector isx =
[

ei+1 vi+1 ai+1 ui+1

]T
with the distance errorei+1,

velocity vi+1, accelerationai+1 and controller stateui+1. τ is a plant parameter

andKd, Kp are the controller parameters. According to Section 3.2, the jump in the
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distance errorei+1 after a lane change at a timetν can be represented by an impulse

input u(t) = vδ (t − tν) with the maximum levelv of the distance measurement

error. Example output signals that are affected by the jump in the distance error

measurement areei+1 with C=
[

1 0 0 0
]

for driving safety orai+1 with C=
[

0 0 1 0
]

for driving comfort. We writeΓe(s) andΓa(s) for the respective

transfer functions. Moreover,k+1 lane changes in front of vehiclei+1 at timestν

for ν = 0,1, . . . ,k are represented by the input signalu(t)=∑k
ν=0vν δ (t−tν), vν ≤

v. Assuming that different lane changes are separated by at least∆ in time, the

effect of an arbitrary number of lane changes on the error signal ei+1 is bounded

by v||Γe||L∞,∆, whereas the effect on the acceleration signalai+1 is bounded by

v||Γa||L∞,∆. Hereby,|| • ||L∞,∆ denotes the norm defined in Section 4.1.2.

5.1.2 Evaluation

We first considery(t) = ei+1(t) using the parameters in Table 5.1. The corre-

Table 5.1: Parameters of the example system [8].

Li+1 = 5 m r i+1 = 5 m h= 0.7 sec τ = 0.1 sec Kd = 1.0 Kp = 0.25

sponding impulse response

γe(t) = 0.004e−8.91t −1.73e−0.68t +2.72e−0.42t

is positive and monotonically decreasing as can also be seenin Fig. 5.2. That is,

(4.15) withk= 3, l i = 0 for i = 1, . . . ,k, a1,0 = 0.004,a2,0 =−1.73,a3,0 = 2.72,

λ1 = 8.91,λ2 = 0.68,λ3 = 0.42 gives the exact bound

||Γe||L∞,∆ =
0.004

1−e−8.91∆ +
−1.73

1−e−0.68∆ +
2.72

1−e−0.42∆ .

For example,||Γe||L∞,4 = 1.51 (for ∆ = 4) and||Γe||L∞,10 = 1.04 (for ∆ = 10).

That is, even in the (unrealistic) case of a lane change occurring every 4 sec with a

measurement error ofv= 2m, the distance error is bounded by 2·1.51m= 3.02m.

Considering thatdi,r = 5m+5m+0.7sec·20m/sec= 24 m for a reference speed
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of 20 m/sec, driving safety is ensured for an arbitrary number of lane changes.

The exactness of the computed bound is further verified by thesimulation in Fig.

5.2.
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Figure 5.2: Monotonic impulse responseγe(t) (top); comparison of simulated
response and||Γe||L∞,∆ for ∆ = 4 (left) and∆ = 10 (right).

We finally considery(t) = ai+1(t). Here, the impulse response is not mono-

tonic such that the bounding method in Section 4.1.4 is applied. We first obtain

b(t) = e−0.42t (1+10.92t +59.7t2+217.3t3)

anda(t) in Fig. 5.3 by simulation. Choosingψ = 0.005, it holds thattm= 54.6 sec.

Using (4.40), we find||Γa||L∞,4 ≤ 0.172 for∆ = 4 and||Γa||L∞,10 ≤ 0.125 for

∆ = 10. In both cases, the resulting acceleration bounds are farbelow the accel-

eration limit for comfortable driving which is in the range of 2−3 m/s2 [65]. We

further perform a simulation of the system in (5.2) with repeated unit impulses

that are separated by∆ = 4 sec and∆ = 10 sec in time as shown in Fig. 5.3. It is

readily observed that the computed bound on||Γa||L∞,∆ is close.
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Figure 5.3: Monotonic bound computation forσmax(γa(t)) (top); comparison of
simulated response and||Γa||L∞,∆ for ∆ = 4 (left) and∆ = 10 (right).

5.2 Application Example for Repeated Time-Limited Inputs for a Single

Vehicle

The plant model, vehicle following, controller design for CACC and the relevant

parameters were already described in Chapter 2 and lane change maneuvers in

Chapter 3. This section first gives an example for a repetitionof the same input

signalu. After that, the example will be extended with input signalsfrom a set as

defined in Section 3.3.

In order to perform gap opening and closing maneuvers of a vehicle i in the

described architecture, we use the feedforward input signal uff
i and a feedforward

reference signalqff
i for vehiclei as was discussed in Section 3.3. The generation

of suitable input signals is discussed in the subsequent section.

5.2.1 Input Signal Generation

If vehicle i opens/closes a gap, it is desired to increase/decrease the vehicle dis-

tancedi by the velocity-dependent valuedi,r within a certain timeT. This behav-
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ior can be formulated in the form of a linear optimal control problem with state

constraints

minJ =
∫ T

0
F(zi ,u

ff
i , t)dt (5.3)

subject to the dynamic plant constraints

q̇i = vi; v̇i = ai; ȧi =
−1
τ

·ai +
1
τ
·uff

i (5.4)

initial and terminal conditions

qi(0) = 0, vi(0) = v, ai(0) = 0, qi(T) = di,r , vi(T) = v, ai(T) = 0

(5.5)

additional constraints

vmin ≤ vi(t)≤ vmax, amin ≤ ai(t)≤ amax (5.6)

(5.4) is a state space realization of that plant transfer function G(s) for vehicle i

with the statezi =
[

qi vi ai

]′
, T is the terminal time,J denotes the objective

function and it is assumed that the vehicle string travels ata constant velocity

v. In addition, in order to maintain driver comfort, the acceleration and veloc-

ity variation during such maneuver is limited using (5.6). Depending on the de-

sired maneuver, different objective functions can be used.In this paper, we use

F1(zi ,uff
i , t) = 1 in order to minimize the maneuver time andF2(zi ,uff

i , t) = (uff
i )

2 in

order to minimize the accumulated input signal. Example input signals for open-

ing gaps at different velocities and with different objective functions are generated

using the PROPT solver [66] according to Table 5.2 and are shown together with

the created gap and acceleration in Fig. 5.4. Note that the same signals can be

used for closing gaps when multiplying by−1.

It can be seen from the figure that the considered gap opening/closing scenario

requires input signal levels that are bounded by±2.5 m/sec and their duration is
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Table 5.2: Input signals for different velocities and objective functions

v= 10m/sec,F1 v= 20m/sec,F1 v= 30m/sec,F1

u1 u2 u3

v= 10m/sec,F2 v= 20m/sec,F2 v= 30m/sec,F2

u4 u5 u6

0 5 10
−3

−2

−1

0

1

2

3

time [sec]

u i [m
/s

ec
2 ]

 

 

0 5 10
0

10

20

30

40

time [sec]

q i [m
]

0 5 10
−2

−1

0

1

2

time [sec]

a i [m
/s

ec
2 ]

 

 
u

1

u
2

u
3

u
4

u
5

u
6

±u
max

Figure 5.4: Different input signals forT ≤ 10.

below 10 sec. That is, it is possible to employ the set of inputsignalsU2.5,10.

5.2.2 Repeated Application of the Same Input Signal

We apply the obtained bound computation in Section 4.2 to theplatooning exam-

ple with the feedback loop in Fig. 3.9, the input signalu1 ∈ U2.5,10 and output

signalei+1 in Fig. 3.10 for opening a gap.

Using the controller design of [33], the boundc(t) in (4.39) has the coefficients

in Table 5.3. The last maximum ofc(t) is at tm = 3.2 s. Choosingψ = 0.01, we

obtaintf = 180.7 s in (4.39).

Table 5.3: Coefficients ofc(t).

c0 c1 c2 c3

6.1·1035 4.8·1035 1.6·1035 2.7·1034

c4 c5 c6 µ
2.7·1033 1.5·1032 3.1·1030 0.55

We further perform a simulation of the output response in Matlab/Simulink

81



with a simulation erroresim ≈ 0.001 to determine the bounda(t) for t < tf . The

boundsa(t) andc(t) are shown in Fig. 5.5.
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Figure 5.5: Bounds for the platooning example.

Choosing∆ = 6 s, we computeKu = 0.125 m and choosing∆ = 20 s, we com-

puteKu = 0.058 m. We further compare the bounds with a simulation of the sys-

tem where gaps are repeatedly opened by vehiclei with a dwell-time of∆ = 6 s

and∆ = 20 s. The results are shown in Fig. 5.6. It can be seen that the computed

bound is close, especially for large values of∆. The conservativeness for small

values of∆ can be explained by inspecting the bounda(t) and the actual output

signalei+1 in Fig. 5.5. Here, repeated ”open gap” maneuvers do not lead to an

accumulation in the error signal due to the sign change inei+1.

In contrast, an accumulation of the error can be observed when alternating

’open gap’ and ’close gap’ maneuvers. Since the input signalûff
i for closing a gap

fulfills |ûff
i (t)| = |uff

i (t)| for all t ≥ 0, the same boundf (t) is valid in both cases.

That is, the same boundKu is obtained when alternatinguff
i and ûff

i according

to Theorem 9. Fig. 5.7 shows a simulation where ’open gap’ and’close gap’

maneuvers are alternated for∆ = 6 s and∆ = 20 s. In this case, the boundKu for
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Figure 5.6: Simulation and bound for∆ = 6 s (left) and∆ = 20 s (right).

∆ = 6 s is less conservative.

In summary, it can be confirmed that driving safety is ensuredwhen perform-

ing arbitrary ’open gap’ and ’close gap’ maneuvers. Even in the case where a gap

is opened/closed every∆ = 6 s, it holds that the accumulated distance error stays

below 0.125 m. Considering that the desired distance isdi,r = 29 m at a speed of

20 m/s [33], such error is negligible.

5.2.3 Repeated Application of Different Input Signals

We next evaluate the bound in (4.40) for all input signals inU2.5,10. We find

a(t) = 0.016e−0.33t by simulation andb(t) = 10.1e−0.55t ∑8
k=0

11.4k tk

k!
using a

minimal realization of (3.5). Choosing scenarios, where vehicle i potentially has

to open a gap every∆ = 10 sec and∆ = 20 sec and usingθ = 10−5 (tf = 135), the

boundsKy = 0.25 m andKy = 0.13 m are obtained, respectively. Fig. 5.8 shows a

comparison of the bounds with a simulation of different repeated input signals.

It can be seen that the computed bound is valid for the repeated input signals
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Figure 5.7: Simulation and bound for∆ = 6 s (left) and∆ = 20 s (right).

chosen fromU2.5,10. In addition, it can be concluded that the error signal of

vehicle i (follower vehicle of predecessor vehicle on which feedforward signals

are applied) remains below 0.25 m even if the predecessor vehiclei performs gap

opening maneuvers inU2.5,10 every 10sec in the described setting. Considering

that the desired distance at a speed ofv = 10m/sec isdr,i = 17 m, this does not

cause a violation of driving safety.

