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 ABSTRACT 

 

 

DEVELOPMENT OF LABORATORY EXPERIMENTS FOR CONTROL AND 
POWER SYSTEMS :THE WATER -TANK EXPERIMENT 

 

ABAS.M.O.ANWAR 

M.Sc., Department of Electronic and Communication Engineering 

Supervisor: Assoc. Prof. Dr. Klaus Werner SCHMIDT  
 

September 2012, 69 Pages 
 

 Control system design is needed in many application areas such as 

manufacturing, automotive systems or power systems. Hence, a thorough education 

including practical experience is very beneficial for engineering students. In view of 

this, the thesis develops a water level control experiment for control laboratories. The 

system is designed to allow system modeling, set-point linearization and the 

application of various controller design algorithms both in continuous time and in 

discrete time. The thesis consists of two main parts. In the practical part, guidelines 

for the choice of system components such as pressure sensor, amplifiers, motor 

driver and water pump for the water tank system are given and supported by 

hardware experiment. In the theoretical part of the thesis, different variants of the 

water level control system are studied, and control methods such as pole placement, 

root locus, symmetrical optimum, Youlaparametrization and disturbance feedforward 

are applied. All these experiments are validated by simulations in Matlab/Simulink. 

 

Keywords:  Water level control, laboratory experiment, control system design, 

nonlinear modeling, linearization, control education 
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ÖZ 

 

KONTROL VE GÜC SİSTEMLERİ İÇİN LABORATVAR DENEYLERİNİN 
GELİŞTİRİLMESİ: SU-TANK DENEYİ ÖRNEĞİ 

ABAS ANWAR 

Yüksek Lisans, Elektronik ve Haberleşme Mühendisliği Anabilim Dalı 

TezYöneticisi: Doç. Dr. Klaus Werner SCHMIDT 
 

Eylül 2012, 69 Sayfa 
 

Kontrol sistem tasarımı sanayi, otomotiv ve güç sistemlerigibi birçok alanda 

uygulanmaktadır. Bunun için pratik deneyim içeren eksiksiz eğitim mühendislik 

öğrencileri için çok faydalıdır. Bu kapsamda, bu tez kontrol laboratuvarlar için su 

seviyesi kontrol deneyi geliştirmektedir. Bu sistemin tasarlanma nedeni, hem sürekli 

zaman hem de ayrık zaman içerisindesistem modelleştirmeye izin vermek, set-

noktası doğrusallaştırma ve farklı kontrol tasarım algoritması uygulamalarını 

gerçekleştirmektir.  

Bu tez iki ana bölümden uluşmaktadır. Pratik bölümde, su tankı sistemi için basınç 

algılayıcı,amplifikatörler, motor sürücü ve su pompası gibi sistem bileşenlerinin 

seçimi için kurallar verilmekte ve donanım deneyi ile desteklenmektedir. Tezin 

teorik bölümünde, su seviye kontrol sistemin farklı türevleri araştırılmaktadır, ve 

kutup yerleştirme, kök yer eğrisi, simetrik optimum, Youla parametrizasyonu ve ileri 

beslemeli karışıklık gibikontrol yöntemleri uygulanmaktadır. Tüm bu deneyler 

Matlab/Simulink simülasyonları ile doğrulanmaktadır. 

Anahtar Kelimeler: Su seviyesi kontrol, laboratuvar deneyi, kontrol sistem tasarımı, 

doğrusal olmayan modelleme, doğrusallaştırma, kontrol eğitimi. 
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INTRODUCTION

Control systems are employed in many branches of industrial systems such as

automation systems, production systems, power systems and power plants, auto-

mobiles, etc. [8, 19, 20]. Such control systems are designed most efficiently based

on an analytical model of the system to be controlled. If such model is available,

a large variety of methods .for this reason, control education is an important

subject in Electronic Engineering, Mechatronics Engineering and Mechanical En-

gineering disciplines. The education is usually given on a theoretical level, but

it is very important for students to apply their acquired knowledge in practical

laboratory setups. Although control methods for varios types of systems such as

production systems, power systems or automotive systems are studied, laboratory

setups for education must fulfill certain requirements such as operational safety,

reasonable cost, and applicability of many methods to the same system. for that

reason, one of the most suitable laboratory setup is the water-tank system, that

consists of different tanks that are connected with each other and fed by pumps.