5.2.4 Discussion

After demonstrating the proposed bound computation by means of the application

example, we next discuss the obtained results.

First, we note that the evaluation of the bound in (4.40) has two addends. The

first addend is computed based on the bounda(t) in (4.38) that is obtained using

simulation. It determines a bound for up toN2 repetitions of input signals in

Uumax,tl . The second addend depends on the boundb(t) in (4.37) and captures the

effect of applying an arbitrary number of input signals.
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10 sec; (b)∆ = 20 sec.

In principle, it could be argued that the rather intricate second addend can

be avoided if it is ensured that the input signal is repeated no more thanN2 times.

Nevertheless, such assumption poses a restriction on the possible system behavior.

In our application example, this would mean that only a limited number ofN2

opening/closing gap maneuvers is permitted while guaranteeing the bound on the

error signal. Precisely, the advantage of the bound in (4.40) including the second

addend is that a bound is obtained for any number of input signal repetitions. In

addition, the evaluation of (4.40) is an offline computationthat only depends on

the range of the possible input signals inUumax,tl and the impulse response bound

of the LTI system in (4.39). Furthermore, choosingθ small enough (and hencetf

large enough) always ensures that the contribution of the second addend in (4.40)

is small. For example, when computing the boundKy = 0.25 m for the input signal

u3 and∆ = 10 sec in Section 5.2.1, the first addend amounts to 0.249 m and the

second addend is 0.001 m.

Finally, we recall that the setUumax,tl is obtained by inspecting the expected

input signals to be applied to the LTI system as illustrated in Section 5.2.3. A

benefit of the proposed method is that any new input signal canbe applied without

violating the computed bound as long as it belongs toUumax,tl .
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5.3 Vehicle String Application

Effects of multiple impulses and time-limited inputs with asufficient temporal

spacing∆ were investigated for a single follower vehicle in Section 5.1 and Sec-

tion 5.2. Now, we consider the effect of lane change maneuvers on a complete

vehicle string composed ofN vehicles. The main contributions compared to the

previous results of Section 5.1 and 5.2 is that we now computethe bound of im-

pulse and time-limited responses for the whole vehicle string. To this end, Section

5.3.1 identifies a relation among the impulse responses between different vehicles.

Then, it is possible to apply the result for LTI systems with multiple inputs and

outputs in Section 4.3.

5.3.1 Vehicle Strings Structure

It is important to note that the dynamic matrix of a vehicle string in (3.2) has a

special structure. For each transfer function, we use the standard equation from

state space to transfer function conversion:

Λ(s) =C(sI−A)−1B

Writing ∆(s) = (sI−A0), with the help of the lower triangular matrix structure,

we compute

(sI−A)−1 =















∆−1 0 · · · 0 0 0

∆−1A1∆−1 ∆−1 . .. 0 0 0

(∆−1A1)
2∆−1 ∆−1A1∆−1 . .. 0 0

...
... ...

...
...

(∆−1A1)
n−2∆−1 (∆−1A1)

n−3∆−1 · · · (∆−1A1)
1∆−1 ∆−1 0

(∆−1A1)
n−1∆−1 (∆−1A1)

n−2∆−1 · · · (∆−1A1)
2∆−1 (∆−1A1)

1∆−1 ∆−1















having the form of a block Toeplitz matrix with identical transfer functions along

the diagonals.

86



That is, the transfer matrix between each vehicle state and the successor vehi-

cle states can be easily computed. Likewise, the transfer matrix between each in-

put signal and output signal can be easily determined. For example using the input

vector
[

B1 0 0
... 0 0

]T
and the output vector

[

0 C2 0 · · · 0 0 0
]

,

we get the transfer function

Γ(s) =C2∆−1A1∆−1B1

With the assumption that the string is homogenous and using the transfer ma-

trix representation above, the relation between any vehicle state and successor

vehicle states can be generalized.

Proposition 1. Consider a vehicle string with N vehicles and impulse responses

γi, j from the state of vehicle i to the state of successor vehicle j> i. Then, it holds

that any impulse responseγi, j is identical to the impulse responseγ1, j−i+1.

Proof. We show that, for anyi, j ∈ {i, j ∈ N|1 ≤ i ≤ j ≤ N} by using the lower

triangular matrix special structure

Γi, j(s) = (∆−1A1) · · ·(∆−1A1)∆−1 = (∆−1A1)
j−i∆−1 = Γ1, j−i+1(s).

Practically this means, as an example, 2nd to 4th vehicle and 3rd to 5th vehicle

and 6th to 8th vehicle have the same state-to-state relation. The important conse-

quence of Proposition 1 is that it is only necessary to compute evaluate the impulse

response matrices from the first vehicle state to all successor vehicle states, which

include the impulse response matrices of the successor vehicles.

Additionally, as was concluded in the Section 3.4, whenevermultiple gap/opening

or closing maneuvers and different input signals are applied to the system, using

the bound of (3.15) a large bound which is practically infeasible. We next compute

a new feasible, improved bound for the whole vehicle string.
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5.3.2 Multiple Impulse to Vehicle String

We first considery(t) = [ei+1(t) ei+2(t) · · · en(t)] using the parameters in

Table 5.4.

Table 5.4: Parameters of the example system [8].

Li+1 = 5 m r i+1 = 5 m h= 0.8 sec τ = 0.4 sec Kff by H∞ Kfb by H∞

For example,||Γe||L∞,7 = 1.02 (for ∆ = 7) as given in the Fig. 5.9.

That is, even in the case of a lane change occurring in the string for every

7 sec with a measurement error ofv = 2m, the distance error is bounded by 2·

1.02m= 2.04m. Considering thatdi,r = 5m+5m+0.8sec·20m/sec= 26 m for

a reference speed of 20 m/sec, driving safety is ensured for an arbitrary number of

lane changes.
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Figure 5.9: Multiple error impulse response of vehicle string:γe(t) (left) and
γa(t) (right) for ∆ = 7

We next considery(t) = [ai+1(t) ai+2(t) · · · an(t)] using the same pa-

rameters of Table 5.4. Using (4.40), we find||Γa||L∞,7 = 0.64 for ∆ = 7. In this

case, the resulting acceleration bounds are far below the acceleration limit for

comfortable driving which is in the range of 2−3 m/s2 [65]. We further perform

a simulation of the system in (5.2) with repeated unit impulses that are separated

by ∆ = 7 sec in time as shown in Fig. 5.9. It is readily observed that the computed

bound on||Γa||L∞,∆ is close.
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5.3.3 Multiple Time-Limited Input to Vehicle String

We apply the results to the platooning example with the feedback loop in Fig. 3.9,

the input signalu1 ∈ U2.5,10 and output signal[ei+1(t) ei+2(t) · · · en(t)] in

Fig. 3.10 and[ai+1(t) ai+2(t) · · · an(t)] in Fig. 3.10 for opening a gap.

Using theH∞ controller design of Matlab/Simulink, the boundc(t) in (4.39)

is computed. Choosingψ = 0.005, we obtaintf = 59.94 s in (4.39).

We first performed a simulation of the output response in Matlab/Simulink

with a simulation erroresim ≈ 0.001 to determine the bounda(t) for t < tf.

Choosing∆ = 5 s, we computeKu = 1 m andKu = 6.14 m/s2 for e(t) anda(t)

respectively. We compare the bounds with a simulation of thesystem where gaps

are repeatedly opened by vehiclei with a dwell-time of∆ = 5 s. The results are

shown in Fig. 5.10. It may be asserted that the computed boundis conservative,

due to accumulation of error by repeated exogenous acceleration input. However,

for larger values of∆ the bound is quickly getting closer by inspecting the bound

a(t) ande(t) in Fig. 5.11. With∆ = 15 s, we computeKu = 0.0013 m andKu =

2.69 m/s2 for e(t) anda(t) respectively.
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Figure 5.10: Simulation and bound for∆ = 5 s distance error(left) and accelera-
tion (right).

In summary, it can be confirmed that driving safety is ensuredwhen perform-

ing arbitrary ’open gap’ and ’close gap’ maneuvers. Even in the case where a gap

is opened/closed every∆ = 5 s, it holds that the accumulated distance error stays
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Figure 5.11: Simulation and bound for∆ = 15 s distance error(left) and accelera-
tion (right).

below 0.005 m. Considering that the desired distance isdi,r = 29 m at a speed of

20 m/s [33], such error is negligible.

5.4 Summary and Discussion

In summary, the main subject of this chapter is the application of the general

results on norm bounds for the output signal of stable LTI systems derived in

Chapter 4.

Section 5.1 applies the bound computation for LTI systems with repeated input

impulses to the case of lane change completion in vehicle strings. It is shown

that suitable analytical bounds for the error signal of successor vehicles are found

when realizing vehicle following be cooperative adaptive cruise control (CACC).

Moreover, simulations illustrate that the obtained boundsare close especially in

case where the repeated input impulses are separated by a sufficiently large dwell-

time.

Section 5.2 focuses on the bound computation for LTI systemswith repeated

time-limited input signals for opening/closing gaps in vehicle strings. Using the

analytical bounds derived in Section 4.2, it is shown that very small error signals

are encountered when using CACC and the closeness of the analytical bounds is

confirmed by simulation experiments.
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Finally, Section 5.3 extends the previous studies in this section for the case of

vehicle strings with many vehicles. Here, it is possible to employ the general result

for LTI systems with multiple inputs and outputs in Section 4.3. It is shown that

the special structure of a homogeneous vehicle string makesit sufficient to apply

this result to a reduced number of impulse response matrices. Using the analytical

bounds, safe driving during lane changes is ensured as long as the dwell-time

between lane changes is not too small.

It has to be noted that the analytical bounds in Section 4.1 and 4.2 depend

on the evaluation of the impulse response boundb(t) in (4.20). In the course

of this thesis study, it turned out that existing methods forcomputing this bound

suffer from numerical problems in case of large systems. Since the thesis focuses

on vehicle strings, whose dynamic models have many states, it was necessary to

develop an original improved method for the numerical computation ofb(t). This

additional work is the subject of Chapter 6.
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CHAPTER 6

LINEAR ALGEBRAIC COMPUTATIONS FOR BOUNDS DERIVATIONS

The results in the previous chapters are based on the computation of a boundb(t)

for the impulse response matrix of LTI systems as in (4.20). Although such bounds

have been determined in the existing literature, it turns out that their numerical

evaluation becomes infeasible for large LTI systems. Because of this reason, this

chapter develops new methods for the numerical evaluation of norm bounds for

the impulse response matrix of large LTI systems. Since the obtained method is

general and not limited to vehicle applications, it is presented in a separate self-

contained chapter.