In line with the previous discussion, the topic of this In the theoretical part of

the thesis, different versions of a three-tank system are modeled in the form of

nonlinear differential equations. In addition, set-point linearization is applied in

order to obtain linear time-invariant (LTI) models around the set-point. These

LTI models are then used to perform various control designs with different control

design methods that are relevant in practice. The methods employed in this thesis

include the root locus method [20], pole placement [8], Youla parametrization [8],

symmetric optimum [25] and disturbance feedforward [8]. All controller designs

are supported by simulations of the linearized control system as well as the actual

nonlinear control system using Matlab/Simulink. In addition, all controllers are

converted to discrete-time for a convenient implementation on digital computers.

It has to be noted that these techniques were applied to a water-tank system as

application example. However, the same techniques can be used for other system
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types such as production systems, power systems or automotive systems.

The main task of the practical part of this thesis is the choice of low-cost equip-

ment for a one-tank system in order to perform the developed control system

designs using a real experimental setup. The chosen components include a DC

water pump [22], a pressure sensor [17], a PIC microcontroller [18], a high-current

motor driver [23] and several amplifiers [16]. The output of the thesis is the setup

of a simple one-tank system that allows initial tests of control algorithms on the

PIC microcontroller.

The organization of the thesis is as follows. In Chapter 1, the basic properties of

the water-tank system are described. In addition, this chapter provides details

of the hardware setup used in this thesis. Chapter 2 presents the nonlinear

modeling of the water-tank system and Chapter 3 performs set-point linearization

for different variants of the water-tank system. A large variety of controller design

methods to be used for the water-tank system we explained in Chapter 4. These

methods are then applied to the water-tank system in Chapter 5 and supported by

simulations in Matlab/Simulink.In the last we will take summary for this thesis.
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CHAPTER I

WATER-TANK SYSTEM DESCRIPTION

1.1 THE WATER-TANK SYSTEM AS CONTROL EXPERIMENT

The three tank system that is shown in Figure 1.1 represents an example of

a nonlinear control system, whose operation principle is used in real life. The

system is composed of three tanks, each of which has a given height, and there is

a reservoir for supplying these tanks with water. It is assumed that all of these

tanks have the same square area. In addition, the three tank system has three

pumps that are driven by DC motors in order to both supply water from the

reservoir (pump 1 and pump 3) are transport water between the tanks (pump 2).

The tanks 1-2 and 2-3 are connected by pipes, whereby the connection can be

manually opened or closed by valves that are attached to the pipes. Each tank

has one more pipe for discharging water to the reservoir. Again, a valve allows

to open or close this connection. Also, each tank has a pressure sensor that is

located at its base. Here, it is intended to measure the water pressure in order to

determine the water level in each tank. The described water-tank system is an

interesting control system for educational purposes, since it offers a large variety

of control problems, and allows to study and apply a large number of controller

design techniques. In the following, we give a list of such control design problems.

One-tank System with Tank 1

• Keep the water level in the tank constant, assuming there is outflow into

the reservoir

3



• Control the pump such that the tank is filled to a certain level as fast as

possible

• Keep the water level in the tank constant, assuming that pump 2 removes

water from tank 1

Two-tank System with Tank 1 and Tank 2

• Keep the water level in tank 2 constant, only using pump 1 and with possible

discharge of water to the reservoir from tank 1 and/or tank 2

• Control pump 1 such that tank 2 is filled to a certain level as fast as possible

• Control pump 1 and 2 such that both tanks stay at a certain level

Three-tank System

• Control pump 1 and 3 such that tank 1 and tank 3 stay at a certain level

• Control pump 1 and 3 such that tank 2 stays at a certain level

• Control pump 1, 2, 3 such that all tanks stay at a certain level

In order to solve the described control design problems, there are various methods

that can be applied, and that are taught in basic control courses. First, the

systems allows to perform step response measurements for system identification.