6.1 Preliminaries

We first introduce the necessary notation in Section 6.1.1. Then, we state several

basic results for matrices and block matrices as well as the matrix exponential

function in Section 6.1.2. We formalize the Jordan canonical form in Section

6.1.3 and recall the Schur decomposition in Section 6.1.4. Finally, we summarize

and discuss existing bounds for the matrix exponential function in Section 6.1.5.

6.1.1 Notation

Consider a quadratic matrixA∈ C
n×n. We writeai j for the entry in thei-th row

and j-th column ofA. The set of eigenvalues ofA is denoted asspec(A) and

α(A) = max{Re(λ )|λ ∈ spec(A)} is the largest real part of any eigenvalue in

spec(A). Writing ||A|| for the induced matrix norm,κ(A) = ||A−1|| · ||A|| is the

condition number ofA if A is invertible. Furthermore, usingA⋆ for the conjugate
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transpose ofA, µ(A) = max{µ|µ ∈ spec((A+A⋆)/2)} is the logarithmic norm of

A [67].

We write In for the identity matrix with dimensionn, T for the set of upper

triangular matrices such thatai, j = 0 for all 1≤ i, j ≤ n with i > j if A∈ T and

S ⊂ T for the set of strictly upper triangular matrices such thatai, j = 0 for all

1≤ i, j ≤ n with i ≥ j if A∈ S . A matrix A is nilpotent ifAk = 0 for some index

k and the smallest suchk is called the nilpotency index ofA. Consider a matrix

A∈T . We writeA= AD+AN, wherebyAD is the diagonal part ofA andAN ∈S

is the strictly upper triangular part ofA.

In this chapter, we employ block matrices with quadratic blocks on the main

diagonal. In general, we write

B=










B11 B12 · · · B1m

B21 B22 · · · B2m
...

...
.. .

...

Bm1 Bm2 · · · Bmm










for anm×m block matrix, wherebyBii ∈ C
ni×ni is anni ×ni complex matrix for

1≤ i ≤mandBi j ∈C
ni×n j for 1≤ i, j ≤m. We use the notation diag(B11, · · · ,Bmm)

for block diagonal matrices withBi j = 0 for i 6= j. Additionally, we call a block

matrix (strictly) upper triangular if the relevant block matrices are zero.

6.1.2 Basic Results Regarding Matrices, Block Matrices and the Matrix

Exponential Function

Lemma 6 summarizes several results regarding matrices and block matrices that

are used to prove the main results in this thesis.

Lemma 6. Consider that T,U ∈ T are upper triangular matrices, S∈ S is a

strictly upper triangular matrix and R is an invertible diagonal matrix with com-

patible dimensions. Then,

1. T ·U and U·T are upper triangular,
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2. S·T and T·S are strictly upper triangular,

3. T−1 is upper triangular if T is invertible,

4. R−1 ·T ·R= R−1 · (TD +TN) ·R= TD +R−1 ·TN ·R.

We study bounds for the norm of the matrix exponential function eAt of ma-

trices A ∈ R
n×n. To this end, we present several relevant results. A possible

representation of the matrix exponential function is

eAt =
∞

∑
k=0

Aktk

k!
. (6.1)

Then, it holds for the matrix exponential function of a blockdiagonal matrix that

ediag(B11,...,Bmm) t = diag(eB11t , . . . ,eBmmt). (6.2)

Finally, we state a result that allows evaluating the matrixexponential function

of a matrix product with commuting matrices [68, 69].

Proposition 2. Let A,B∈ R
n×n. Then, it holds for all t∈ R that

e(A+B) t = eAt eBt (6.3)

if and only if AB= BA.

6.1.3 Jordan Canonical Form

We next provide a formal definition of the Jordan canonical form to be used in the

remainder of the thesis.

Definition 3. Let J∈C
n×n be a matrix. Then, J is a Jordan matrix with eigenvalue

λ and Segre characteristic (d1,d2, . . . ,ds) if the following conditions hold:

1. d1+d2+ · · ·+ds = n is a partition of n with d1 ≥ d2 ≥ ·· · ≥ ds ≥ 1 and J

is an s×s block matrix with Jii ∈Cdi×di for i = 1, . . . ,s.

2. The main diagonal entries of Jii are all λ for i = 1, . . . ,s.
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3. The superdiagonal entries of Jii are equal to 1 for i= 1, . . . ,s.

4. All other blocks of J are zero. That is, Ji j = 0 if j 6= i.

An example Jordan matrix with eigenvalueλ and Segre characteristic(4,4,2,1)

is given in (6.4).

J =




























λ 1 0 0 0 0 0 0 0 0 0

0 λ 1 0 0 0 0 0 0 0 0

0 0 λ 1 0 0 0 0 0 0 0

0 0 0 λ 0 0 0 0 0 0 0

0 0 0 0 λ 1 0 0 0 0 0

0 0 0 0 0 λ 1 0 0 0 0

0 0 0 0 0 0 λ 1 0 0 0

0 0 0 0 0 0 0 λ 0 0 0

0 0 0 0 0 0 0 0 λ 1 0

0 0 0 0 0 0 0 0 0 λ 0

0 0 0 0 0 0 0 0 0 0 λ




























(6.4)

Using the Jordan matrix for a given eigenvalueλ in Definition 3 as the building

block, it is possible to define the general Jordan matrix.

Definition 4. Let J∈C
n×n be a square matrix with the distinct eigenvaluesλ1, . . . ,λm.

J is in Jordan canonical form if

J = diag(J1, . . . ,Jm), (6.5)

whereby Ji ∈C
ni×ni is a Jordan matrix with eigenvalueλi for i = 1, . . . ,k. We write

si for the number of diagonal blocks of Ji.

It is a well-established result in the literature that any complex matrix can be

transformed to its Jordan canonical form.

Proposition 3. Let A∈ C
n×n be a matrix. Then, there exists an invertible matrix

TJ such that T−1
J AJ TJ = J, where J is a matrix in Jordan canonical form.
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6.1.4 Schur Decomposition

We further employ the Schur decomposition as formalized in Proposition 4.

Proposition 4. Let A∈ R
n×n be a matrix. Then, A can be transformed to

S= Q−1AQ, (6.6)

where Q is a unitary matrix and S∈T . In that case, S is denoted as a Schur form

of A.

6.1.5 Existing Bounds for the Matrix Exponential Function

Various bounds for the matrix exponential function are provided in the literature.

In this section, we summarize the most relevant bounds as identified in [63, 69].

Consider a complex matrixA∈ C
n×n.

The first bound is derived based on a result on the logarithmicnorm of matrices

by [67].

Lemma 7. Assume that T is an invertible matrix and write E= T−1AT. Then,

||eAt|| ≤ lbA(t) := κ(T) ·eµ(E) t . (6.7)

Also, for eachε > 0, there exists an invertible T such that

µ(E)≤ α(A)+ ε. (6.8)

The second bound is based on the Jordan canonical form as introduced in

Section 6.1.3.

Lemma 8. Assume that TJ is an invertible matrix such that J= T−1
J ATJ is in

Jordan canonical form and let b be the size of the largest Jordan block of J. Then,

it holds that

||eAt|| ≤ jbA(t) := b·κ(TJ) ·e
α(A) t · max

0≤k<b

tk

k!
. (6.9)
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We denote the bound in (6.9) as theJordan bound.

The third bound is based on a transformation ofA to an upper triangular ma-

trix.

Lemma 9. Let Q be an invertible matrix such that S= Q−1AQ∈ T . Write

S= SD +SN. Then,

||eAt|| ≤ κ(Q) ·eα(A) t ·
n−1

∑
k=0

||SN||
k tk

k!
. (6.10)

In particular, if a Schur decomposition ofA is used such thatκ(Q) = 1, the

following corollary is obtained.

Corollary 5. Let S= Q−1AQ be a Schur form of A and write S= SD+SN. Then,

||eAt|| ≤ sbA(t) := eα(A) t ·
n−1

∑
k=0

||SN||
k ·

tk

k!
. (6.11)

We denote the bound in (6.11) as theSchur bound.

The bounds introduced in this section show different properties and it is argued

in [63] that the effectiveness of each bound depends onA and the relevant time

instancest. If all the eigenvalues ofA are in the left half complex plane, the bound

in (6.7) can ensure a monotonically decreasing exponentialdecay that is slower

thaneα(A) t . The speed of the decay can be adjusted by a similarity transformation

as in (6.8). Here, increasing the speed of the decay such thatµ(E) ≈ α(A) gen-

erally has the effect that the maximum valueκ(T) of the bound att = 0 becomes

very large.

The bounds in (6.9) and (6.11) both constitute the product ofa decaying expo-

nential with exponentα(A) t and an increasing polynomial int with positive co-

efficients. That is, the exponential decay is faster compared to the bound in (6.7).

On the other hand, the bounds in (6.9) and (6.11) generally show a hump [70]

(maximum) such that the exponential decay is dominant only for large enough

times. Here, the size of the hump depends on the growth of the polynomial in

(6.9) and (6.11), which is determined by the polynomial coefficients and the poly-

nomial order.
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In (6.9), the polynomial coefficients are always equal to oneand the polyno-

mial order only depends on the sizeb of the largest Jordan block in (6.9) and

not on the size ofA. A disadvantage of the bound in (6.9) is the requirement

of obtaining the Jordan canonical form ofA, which is generally not possible in

floating point arithmetic [71, 72]. In addition, the condition numberκ(TJ) can be

arbitrarily large [70].

On the other hand, the bound in (6.11) depends on the Schur decomposition,

which can be obtained in a stable way using the QR algorithm [73, 74]. Moreover,

sinceQ is a unitary matrix, it is ensured that the bound is equal to one for t = 0

and hence close for very small times. Nevertheless, the polynomial coefficients in

(6.11) are given by the norm||SN|| and the polynomial order grows with the sizen

of A in (6.11). That is, a large maximum is commonly observed before the bound

exponentially decays to zero unless||SN|| and/orn are sufficiently small.

In summary, all bounds have to be considered as conservative. Although

the bounds in (6.9) and (6.11) ensure exponential decay withα(A) for large

enough times, they can assume a very large maximum especially for large and

ill-conditioned matricesA, which impairs the numerical bound computation.

The subject of this chapter is the computation of bounds on the matrix expo-

nential function that can be better evaluated for large and not well-conditioned

matricesA. Hereby, the main focus is on obtaining bounds with a fast decay and

a maximum value that can be evaluated numerically. To this end, Section 6.2 de-

rives new bounds based on the Jordan canonical form and Section 6.3 proposes a

new method that is based on the Schur decomposition.

6.2 Improved Bounds for the Matrix Exponential Function Using the

Jordan Canonical Form

This section focuses on computing bounds for the matrix exponential function

using the Jordan canonical form. Section 6.2.1 states several relevant properties

of the Jordan canonical form and Section 6.2.2 determines a general result that

slightly improves the bound in (6.9). A method for obtaininga faster decay of

the bound is developed in Section 6.2.3 and an evaluation andcomparison of the
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presented results is given in Section 6.2.4.