That is, it is possible to determine the parameters of a mathematical model based

on measurements from the real system. Second, considering that the tank system

is nonlinear, it is possible to use the technique of set-point linearization. As a

result, a linear time-invariant state space model or transfer function model is

obtained, that is suitable for linear control system design methods. Third, a

large variety of linear controller design methods can be applied such as

• Root locus

• Symmetrical optimum

• Youla parametrization

4



Figure 1.1: Three tank fluid system

• Pole placement

• Disturbance feedforward

• State feedback control

Fourth, it is possible to implement the designed algorithms on a digital controller

(for example a PIC microcontroller). In that case, the technique of controller

discretization with different integral approximations such as the Euler, Euler

backward or trapezoidal method can be applied. Such realization also allows to

study the effect of different sampling times in the control loop. Finally, since

the system is nonlinear, it also enables the usage of more advanced nonlinear

controller design methods. In addition, also intelligent control methods such as

fuzzy control or neural network can be applied. Such study is for example done

in [13]. In this thesis we do not consider intelligent control but focus on control

method that are based on analytic model.
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1.2 SETUP AND PARAMETERS

In this section, we describe the parameters of our three tank system laboratory

experiment. The height of each tank is 100 cm and the (square) cross-section area

of each tank is denoted as AT = 225 cm2. The connection pipes P12 and P23

between the tanks have the same (circular) cross-section area of AP = 6 π cm2.

In addition, the pipes P1, P2 and P3 for discharging water to the reservoir have a

cross-section area of AD = 16 π cm2. All pumps used in the system are identical.

They are supplied by a DC voltage of up to 12V and supply a maximum water

flow of 20 l/min. The valves that are used in the system are operated manually.

Generally, they are used either in the open position or in the closed position. For

the valves V12 and V23, we write (pV 12 = 1) (pV 23 = 1) if the valve position is

open and (pV 12 = 0) (pV 23 = 0) otherwise. Similarly, we use the valve position

parameters pV 1, pV 2, pV 3 for the valves V1, V2 and V3.

1.3 OUTLINE OF THE EXPERIMENTALWATER-TANK SYSTEM

From the practical perspective, the water-tank system requires several hardware

components. One important part of this thesis is the choice of these components

and the test of their suitability. Main criteria for the component choice are

component specifications according to the experiment requirements (as discussed

below) and the availability in Turkey at low cost. The main components to be

discussed are listed as follows.

• Pressure sensor: this component is needed to determine the water level in

a tank.

• Pump: this component is used to supply water to a tank from the reservoir

or from another tank.

• Microcontroller: this component is used to implement control algorithms.

It receives measurement input from the pressure sensor and provides control

input to the pump.
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We now describe the different components chosen in this thesis together with ad-

ditional required electronic components and measurements from the experimental

setup.

1.3.1 Pressure Sensor

We choose the pressure sensor MPX7050 [17] for the water level measurement.

This measurement is very important for the later control task, since it gives

the actual feedback information about the state of the water-tank system. The

relation between the water level and the pressure in the tank can be derived using

basic physics and the following notation.

• p: is the pressure in a tank with the unit Pa (Pascal)

• g: is the gravitational acceleration with the value 9.81m/sec2 or equiva-

lently 981 cm/sec2

• ρ: is the density of water with the value 1 kg/l or equivalently 10−3 kg/cm3

• h: is the water level in the tank with the unit cm

• Ai: is the area of the tank with the unit cm2

Using these variables and parameters, the computation is as follows.

p =
mg

Ai

=
Ai h ρ g

Ai

= h ρ g ⇒ h =
p

ρ g
(1.1)

We choose the sensor MPX7050 because of various reasons. First,our tank exper-

iment is designed for water levels up to hmax = 100 cm. According to (1.1), this

corresponds to a pressure of pmax = 1m ·1000 kg
m3 ·9.81 N

kg
= 10 000 N

m2 = 10 kPa.

Since the MPX7050 can measure a pressure up to 50 kPa, it is suitable for the

maximum pressure required in the water-tank system. In addition, it is impor-

tant that the MPX7050 is a differential pressure sensor. That is, the sensor

possesses two sides – a low-pressure side and a high-pressure side – and measures

the pressure difference between both sides. In our experiment, the low-pressure

side measures the atmospheric pressure, whereas the high-pressure side measures
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the water pressure in the tank (including the atmospheric pressure). As a result,

changes in the atmospheric pressure will not influence the water level measure-

ment. A picture of the MPX7050 with a special packaging (ending dp) is shown

in Figure 1.2. This sensor is available in Turkey at a price of about 5 $.