6.2.1 Properties of the Jordan Canonical Form

We next state several basic results for matrices in Jordan canonical form.

Proposition 5. Let J= diag(J1, . . . ,Jm) ∈ C
n×n be a matrix in Jordan canonical

form with Jordan matrices Ji ∈C
ni×ni with eigenvalueλi and Segre characteristic

(di,1, . . . ,di,si) for i = 1, . . . ,m. Then, it holds that

1. J can be written as

J = JD +JN = diag(λ1 In1, . . . ,λmInm)+diag(N1, . . . ,Nm), (6.12)

where Ni is a nilpotent Jordan matrix with the same Segre characteristic as

Ji for i = 1, . . . ,m.

2. ||JN||= 1,

3. JD and JN commute,

4. the nilpotency index of JN is b := maxi=1,...,mdi,1.

Proof. 1. Directly follows from Definition 4.

2. SinceJN = diag(N1, . . . ,Nm), it holds that

||JN||= max
1≤i≤m

||Ni||.

Considering that the structure ofNi implies ||Ni|| = 1 for i = 1, . . . ,m, the

assertion directly follows.

3. It holds that

JD ·JN = diag(λ1 In1 ·N1, . . . ,λmInm ·Nm)

= diag(N1 ·λ1 In1, . . . ,Nm ·λmInm) = JN ·JD.
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4. It holds that

Jk
N = diag(Nk

1, . . . ,N
k
m)

and the nilpotency index ofNi is equal todi,1 according to [75]. That is, for

k < b, there exists ani such thatNk
i 6= 0 and henceJk

N 6= 0. However for

k= b, it follows thatNb
i = 0 for all i = 1, . . . ,m, implying that alsoJb

N = 0.

6.2.2 Bound Derivation for the Jordan Canonical Form

Using the properties in Proposition 5, it is now possible to determine an improved

bound for the matrix exponential function based on the Jordan canonical form.

Theorem 11.Assume that A∈C
n×n is a matrix. Let J=T−1

J ATJ = diag(J1, . . . ,Jm)∈

C
n×n be the Jordan canonical form of A with Jordan matrices Ji ∈ C

ni×ni with

eigenvalueλi and Segre characteristic(di,1, . . . ,di,si) for i = 1, . . . ,m. Write b=

max1≤i≤mdi,1. Then,

||eAt|| ≤ κ(TJ) ·e
α(A) t ·

b−1

∑
k=0

tk

k!
. (6.13)

Proof. We first compute

||eAt||= ||TJ eT−1
J ATJ T−1

J || ≤ κ(TJ)||e
J t||.

Considering Proposition 5 item 3., it holds thatJD ·JN = JN ·JD. That is, Proposi-

tion 2 implies that

eJ t = e(JD+JN) t = eJD t eJN t .

We further know from Proposition 5 item 4. thatJb
N = 0. Using the representation

of eJN t according to (4.16) and noting that||JN|| = 1 from Proposition 5 item 2.,
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we obtain

||eAt|| ≤ κ(TJ) · ||e
(JD+JN) t ||= κ(TJ) · ||e

JD t ·eJN t || ≤ κ(TJ) · ||e
JD t || · ||eJN t ||

= κ(TJ) ·e
α(A) t · ||

∞

∑
k=0

Jk
Ntk

k!
||= κ(TJ) ·e

α(A) t · ||
b−1

∑
k=0

Jk
Ntk

k!
||

≤ κ(TJ) ·e
α(A) t ·

b−1

∑
k=0

||JN||
ktk

k!
= κ(TJ) ·e

α(A) t ·
b−1

∑
k=0

tk

k!

It is readily observed that the bound in (6.13) is smaller than the bound in (6.9)

since
b−1

∑
k=0

tk

k!
≤ b· max

0≤k<b

tk

k!
.

Of course, it has to be noted that the difference between the two bounds need not

be significant. Nevertheless, as will be shown in the subsequent section, the bound

formulation in (6.13) allows for a straightforward improvement of the bound es-

pecially for sufficiently small times.

6.2.3 Adjusting the Bounds for Sufficiently Small Times

The bound in (6.13) is the product ofe−α(A) t (monotonically decreasing) and the

polynomial∑b−1
k=0

tk

k! (monotonically increasing). Hereby, the polynomial coeffi-

cients are determined by the fact that||JN|| = 1. Accordingly, depending on the

value of α(A), the bound in (6.13) shows a large maximum (hump) and slow

decay. In this section, an additional transformation with amatrix R∈ R
n×n is in-

troduced in order to decrease this hump and to achieve fasterdecay to zero. To

this end, we use the properties stated in the following proposition.

Proposition 6. Let J= diag(J1, . . . ,Jm) ∈ C
n×n be a matrix in Jordan canon-

ical form with Jordan matrices Ji ∈ C
ni×ni with eigenvalueλi and Segre char-

acteristic (di,1, . . . ,di,si) for i = 1, . . . ,m. Write b= max1≤i≤mdi,1. Let r < 1

and define Ri, j = diag(r0, . . . , rdi, j−1) for i = 1, . . . ,m and j= 1, . . . ,si. Let Ri =
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diag(Ri,1, . . . ,Ri,si) for i = 1, . . . ,m and R= diag(R1, . . . ,Rm). WriteĴ=R−1J R=

ĴD + ĴN. Then, it holds that̂JD = JD, ĴN = r JN andκ(R) = r1−b.

Proof. First, it holds forĴD that

R−1JD R= diag(R−1
1 , . . . ,R−1

m )diag(λ1 In1, . . . ,λmInm)diag(R1, . . . ,Rm)

= diag(λ1R−1
1 In1R1, . . . ,λmR−1

m InmRm)

= diag(λ1 In1, . . . ,λmInm) = JD.

Next, we consider̂JN:

R−1JN R= diag(R−1
1 , . . . ,R−1

m )diag(N1, . . . ,Nm)diag(R1, . . . ,Rm)

= diag(R−1
1 N1R1, . . . ,R

−1
m NmRm).

We show thatR−1
i Ni Ri = r ·Ni for i = 1, . . . ,m. Recall thatRi = diag(Ri,1, . . . ,Ri,si)

by definition and writeNi = diag(Ni,1, . . . ,Ni,si), wherebyNi, j represents the nilpo-

tent Jordan block of sizedi, j . Then,

R−1
i Ni Ri = diag(R−1

i,1 , . . . ,R
−1
i,si
)diag(Ni,1, . . . ,Ni,si)diag(Ri,1, . . . ,Ri,si)

= diag(R−1
i,1 Ni,1Ri,1, . . . ,R

−1
i,si

Ni,si Ri,si).

Considering thatRi, j = diag(r0, . . . , rdi, j−1), R−1
i, j = diag(r0, . . . , r1−di, j ) andNi, j is

a matrix where the superdiagonal entries are equal to 1 and all the other entries

are zero, it is readily observed thatR−1
i, j Ni, j Ri, j = rNi, j . Hence,R−1

i Ni Ri = rNi

which impliesĴN = r JN.

Finally, sincer < 1, the largest singular value ofR is 1 and the smallest singu-

lar value ofR is rb−1, that is,κ(R) = 1/rb−1 = r1−b.

Using Proposition 6, it is possible to modify the polynomialcoefficients in the

bound for the matrix exponential function as shown in Theorem 12.

Theorem 12. Let A, J, Ji, i = 1, . . . ,m, b, R be defined as in Theorem 11 and
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Proposition 6. Then, it holds that

||eAt|| ≤ ijbA(t) := κ(TJ ·R) ·e
α(A) t ·

b−1

∑
k=0

rk · tk

k!
≤ r1−bκ(TJ) ·e

α(A) t ·
b−1

∑
k=0

rk · tk

k!
.

(6.14)

We denote the bound in(6.14)as improved Jordan bound.

Proof. In analogy to the proof of Theorem 11, it follows from Proposition 6 that

||eAt|| ≤ κ(TJ R) ·eα(A) t ·
b−1

∑
k=0

||ĴN||
ktk

k!
= κ(TJ R) ·eα(A) t ·

b−1

∑
k=0

||r ·JN||
ktk

k!

= κ(TJ R) ·eα(A) t ·
b−1

∑
k=0

rk · tk

k!
≤ r1−bκ(TJ) ·e

α(A) t ·
b−1

∑
k=0

rk · tk

k!
.

Inspecting (6.14), it is possible to adjust the effect of thepolynomial∑b−1
k=0

rk · tk

k!
on the overall bound. In order to achieve fast decay to zero,r should be chosen

depending onα(A) in order to decrease the maximum ofeα(A) t ·∑b−1
k=0 rk ·

tk

k!
. The

subsequent section provides several examples for this choice.

6.2.4 Evaluation Examples

We consider two examples for the evaluation of the bound in (6.14). The first

example uses the matrixA1 = TJ1 J1T−1
J1

with

J1 =

















−5 1 0 0 0 0 0

0 −5 1 0 0 0 0

0 0 −5 0 0 0 0

0 0 0 −5 1 0 0

0 0 0 0 −5 1 0

0 0 0 0 0 −5 0

0 0 0 0 0 0 −5
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and the randomly generated transformation matrix

TJ1 =

















3 7 5 7 4 5 4

0.25 0.2 0.45 0.4 0.45 0.25 0

100 0 0 800 100 100 200

6 2 4 0 2 8 1

200 900 100 300 100 600 100

1.8 0.3 2.7 0.6 0.3 0.9 0.6

6 8 0 8 8 5 4

















.

That is,A1 has a single eigenvalue−5 and Segre characteristic(3,3,1) andκ(TJ1)=

4021. Evaluating the bound in (6.14) for different values ofr gives the bounds in

Fig. 6.1.
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1
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jbA1

ijbA1
(r = 1.0)

ijbA1
(r = 0.2)

ijbA1
(r = 0.1)

ijbA1
(r = 0.05)

sbA1

Figure 6.1: Bound computation for the example matrixA1.

It can be seen in this example that a choice ofr = 0.2 supports fast convergence

to zero. Choosing a smaller value ofr increases the condition numberκ(TJ1 R).

Hence, the initial value of the bound is significantly increased, whereas the ex-

ponential decay is not affected. Fig. 6.1 also confirms that the existing Jordan

bound in (6.9) is more conservative than the improved Jordanbound in (6.14).
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For comparison, we also state the Schur bound according to (6.11) as

sbA1(t) = e−5t ·
6

∑
k=0

1185k tk

k!
(6.15)

with a maximum at 2.86·1013. That is, the bound in (6.11) is considerably more

conservative for this example except for very small times (see Fig. 6.1).

As the second example, we useA2 = TJ2 J2T−1
J2

with

J2 =

















−1 1 0 0 0 0 0

0 −1 1 0 0 0 0

0 0 −1 0 0 0 0

0 0 0 −1 1 0 0

0 0 0 0 −1 0 0

0 0 0 0 0 −3 1

0 0 0 0 0 0 −3

















and the randomly generated transformation matrix

TJ2 =

















600 1400 1000 14006800 1000 800

1000 800 1800 1600 1800 1000 0

200 0 0 1600 200 200 400

0.3 0.1 0.2 0 0.1 0.4 0.1

0.1 0.4 0.1 0.2 0.1 0.3 0.1

6 1 9 2 1 3 2

6 8 0 8 865 4

















.

That is,A2 has a the eigenvalue−1 with Segre characteristic(3,2) and the eigen-

value−3 with Segre characteristic(2). In this example,κ(TJ2) = 3086. Evaluat-

ing the bound in (6.14) for different values ofr gives the bounds in Fig. 6.2.

In this example, the choice ofr = 0.1 is most suitable. Here, the hump in

the bound can be observed when choosingr too large. It can also be seen that

smaller values ofr are required compared to the first example due to the slower
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Figure 6.2: Bound computation for the example matrixA2.

exponential decay with eigenvalue−1. Fig. 6.2 again confirms that the Jordan

bound in (6.9) and the Schur bound with

sbA2(t) = e−t ·
7

∑
k=0

11.9k tk

k!
(6.16)

are more conservative than the improved Jordan bound.

6.3 Improved Bound using the Schur Decomposition

It is shown in Section 6.2.4 that the improved Jordan bound can be significantly

better than the Schur bound in (6.11) except for very small times. Nevertheless,

the bound in (6.14) requires the availability of the Jordan canonical form, whose

computation is generally numerically not stable [71, 72]. In this section, we pro-

pose an improved bound using the Schur decomposition which can be computed

in a stable way. To this end, we address two main reasons for the conservativeness

of the bound in (6.11). First, as confirmed by the examples in Section 6.2.4, it

holds that the value of||SN|| can be large. Second, the nilpotency index ofSN is

generally equal to the dimensionn of A, leading to a polynomial degree ofn−1

in (6.11). Accordingly, the proposed method attempts to reduce the nilpotency

index ofSN using a similarity transformation ofA to block diagonal form. Then,

the norm of the strictly upper triangular part of the resulting matrix is further de-
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creased with the aim of reducing||SN||.

6.3.1 Bound Derivation

As the first step, we transform the matrixA to block diagonal form. Hereby,

similar to [76], we first determine an ordered Schur decomposition, where sim-

ilar (close) eigenvalues ofA are grouped next to each other. Then, we apply a

method to eliminate off-diagonal blocks by using a special similarity transform

and a Sylvester equation. To this end, we employ the following proposition that is

adapted to the notation in this thsis from [76].

Proposition 7. Let A∈R
n×n be a matrix and letδ > 0 be a constant. Then, there

exists a unitary transformation U∈ R
n×n and a p∈ N such that

S=U−1AU =










S11 S12 · · · S1p

0 S22 · · · S2p
...

. . . . . .
...

0 0 · · · Spp










(6.17)

and

• Sii is upper triangular for i= 1, . . . , p,

• eitherλ is the sole eigenvalue of Sii or there exists another eigenvalueλ ′ of

Sii such thatλ 6= λ ′ and|λ −λ ′| ≤ δ ,

• for all i , j with i 6= j, it holds that ifλi is an eigenvalue of Sii andλ j is an

eigenvalue of Sj j , then|λi −λ j |> δ .

That is,S in (6.17) is an ordered Schur decomposition ofA. On the one hand,

each blockSii of Seither contains a single eigenvalue or each eigenvalue ofSii has

an adjacent eigenvalue with a distance that is bounded byδ . On the other hand,

different blocksSii andSj j , i 6= j, have eigenvalues with a distance larger thanδ .

Hereby, it has to be noted that the unitary transformationU in (6.17) can be com-

puted efficiently. Algorithm 4.1 in [76] allows grouping theeigenvalues ofA into

107



p groups, whereas Algorithm 4.2 in [76] determines a similarity transformation

S=U−1AU such that the eigenvalues in each group are adjacent inS.

After obtainingS in (6.17), we transformS to a block diagonal matrix. It is

known that such transformation always exists if the diagonal blocks of S have

distinct eigenvalues [77, 78].

Proposition 8. Let S be given as in(6.17)such thatspec(Sii )∩spec(Sj j ) = /0 for

all i 6= j. Then, S is similar tôS= diag(S11, . . . ,Spp).

The computation of diag(S11, . . . ,Spp) is based on the following lemma [79,

75, 78], which establishes such transform for block matrices with two blocks.

Lemma 10. Let S=

[

S11 S12

0 S22

]

andspec(S11)∩spec(S22) = /0. Define the trans-

formation matrix Q=

[

I X

0 I

]

such that X is the unique solution of

S11X−X S22+S12 = 0. (6.18)

Then, Q−1SQ= diag(S11,S22).

The successive application of Lemma 10 leads to the iterative Algorithm 1 for

computing diag(S11, . . . ,Spp) for general block matrices.

The algorithm initializes the matrix̂S with the ordered Schur decomposition

S and successively applies the similarity transformation inLemma 10 to make

the block( j, i) of Ŝ zero starting from the block(p− 1, p). According to the

transformation, all blocks(k, l)with l > i ork> j remain unchanged. In particular,

if a block(k, l) has been made zero, it will remain zero in all subsequent iterations.

The resulting matrix̂S= (U T̂)−1A(U T̂) after applying grouping of eigenval-

ues as in Proposition 7 and block diagonalization as in Proposition 8 and Algo-
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input : S
output: T̂, Ŝ

1 Initialize T̂ = I andŜ= S
2 for i = p, . . . ,2 do
3 for j = i−1, . . . ,1 do
4 Solve the Sylvester equation

5 −X Sii +Sj j X+Sji = 0

6 Define the transformation matrixQ= I
7 Set the block( j, i) of Q to X
8 ComputeŜ= Q−1 ŜQandT̂ = T̂ Q
9 end

10 end

Algorithm 1: Transformation of a block triangular matrixSto a block diagonal
matrix Ŝ.

rithm 1 is a block diagonal matrix

Ŝ=










Ŝ11 0 · · · 0

0 Ŝ22
. . . 0

...
... . . .

...

0 0 · · · Ŝpp










(6.19)

and can be written aŝS= ŜD + ŜN, whereby

ŜD =










D̂11 0 · · · 0

0 D̂22
. .. 0

...
... . ..

...

0 0 · · · D̂pp










andŜN =










N̂11 0 · · · 0

0 N̂22
. .. 0

...
... ...

...

0 0 · · · N̂pp










. (6.20)

For eachi = 1, . . . , p, D̂ii is a diagonal matrix with dimensionqi and the eigen-

values of the block̂Sii on the diagonal.N̂ii is a strictly upper triangular matrix

with nilpotency indexqi. It further holds that each block̂Sii of Ŝ, i = 1, . . . , p

has similar eigenvalues and different blocks have separated eigenvalues. In the

scope of this thesis, the latter fact is particularly usefulsince it aids in limiting

the condition number of the related similarity transformation [77, 80]. Writing
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q= maxi=1,...,pqi , the bound for the matrix exponential function after this step is

denoted as

||eAt|| ≤ isb1A(t) := κ(U T̂)eα(A) t
q−1

∑
k=0

||ŜN||
k tk

k!
, (6.21)

The remaining issue in the bound computation is the dependency on the norm

of the strictly upper triangular part̂SN of Ŝ. In the next step, we propose a method

for decreasing||ŜN||.

To this end, we apply a diagonal transformation [81]

Rii = diag(1, r, . . . , rqi−1). (6.22)

to decrease the norm ofNii below a desired limitβ . Hereby, the value ofr in Rii is

computed by a bi-section algorithm. Define the upper boundru and lower bound

r l such that||R−1
ii Nii Rii || > β for r = ru and||R−1

ii Nii Rii || < β for r = r l. Then,

Algorithm 2 bisects the interval betweenr l andru until

||R−1
ii Nii Rii || ≤ β andβ −||R−1

ii Nii Rii || ≤ θ .

That is, the deviation of||R−1
ii Nii Rii || from the desired valueβ is below a given

thresholdθ . ComputingRii for i = 1, . . . , p, the overall transformation matrix of

this step isR= diag(R11, . . . ,Rpp).

The result of the computation in this section is a matrix

S̃=T−1AT=










S̃11 0 · · · 0

0 S̃22
.. . 0

...
... .. .

...

0 0 · · · S̃pp










=










D̃11 0 · · · 0

0 D̃22
. .. 0

...
... . ..

...

0 0 · · · D̃pp










+










Ñ11 0 · · · 0

0 Ñ22
. . . 0

...
... .. .

...

0 0 · · · Ñpp










with the overall similarity transformationT =U T̂ Rcombining (6.17), Algorithm

1 and 2. For eachi = 1, . . . , p, D̃ii = D̂ii in (6.20) and||Ñii || ≤ β due to Algorithm
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input : Ŝii , β , θ
output: Rii

1 Nii = Ŝii −diag(Ŝii )
2 if ||Nii || ≤ β then
3 Rii = Iqi

4 else
5 Initialize: ru = 1, r l = 0
6 while ||Nii ||−β > 0∨||Nii ||−β <−θ do

7 r =
ru+ r l

2
8 Rii = diag(1, r, . . . , rgi−1)

9 S̃ii = R−1
ii Ŝii Rii

10 Nii = S̃ii −diag(S̃ii )
11 if ||Nii ||−β > 0 then
12 ru = r
13 else if||Nii ||−β <−θ then
14 r l = r
15 end
16 end
17 end

Algorithm 2: Norm bound forNii .

2. Hence, the bound in (6.11) is modified to theimproved Schur bound

||eAt|| ≤ isb2A(t) := κ(T)eα(A) t
q−1

∑
k=0

β k tk

k!
, (6.23)

The bound computation for||eAt|| is summarized in Algorithm 3.

input : A, δ , β , θ
output: isbA(t)

1 DetermineS in (6.17)
2 DetermineŜaccording to Algorithm 1 usingδ
3 Adjust the norm of the strictly upper triangular part ofŜii using

Algorithm 2 andβ , θ
4 Evaluate the bound in (6.23)

Algorithm 3: Overall algorithm for computing an improved Schur bound
on the matrix exponential function.

Hereby, the bound in (6.23) can be computed in a numerically stable way and
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improves the bound in (6.11) from the existing literature already for small times

due to the smaller polynomial degree of the block matrices and the reduced norm

of the strictly upper triangular part of the block matrices.