Figure 1.2: Pressure sensor MPX7050dp: high pressure side (left), low
pressure side (middle) and pin usage

One further advantage of the MPX7050 is its linearity of the pressure measure-

ment. The output voltage provided sensor increases linearly in the measured

differential pressure. The following picture from the MPX7050 datasheet illus-

trates this fact. From this figure, it can be seen that the output voltage (denoted

Figure 1.3: Output voltage of the MPX7050 versus differential pressure.

as vMPX) is computed with the following formula.

vMPX = voffset +
40mV

50 kPa
· p = voffset + 0.8

mV

kPa
· p. (1.2)
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In this formula, voffset is the so-called offset voltage that is provided by the

MPX7050 at 0 differential pressure. The equation shows for example that an

increase of the water level by 10 cm leads to a pressure increase of ∆p = 1kPa,

which leads to an output voltage increase of ∆vMPX = 0.8mV
kPa

· 1 kPa = 0.8mV.

It can be seen from the previous computation that the voltage values are very

small. Since they will be processed by the Analog to Digital converter of a PIC

microcontroller, it is required to amplify vMPX . Considering that the maximum

differential pressure in the experiment is given by 10 kPa, the maximum output

voltage provided by the MPX7050 is less than 10mV (see Figure 1.3). The

reason for this is that the pressure for a water level of 100 cm is 10 kpa, and the

corresponding voltage is computed as 8mV. In order to achieve a voltage range

between 0V and 5V, we need an amplifier gainGMPX of aboutGMPX = 500. The

most suitable amplifier Integrated circuit for this purpose is the instrumentational

amplifier INA [11]. However, since this component is not available in Turkey, we

use a different amplifier design based on the LM324 IC as is proposed in [9]. The

schematic of the circuit is shown in Figure 1.4.

Figure 1.4: Amplifier circuit for the pressure measurement.

In our design, we choose the following resistance values.

• R1 = 1kΩ

• R2 = 320 kΩ

• RF = 1´MΩ

• RG = 1´MΩ
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and from these values we we find the amplifier gain with the following formula

GMPX = G1G2 =
V o

V in
, (1.3)

where

G1 = 1 + 2
RF

RG
and G2 =

R2

R1
(1.4)

As a result, we obtain an amplifier gain of GMPX = 960.

Combining the results in (1.1) and (1.2) from before, it is now possible to deter-

mine the actual water level from the voltage measurement at the output of the

amplifier vAMPL:

p =
vMPX − voffset

0.8 mV
kPa

=
vAMPL/GMPX − voffset

0.8 mV
kPa

⇒ h =
vAMPL/GMPX − voffset

0.8 mV
kPa

ρ g

(1.5)

We test the combination of the pressure sensor and the amplifier circuit by two

simple experiments. In the first experiment, we fill a water container with pre-

defined water levels and measure the resulting voltage at the output of the ampli-

fier. The result is shown in Table 1.1. From this measurement, the offset voltage

of the pressure sensor (obtained for a water level of 0 cm) can be evaluated to

voffset = 0.8V/960 = 0.83mV. In addition, we can use (1.5) to compute the

water level from the voltage measurement. The values are also given in the table.

Table 1.1: Comparison of water level and pressure sensor measurement.

water level output voltage estimated water level
0 cm 0.8 v 0 cm
5 cm 1.2 v 5.25 cm
10 cm 1.6 v 10.45 cm
15 cm 2 v 15.6 cm
20cm 2.4 v 20.12 cm
25 cm 2.8 v 26.08 cm
30 cm 3.2v 31.3 cm

Together, we can conclude that the values from the measurement fit the actual

water level values precisely. Second, we perform an experiment with a constant

inflow into a water container. In that case, it is expected that the water level –

and equivalently the voltage output of the amplifier – increases linearly with time.

The voltage measurement from an oscilloscope as shown in Figure 1.5 confirms
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the correct operation of the pressure sensor in combination with the amplifier

circuit.

Figure 1.5: Water level increase in the tank by using constant inflow.

1.3.2 DC Pump

We use the DC pump that we see in Figure 1.6 to transport water from the

reservoir to the water-tanks. It is operated by a DC motor, whose rotational

Figure 1.6: DC water pump ( Rich Multi Pump crom type)
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speed increases linearly with the provided input voltage vmotor. According to the

specification, the maximum input voltage of the motor is 12Volt, leading to a

maximum water flow of 17 l/min at a maximum power of about 40Watt. In our

experiment, we use pulse-width modulation (PWM) in order to change the input

voltage of the motor. That is, if we write uPWM (in %) for the duty cycle of the

PWM signal, we get

vmotor = uPWM · 12V (1.6)

for the input voltage of the DC motor. In our experiment, the PWM signal is

supplied by a PIC microcontroller. Since the PWM signal cannot be used to

supply power for the DC motor, a further driver circuit is needed to power the

DC motor depending on the PWM signal. We choose the driver circuit L298 [23]

as shown in Figure 1.7.