6.3.2 Numerical Evaluation

In order to evaluate the improved bound computation, we perform numerical ex-

periments using randomly generated matrices with different properties. In our

experiments, these matrices are computed in the form

A=V JV−1 ∈ R
n×n,

whereV ∈ R
n×n is an invertible matrix andJ ∈ R

n×n is a Jordan matrix. The

real part of the eigenvalues is selected randomly (uniformly distributed) from an

interval [rr ·λmax,λmax], wherebyλmax< 0 andrr quantifies the range of the real

parts. The imaginary part of complex eigenvalues is selected randomly (uniformly

distributed) from the interval[0, r i · |λmax|]. The ratio of complex eigenvalues is

given asrc (such thatA hasrc · n complex eigenvalues) and the transformation

matrixV is randomly generated with a given condition numberκ(V).

We next investigate the improvement of the bounds in (6.21) and (6.23) com-

pared to the original Schur bound (6.11). In each experiment, we generate 100

different matrices with the respective properties and record the improvement as

the logarithm of the ratio of the maxima of the different bounds over time:

r1 = log10(
maxt isb2(t)
maxt sb(t)

), r2 = log10(
maxt isb2(t)
maxt isb1(t)

) (6.24)

That is, r1 shows the improvement when using the bound in (6.23), whereas r2

shows the improvement when applying the diagonal similarity transformation in

Algorithm 2. Since the improvements are in the order of powers of 10, we take

the logarithm of the respective ratios. We note that all our experiments are carried

out using quadruple precision floating point numbers [82].

In the first experiment, we consider the dependency ofr1 andr2 on the real

part of the eigenvalues ofA, which characterizes the rate of change to be ex-
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pected in the dynamical system modeled byA. In this experiment,n = 50 and

κ(V) = 1000 is chosen (the dependency onn andκ(V) will be studied in sub-

sequent experiments). The results are obtained for different ranges of the real

partrr, different ratios of complex eigenvaluesrc ∈ {0,0.4,0.7,1.0} and different

numbers of diagonal blocksp in (6.17). The average values ofr1 andr2 for 100

randomly generated matrices per data point are shown forr i = 100 in Table 6.1

and forr i = 10000 in Table 6.2.

Table 6.1: Improvementr1 and r2 depending onrr, p and rc for κ(V) = 1000,
n= 50 andr i = 100.

rr = 10 rr = 100 rr = 1000 rr = 10000 rr = 100000
p rc r1 r2 r1 r2 r1 r2 r1 r2 r1 r2

2
0.0 -126.3 -46.2 -163.1 -62.3 -182.0 -71.4 -188.4 -72.1 -190.3-72.1
0.4 -158.0 -65.8 -158.4 -67.9 -170.6 -63.8 -177.8 -68.5 -183.8-69.6
0.7 -160.3 -69.0 -156.4 -65.4 -167.0 -64.2 -177.8 -68.5 -176.7-68.4
1.0 -160.5 -68.3 -158.3 -69.6 -164.7 -64.0 -175.5 -68.8 -176.8-71.7

4
0.0 -131.2 -17.9 -171.6 -26.8 -191.4 -30.6 -193.6 -30.6 -198.2-31.9
0.4 -173.5 -32.1 -171.3 -33.0 -181.7 -28.8 -193.5 -31.2 -194.5-31.7
0.7 -176.0 -36.1 -171.7 -36.1 -181.6 -32.0 -189.7 -32.3 -191.2-32.0
1.0 -178.2 -38.8 -171.4 -35.0 -178.9 -30.4 -186.2 -30.7 -188.7-31.2

6
0.0 -133.9 -9.3 -174.9 -15.8 -193.7 -18.3 -201.4 -18.7 -201.9 -19.3
0.4 -178.3 -21.0 -175.9 -19.3 -187.6 -18.1 -198.8 -19.4 -199.2-19.2
0.7 -181.0 -21.7 -176.7 -22.5 -184.7 -18.4 -197.3 -20.0 -193.6-18.9
1.0 -183.4 -23.2 -176.9 -22.8 -180.6 -18.7 -191.9 -18.6 -192.9-19.1

8
0.0 -134.8 -5.6 -177.0 -10.9 -195.5 -12.4 -200.9 -12.4 -211.9 -13.2
0.4 -181.6 -14.5 -177.0 -13.7 -190.0 -13.6 -204.1 -13.4 -200.2-13.1
0.7 -183.1 -16.4 -180.0 -16.4 -188.0 -13.7 -195.6 -13.3 -200.0-12.8
1.0 -186.9 -16.6 -180.3 -16.4 -185.7 -14.6 -195.1 -13.6 -192.9-11.7

10
0.0 -135.1 -3.1 -177.5 -7.0 -199.1 -9.8 -207.4 -9.5 -208.8 -9.5
0.4 -183.5 -11.3 -181.6 -11.8 -193.8 -10.1 -199.7 -10.3 -201.9-8.8
0.7 -185.1 -12.3 -181.5 -13.7 -194.7 -11.6 -199.7 -9.8 -201.7 -9.6
1.0 -187.4 -12.9 -182.9 -13.0 -188.3 -11.6 -195.8 -8.3 -196.1 -8.6

The observations are summarized as follows. First a considerable improve-

ment is observed in all cases. This improvement is mostly achieved because of the

block diagonalization in Algorithm 1. The contribution of Algorithm 2 is more

significant if the number of blocksp is small. Conversely, the overall improve-

ment is generally large if more blocksp are used. This observation corresponds

to the fact thatq in (6.23) is expected to be smaller ifp is larger. The effect of the
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Table 6.2: Improvementr1 and r2 depending onrr, p and rc for κ(V) = 1000,
n= 50 andr i = 10000.

rr = 10 rr = 100 rr = 1000 rr = 10000 rr = 100000
p rc r1 r2 r1 r2 r1 r2 r1 r2 r1 r2

2
0.0 -126.3 -46.2 -163.1 -62.3 -182.0 -71.4 -188.4 -72.1 -190.3-72.1
0.4 -201.9 -69.9 -199.0 -67.7 -185.2 -63.2 -163.7 -59.4 -166.4-55.7
0.7 -205.7 -70.7 -201.6 -69.3 -182.2 -64.8 -162.1 -60.2 -167.1-57.8
1.0 -207.3 -72.8 -201.3 -69.0 -185.5 -67.7 -159.2 -59.5 -159.9-55.7

4
0.0 -131.2 -17.9 -171.6 -26.8 -191.4 -30.6 -193.6 -30.6 -198.2-31.9
0.4 -239.6 -33.7 -235.2 -34.9 -216.6 -31.4 -185.5 -30.0 -185.7-27.5
0.7 -243.1 -35.1 -237.2 -34.1 -215.2 -33.3 -185.1 -30.7 -183.9-25.8
1.0 -245.3 -37.6 -235.3 -38.1 -213.8 -36.0 -181.5 -31.5 -182.2-27.6

6
0.0 -133.9 -9.3 -174.9 -15.8 -193.7 -18.3 -201.4 -18.7 -201.9 -19.3
0.4 -254.7 -22.5 -247.2 -22.5 -227.0 -21.4 -196.8 -21.3 -194.7-17.8
0.7 -255.3 -23.5 -248.0 -24.1 -226.1 -22.7 -198.6 -20.9 -189.3-17.4
1.0 -256.9 -23.1 -249.9 -24.1 -228.1 -22.3 -198.6 -20.5 -187.5-18.6

8
0.0 -134.8 -5.6 -177.0 -10.9 -195.5 -12.4 -200.9 -12.4 -211.9 -13.2
0.4 -261.8 -16.2 -254.8 -16.0 -229.5 -15.8 -205.2 -15.5 -195.6-13.1
0.7 -263.4 -17.9 -255.2 -16.6 -234.7 -17.5 -201.4 -16.1 -197.1-13.4
1.0 -265.5 -17.6 -257.4 -17.6 -233.7 -16.9 -197.2 -17.2 -192.9-14.6

10
0.0 -135.1 -3.1 -177.5 -7.0 -199.1 -9.8 -207.4 -9.5 -208.8 -9.5
0.4 -266.3 -12.0 -259.8 -12.7 -234.7 -12.9 -204.2 -11.7 -202.8-10.2
0.7 -268.4 -13.7 -262.2 -14.1 -234.2 -13.1 -202.2 -12.1 -198.4-10.8
1.0 -270.5 -14.5 -263.0 -14.0 -238.0 -13.9 -200.5 -13.1 -194.4-11.0

ratio rc of complex eigenvalues depends onr i andrr. If rr > r i, less improvement

is obtained whenrc increases. The reverse effect is observed ifr i > rr. In addition,

the improvement is smaller ifr i andrr are in the same range. That is, the ratio of

real parts and imaginary parts has an effect on the improvement.

In the second experiment, we studyr1 andr2 when generating matricesA with

different dimensionsn∈{10,20,50,100,200}, different ratiosrc∈{0,0.4,0.7,1.0}

of complex eigenvalues and different numbers of diagonal blocksp. The real part

of the eigenvalues is generated withrr = 1000 andr i = 100. The average values of

r1 andr2 for 100 randomly generated matrices per data point are shownin Table

6.3.

It can be seen from Table 6.3 that the improvement increases with an increas-

ing dimensionn, which is an expected result. In analogy to experiment 1, larger

improvements are observed if more blocksp in (6.17) are used and the improve-
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Table 6.3: Improvementr1 and r2 depending onn, p and rc for κ(V) = 1000,
rr = 1000 andr i = 100.

n= 10 n= 20 n= 50 n= 100 n= 200
p rc r1 r2 r1 r2 r1 r2 r1 r2 r1 r2

2
0.0 -20.5 -7.0 -57.2 -20.0 -182.0 -71.4 -379.4 -138.7 -597.4 -287.9
0.4 -21.7 -7.9 -50.8 -17.3 -155.7 -52.6 -365.9 -133.7 -580.3 -280.3
0.7 -20.4 -7.4 -48.6 -15.4 -156.6 -53.0 -360.6 -132.1 -581.6 -284.6
1.0 -20.4 -7.7 -47.5 -16.0 -156.6 -54.0 -353.5 -130.0 -578.5 -281.2

4
0.0 -26.3 -3.1 -63.9 -8.0 -191.4 -30.6 -407.9 -60.3 -627.4 -144.2
0.4 -25.1 -3.1 -60.5 -8.7 -182.0 -25.9 -401.0 -60.8 -612.3 -146.6
0.7 -25.2 -3.5 -58.6 -9.2 -177.3 -26.6 -391.6 -61.0 -612.4 -143.0
1.0 -24.5 -3.3 -58.3 -9.8 -173.2 -27.0 -384.6 -62.0 -611.2 -146.6

6
0.0 -27.0 -1.6 -65.9 -5.3 -193.7 -18.3 -414.9 -37.6 -642.5 -89.7
0.4 — — -64.3 -6.2 -186.6 -16.3 -405.4 -37.2 -624.5 -88.2
0.7 — — -64.5 -6.5 -184.7 -18.4 -400.7 -39.2 -624.6 -90.1
1.0 — — -64.2 -6.3 -180.6 -18.7 -396.1 -41.2 -624.2 -92.0

8
0.0 -28.0 -0.8 -76.8 -3.7 -195.5 -12.4 -420.8 -25.3 -650.7 -65.5
0.4 — — -65.5 -5.5 -190.6 -13.2 -412.2 -28.9 -631.0 -61.6
0.7 — — -64.7 -5.6 -188.0 -13.7 -405.1 -28.3 -630.5 -65.0
1.0 — — -64.4 -5.7 -185.7 -14.6 -399.2 -31.9 -628.6 -66.7

10
0.0 -28.4 0 -68.8 -2.6 -199.0 -9.8 -426.5 -19.1 -653.6 -51.5
0.4 — — -65.7 -5.2 -193.9 -10.5 -414.7 -22.6 -635.0 -48.5
0.7 — — -65.4 -5.0 -194.7 -11.6 -409.4 -23.3 -634.8 -50.1
1.0 — — -65.7 -4.4 -188.3 -11.6 -401.9 -24.6 -633.3 -52.1

ment slightly decreases for larger ratiosrc of complex eigenvalues. It is further

important to note that the contribution of Algorithm 2 becomes more significant

for large dimensionsn.

The third experiment evaluates the dependency ofr1 andr2 on the condition

numberκ(V). The experiment is performed withn= 50, rr = 1000 andr i = 100.

Table 6.4 shows that a larger improvement is achieved ifκ(V) is large. Other-

wise, the observations regarding the dependency onp andrc are analogous to the

previous experiments.

In the fourth experiment, we study the effect of the imaginary part of the

eigenvalues by changingr i. The representative case ofn= 50, κ(V) = 1000 and

rr = 1000 is investigated.

It can be seen from Table 6.5 that the improvement moderatelyincreases with
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Table 6.4: Improvementr1 andr2 depending onκ(V), rc andp for n= 50, rr =
1000 andr i = 100.

κ(V) = 10 κ(V) = 1000 κ(V) = 100000
p rc r1 r2 r1 r2 r1 r2

2
0.0 -94.8 -24.5 -182.0 -71.4 -246.2 -94.1
0.4 -85.5 -19.9 -170.6 -63.8 -240.7 -95.2
0.7 -85.4 -20.6 -167.0 -64.2 -233.4 -91.0
1.0 -83.7 -21.6 -164.7 -64.0 -229.5 -90.8

4
0.0 -105.9 -9.0 -191.4 -30.6 -264.9 -41.9
0.4 -98.6 -7.5 -181.7 -28.8 -261.9 -46.8
0.7 -93.9 -7.7 -181.6 -32.0 -258.4 -45.4
1.0 -93.6 -8.6 -178.9 -30.4 -255.0 -44.9

6
0.0 -109.8 -5.1 -193.7 -18.3 -272.2 -24.1
0.4 -101.5 -4.7 -187.6 -18.1 -271.1 -30.8
0.7 -99.7 -5.3 -184.7 -18.4 -267.9 -30.5
1.0 -96.3 -5.2 -170.6 -18.7 -267.2 -33.3

8
0.0 -111.2 -2.9 -195.5 -12.4 -278.9 -17.6
0.4 -101.6 -3.5 -190.0 -13.6 -280.9 -25.5
0.7 -99.3 -3.6 -188.0 -13.7 -280.2 -26.0
1.0 -97.5 -3.6 -188.3 -14.6 -271.5 -27.1

10
0.0 -111.5 -1.8 -199.1 -9.8 -284.6 -15.0
0.4 -102.7 -2.5 -193.8 -10.1 -283.9 -21.6
0.7 -104.7 -2.9 -194.7 -11.6 -279.4 -22.2
1.0 -96.4 -2.8 -188.3 -11.6 -276.2 -22.6

an increasing value ofr i. Similar to the observation in Table 6.1 and 6.2, it further

holds that an increase in the ratiorc of complex eigenvalues has a negative effect

on the improvement as long asr i < rr = 1000, whereas a positive effect on the

improvement is confirmed forr i > rr.

The fifth experiment considers the case of matrices with multiple eigenvalues

and up to 4 Jordan blocks per eigenvalue. The representativecase ofn = 50,

κ(V) = 1000 andrr = 1000 is investigated. In addition,δ in Proposition 7 is

varied such that ordered Schur decompositions with alarge number of blocks

(δ = 0.1), a mediumnumber of blocks (δ = 10) and asmall number of blocks

(δ = 20) are computed. The results are shown in Table 6.6 togetherwith the
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Table 6.5: Improvementr1 and r2 depending onr i, p and rc for κ(V) = 1000,
n= 50 andrr = 1000.

r i = 10 r i = 100 r i = 1000 r i = 10000
p rc r1 r2 r1 r2 r1 r2 r1 r2

2
0.0 -182.0 -71.4 -182.0 -71.4 -182.0 -71.4 -182.0 -71.4
0.4 -175.8 -68.5 -170.6 -63.8 -195.7 -76.9 -192.9 -73.9
0.7 -175.2 -68.2 -167.0 -64.2 -171.5 -73.3 -199.8 -80.5
1.0 -171.8 -67.7 -164.7 -64.0 -171.5 -73.2 -196.0 -78.2

4
0.0 -193.9 -30.2 -193.9 -30.2 -193.9 -30.2 -193.9 -30.2
0.4 -186.0 -30.8 -181.7 -28.8 -188.1 -35.0 -221.5 -39.0
0.7 -187.3 -32.1 -181.6 -32.0 -189.5 -38.4 -221.2 -38.8
1.0 -182.6 -30.5 -178.9 -30.4 -187.1 -37.7 -221.5 -40.6

6
0.0 -196.7 -18.2 -196.7 -18.2 -196.7 -18.2 -196.7 -18.2
0.4 -192.9 -19.5 -187.6 -18.1 -196.1 -24.4 -227.9 -26.5
0.7 -189.0 -18.5 -184.7 -18.4 -195.0 -23.8 -233.8 -26.6
1.0 -187.3 -18.0 -180.6 -18.7 -193.7 -24.1 -232.4 -28.4

8
0.0 -199.1 -12.5 -199.1 -12.5 -199.1 -12.5 -199.1 -12.5
0.4 -193.4 -13.0 -190.0 -13.6 -195.0 -16.1 -235.6 -18.1
0.7 -193.5 -11.9 -188.0 -13.7 -196.9 -17.3 -237.1 -20.4
1.0 -186.7 -11.5 -185.7 -14.6 -196.6 -19.1 -237.1 -19.7

10
0.0 -201.3 -10.1 -201.3 -10.1 -201.3 -10.1 -201.3 -10.1
0.4 -196.1 -9.7 -193.8 -10.1 -199.3 -11.0 -238.8 -15.2
0.7 -195.4 -10.3 -194.7 -11.6 -198.4 -12.5 -239.9 -16.2
1.0 -191.5 -9.7 -188.3 -11.6 -197.8 -12.7 -237.8 -15.3

corresponding numbers for the case ofsingleeigenvalues.

Similar to the results in Table 6.3, Table 6.6 indicates larger improvements

for matrices with higher dimensions. In general, a larger number of blocksp

leads to larger improvements, whereby the improvements achieved in the case of

multiple eigenvalues are slightly smaller than the improvements in the case of

single eigenvalues and in the case of a larger ratio of complex eigenvaluesrc. It is

interesting to note that the contribution of the diagonal transformation according

to Algorithm 2 is more significant for large dimensionsn and for small numbers

of blocksp.

The last experiment investigates the convergence of the impulse response bound.
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Table 6.6: Improvementr1 and r2 depending onn, p and rc for κ(V) = 1000,
rr = 1000 andr i = 100.

n= 10 n= 20 n= 50 n= 100
c p r1 r2 r1 r2 r1 r2 r1 r2

0.0

single -28.4 0 -68.8 -2.6 -199.0 -9.8 -426.5 -19.1
small -27.4 -8.0 -61.9 -21.4 -167.7 -64.4 -339.2 -133.6

medium -30.5 -3.9 -68.9 -9.7 -186.5 -34.0 -382.6 -68.4
large -31.8 -0.3 -73.1 -1.1 -197.5 -5.0 -406.4 -13.9

0.4

single -25.1 -3.1 -65.7 -5.2 -193.9 -10.5 -414.7 -22.6
small -26.0 -7.9 -65.9 -20.1 -162.3 -49.2 -331.0 -109.3

medium -28.4 -4.8 65.9 -11.6 -178.1 -30.7 -367.0 -67.0
large -30.5 -2.5 -70.4 -4.8 -190.8 -12.5 -392.3 -26.5

0.7

single -25.2 -3.5 -65.4 -5.0 -194.7 -11.6 -409.4 -23.3
small -25.4 -7.8 -58.6 -19.0 -156.4 -51.3 -323.1 -112.0

medium -27.7 -6.2 -64.1 -11.8 -172.6 -31.7 -355.1 -67.7
large -30.1 -3.6 -69.3 -6.7 -187.0 -17.1 -385.5 -35.4

1.0

single -24.5 -3.3 -65.7 -4.4 -188.3 -11.6 -401.9 -24.6
small -23.0 -8.0 -57.4 -19.9 -157.1 -46.8 -317.2 -106.6

medium -26.0 -6.9 -63.0 -13.5 -173.4 -33.7 -351.6 -66.2
large -28.9 -5.3 -68.8 -9.4 -185.9 -20.9 -383.6 -37.6

To this end, the times when the impulse response bound is below a given threshold

valueγ is determined for the different bounds in (6.11), (6.21) and(6.23):

tsb= min
t

sb(t)≤ γ, tisb1= min
t

isb1(t)≤ γ, tisb2= min
t

isb2(t)≤ γ,

In the experiment values ofγ ∈ {10−5,10−10,10−15} are used.

Table 6.7 shows that the improved impulse response bound in (6.23) converges

to zero significantly faster than the original bound in (6.11). In particular, the

application of Algorithm 2 leads to a considerable additional improvement of the

bound in (6.23) compared to the bound in (6.21).

We finally list the main observations from our experimental study.

1. The bound in (6.23) achieves a significant improvement compared to the

bound in (6.11) in all cases, whereby the improvement increases with the
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Table 6.7: Convergence times in seconds for different thresholdsγ depending on
n, p= 10,κ(V) = 1000,rr = 1000,r i = 100,rc = 0.6.

n= 20 n= 50 n= 100 n= 200 n= 500

γ = 10−5
tisb1/tsb [%] 16.2 13.9 11.8 12.4 27.1
tisb2/tsb [%] 12.8 9.3 7.1 6.6 11.0

γ = 10−10
tisb1/tsb [%] 19.6 15.3 12.6 12.8 27.6
tisb2/tsb [%] 16.4 11.1 8.0 7.1 11.6

γ = 10−15
tisb1/tsb [%] 23.3 16.9 13.4 13.3 27.9
tisb2/tsb [%] 19.8 12.6 8.9 7.6 12.1

matrix dimension.

2. It is beneficial to use a large number of blocksp in (6.17).

3. More improvement is seen if the real parts and imaginary parts of eigenval-

ues are not in the same range.

4. In the case of multiple eigenvalues, slightly smaller improvements are ob-

tained compared to the case with single eigenvalues.

5. Significantly faster convergence of the impulse responsebound in (6.23) is

achieved compared to the bound in (6.11).

6.4 Application of Bounds for the Matrix Exponential Function

This section applies the proposed bound computation for thematrix exponential

function to an automotive example. First, the example is described in Section

6.4.1. Then, the improved Jordan bound and Schur bound are compared for a

small version of the example system in Section 6.4.2. Finally, Section 6.4.3 shows

that the improved Schur bound gives suitable results for a large version of the

system.
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6.4.1 Vehicle String Example

We consider an automotive platooning application, where several vehicles follow

each other in the form of a vehicle string. Specifically, we address the case where

a new vehicleN enters in front of a string of up tok vehicles as can be seen in

Fig. 6.3. The vehicle string can be modeled in the form of a stable linear system

k-1 13 2k

N

k vehicles

Figure 6.3: Lane change in front of a string withk vehicles.

[8, 33] with the state equations
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u. (6.25)

Hereby,xi ∈R
l , i = 1, . . . ,k is the state vector of vehiclei with dimensionl , u∈R

is the input signal that acts on the first vehicle and the matricesA0 ∈ R
l×l and

A1 ∈R
l×l capture the dependency of vehiclei on its own state and the state of the

predecessor vehicle, respectively. Writingx for the overall state vector, an output

signal can be defined as

y=Ck x. (6.26)

Hereby,Ck can be chosen to select any relevant linear combinations of vehicle

states.
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Using this model, the entering maneuver can be represented by an impulse in-

put applied to the first vehicle in the string. Then, the norm of the output response

of the vehicle string is bounded by

||Ck eAk t Bk|| ≤ ||Ck||||e
Ak t || ||b1||.

Assuming that a simulation of the linear system in (6.25) and(6.26) is available in

a time intervalt ∈ [0, tsim], we are particularly interested in finding a close bound

for the output response that quickly converges to zero in theinterval t ∈ (tsim,∞)

[64]. That is, in agreement with the discussion in Section 6.2 and 6.3, we want to

find a bound for||eAk t || that can be evaluated numerically and that converges to

zero for sufficiently small times.

6.4.2 Jordan Bound Computation

We first consider small vehicle strings with 2 and 3 vehicles,where a Jordan

canonical form of the corresponding matrixAk in (6.25) can be obtained. Not-

ing that different realizations ofA0, A1 exist in the literature [13, 23, 33, 83], we

choose a realization according to [33] with 8 states per vehicle and matrices

A0 =




















0 −1 −1 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 −2.5 2.5 0 0 0 0

0 0 0 −1 0 0 0 64

0.02 0 0 0 0 0 0 −3.95

0.16 0 0 0 2 0 0 −12.54

2.56 0 0 0 0 16 0 −89.82

42.31 0 0 0 0 0 64 −1005.73
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and

A1 =




















0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0.06 0 0 0 0

0 0 0 0.20 0 0 0 0

0 0 0 1.40 0 0 0 0

0 0 0 0.16 0 0 0 0




















The eigenvalues ofAk in (6.25) are the eigenvalues ofA0: λ1 =−1000,λ2,3 =

−0.68±0.73i, λ4 =−2.53,λ5 =−2.24,λ6 =−1.13,λ7 =−0.99 andλ8 =−1.0.

Using the bounds in (6.14) and (6.23) withδ = 0.3 andθ = 0.01, we obtain

the results in Fig. 6.4 and Fig. 6.5 for two and three vehicles, respectively.
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Figure 6.4: Bound comparison for a system with 2 vehicles.

It is readily observed that the bound in (6.23) using the Schur decomposition is

significantly better for this example. The main reason is that the condition number

of the transformation matrix for obtaining the Jordan canonical form ofA is large.

In both cases, the bound in (6.23) withβ = 0.5 converges to zero quickly. For

example it holds that isbAk(t)≤ 10−4 for t ∈ (55,∞) in the case ofk= 2 vehicles
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Figure 6.5: Bound comparison for a system with 3 vehicles.

and fort ∈ (65,∞) in the case ofk= 3 vehicles. In comparison, the existing Schur

bound in (6.11) leads to

sbA2(t) = e−0.68t
15

∑
k=0

173k tk

k!
(6.27)

for the case of two vehicles and

sbA3(t) = e−0.68t
23

∑
k=0

173k tk

k!
(6.28)

for the case of three vehicles. In both cases, this bound is much more conservative

as is also indicated in Fig. 6.4 and 6.5 (note that sbA2 and sbA3 are only shown for

very small times).

6.4.3 Schur Bound Computation

We finally consider a vehicle string with 20 vehicles. That is, the matrixA20 has

dimension 160 and it was not possible to determine its Jordancanonical form.
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Computing the Schur bound in (6.11), we obtain

sbA20(t) = e−0.68t
159

∑
k=0

173k tk

k!
(6.29)

which cannot be evaluated numerically even for very small times due to the high

polynomial order. For illustration, we compute the improved Schur bound in Sec-

tion 6.3 step by step. First, we determine the ordered Schur decomposition in

(6.17) withδ = 0.3. As a result, we getSwith 4 blocks, whereby the size of the

largest block isq= 60. In this computation, we note that the special structure of A

is helpful, since it holds that each eigenvalue ofA0 is repeated 20 times. That is, it

is easy to determine similar eigenvalues for this example. Specifically, one block

of size 20 contains the repeated eigenvalueλ1, one block of size 40 contains the

complex eigenvaluesλ2,3, one block of size 40 containsλ4 andλ5 and one block of

size 60 contains the remaining eigenvalues. Next, we perform the transformation

to the block diagonal matrix̂S using Algorithm 1. The resulting transformation

matrix hasκ(T̂) = 50140 and the norm of the strictly upper-triangular part ofŜ is

||ŜN|| = 12.0. That is, without using the diagonal transformationR in Algorithm

2 (or equivalentlyβ = 12.0), the improved Schur bound in (6.21) gives

isb1A20(t) = 50140·e−0.68t
59

∑
k=0

12.0k tk

k!
. (6.30)

This bound is much smaller than the bound in (6.29) and decaysbelow 10−4 for

t ∈ (513,∞). A further improvement is achieved by limiting||ŜN||. Hence, we

perform a transformation withRusing Algorithm 2 with different values ofβ and

a toleranceθ = 0.01. The results of this computation are shown in Fig. 6.6.

Here, for example the bound forβ = 0.5 is suitable. Although the condition

number now increases toκ(T)≈ 2.5·1022, the overall bound

||eA20t || ≤ 2.5·1022 ·e−0.68t
59

∑
k=0

0.5k tk

k!
(6.31)

already decays below 10−4 for t ∈ (233,∞) and can be computed in a stable way.
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Figure 6.6: Bound comparison for a system with 20 vehicles.
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CHAPTER 7

CONCLUSION

In the scope of intelligent transportation systems (ITS), cooperative adaptive cruise

control (CACC) is a recent technology that enables vehicle following in the form

of vehicle strings at small inter-vehicle spacings. Here, the fulfillment of string

stability is essential in order to ensure driving comfort and driving safety. String

stability guarantees that fluctuations and disturbances are attenuated along a vehi-

cle string.

In the literature, string stability is commonly studied based on the fact that a

disturbance is introduced by the leader vehicle and hence occurs at the beginning

of the string. Such disturbance should not grow or amplify while propagating

through the string. In contrast, this thesis identifies the occurrence of additional

disturbances within the string when performing lane changes. When completing

a lane change, impulses are encountered due to state jumps when switching pre-

decessor vehicles. In addition, the preparation of lane changes requires opening

gaps, which are achieved by applying time-limited input signals. Hence, the thesis

extends the classical setting to scenarios including repeated state jumps (impulse

inputs) and repeated exogenous time-limited input signalswithin vehicle strings.

In order to address the stated problem, the thesis first introduces the relevant

background information on vehicle strings, CACC and string stability. As the first

contribution, the thesis presents methods for computing norm bounds on output

signals when applying repeated input impulses and time-limited input signals to

stable LTI systems. In this context, it is desired that output signals such as the

distance error between vehicles remain bounded in order to ensure driving safety

even if maneuvers are repeatedly executed. Accordingly, the thesis first shows that
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a bound on the output signal norm exists if the repeated inputsignals (impulses

or time-limited signals) are separated by a non-zero dwell-time. Moreover, an

original computational procedure for finding a close bound on the output signal

norm is developed. Moreover, the concepts that are first developed for general

LTI systems are extended to the case of distributed interconnected systems with

multiple inputs and outputs.

The bound computations are formulated for general LTI systems. In accor-

dance with the aim of studying lane changes in vehicle strings, the developed

methods are applied to vehicle strings as the second main contribution of the the-

sis. Suitable analytical bounds for the relevant output signals such as distance

error or acceleration are determined and validated by simulations. Together, it is

shown that a safe and comfortable driving distance is guaranteed even if an arbi-

trary number of longitudinal maneuvers is performed in vehicle strings with many

vehicles.

When determining the analytical output signal bounds, it is observed that the

numerical computation of a certain bounding function for the norm bound of the

impulse response matrix becomes infeasible for large LTI systems. To this end,

the third contribution of the thesis is the development of numerical methods for

bounding the matrix exponential function for the analysis and design of linear dy-

namical systems. Two new bounds are proposed. The first boundis based on the

Jordan canonical form. Using a particular diagonal similarity transformation, it

is possible to achieve fast convergence of this bound to zero. Nevertheless, the

usability of this bound depends on determining the Jordan canonical form of a

matrix, which is numerically difficult. Accordingly, the second method proposes

a computational procedure that can be evaluated for generalmatrices. Using an

ordered Schur decomposition, it is first possible to transform a given matrix to

a block diagonal form. Then, an additional diagonal transformation is used to

achieve fast convergence of the bound to zero. It is shown by examples that both

bounds are suitable for systems of small size when the Jordancanonical form is

available. Furthermore, the bound based on the Schur decomposition also pro-

vides satisfactory results for large systems, which is demonstrated by the practical
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example of vehicle strings.

The current formulation is for the case of homogeneous vehicle strings with

linear models, where each vehicle has the same dynamic properties. Future re-

search will extend the obtained results to the case of heterogeneous vehicle strings.

Additionally vehicle experimental tests may be done to validate our models and

compare then verify our results. Another direction apart from intelligent trans-

portation systems is that our system and control contributions might be applied to

completely different areas of interconnected distributedsystems such as irrigation

flow systems or supply chains.
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