Figure 1.7: L298n motor driver: packaging (left) and pin layout (right).

It is suitable for our application, since it works for voltages up to 46V and can

supply current up to 4A. In our application, we need currents up to 40W/12V

= 3.33A. The driver can actually supply power for two DC motors. In our

experiment, we will only use the pins 1 to 9, which are enough to drive a single

DC motor (our pump). It also has to be mentioned that this device has a low

cost of about 17 Dollar.

We now illustrate the operation of the pump for different duty cycles of the PWM

signal uPWM . Since, we do not have a flow sensor, we supply water from the pump

to a water-tank as can be seen in Figure 1.8. We measure the water level in the

tank by using the pressure sensor as described in Section 1.3.1. As can be seen

from the measurements in Figure 1.5, the water level increases linearly when a
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Figure 1.8: One tank system with reservoir and DC pump.

constant PWM value (PWM=170) is used.

1.3.3 Microcontroller (PIC16F877A)

In our current experimental setup, we use the PIC 16F877A in order to realize

feedback control algorithms for the water level control. We have chose this PIC,

since it can provide PWM output signals and also comes with ADC converters

that are suitable for our pressure signal measurement. Furthermore, it provides

the capability of transmitting data to a connected PC via the RS232 protocol or

display data on an LCD screen, which will be important for data evaluation. The

pin layout of the PIC 16F877A is shown in Figure 1.9.

In our experiment, we use pin 4 to digitalize the analog pressure sensor signal.

Moreover, we use pin 16 to provide the PWM signal for the motor driver L298.

The main control task is then to determine the control algorithm that changes

the PWM duty cycle depending on the pressure sensor reading, which is the

main task of the theoretical part of this thesis. These control algorithms are then

implemented on the PIC16F877A in the form of a C-program using the sotware

tool MicroC [5]. We use the flash-programmer (pickit 2) to write the machine

code on the PIC.
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Figure 1.9: Pic16f877a microcontroller chip Pin layout

1.3.4 Pulse Width Modulation

The PWM is a technique used to control analog values by converting them to

digital values in the form of a square wave as can be seen in Figure 1.10.

The PWM contains there relevant times periods (Ton, Toff , Ttotal=(Ton + Toff )).

By choosing these values, it is possible to achieve an analog voltage according to

the following equation:

V out = D × V in, (1.7)

where D is called duty cycle and is equal to

D =
Ton

Ttotal

(1.8)

PWM signals can be generated by many devices. In our experiment, we use

the microcontroller PIC16F877A to generate the PWM. This PIC has two pins

(ccp1,ccp2) for PWM output with voltage levels of 0 and 5V. The duty cycle of

the PWM signal can be set from our MicroC programming environment between

values of 0 (Ton = 0) and 255 (Toff = 0). In the latter case, the PIC outputs a

constant voltage of 5V.
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Figure 1.10: The PWM signal from the Microcontroller

1.3.5 Overall Experimental Setup

A schematic of the overall experimental setup is shown in Figure 1.11. In prin-

ciple, we take the (low amplitude) voltage signal from the pressure sensor (pin

2 and 4) and amplify this signal by using our differential amplifier circuit. The

output of the amplifier circuit is filtered by a RC (low-pass) filter in order to

reduce high-frequency noise and then read by the ADC input of the PIC. The

digitalized sensor reading is then processed by the PIC in order to determine an

appropriate value of the PWM duty cycle. The PWM signal in turn regulates the

output voltage of the motor driver so as to adjust the speed of the water pump.

Note that the PWM signal is not directly fed to the motor driver, but the lower

power PWM signal is separated from the higher power motor driver component

by an additional amplifier that is only used as a buffer circuit.
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Figure 1.11: Schematic Diagram of the water level control experiment.
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1.3.6 A Feedback Control Experiment

Now, we use a simple controller and test it with the one tank system. The

controller that we use is PI controller and we convert it to a discrete-time repre-

sentation such that we can realize it on the PIC microcontroller. The controller

code is shown as follows.

int ek = 0; // error of the system

int dutycycle=190; // the initial duty cycle

unsigned ADC_Read(unsigned short channel);

unsigned measurement;

int eOld=0;

unsigned short uold=0;

void main()

{

TRISB=0;

PORTA=0xff; // ADC pin

PORTC = 0xff; // PORTC is output

PWM2_Init(20000); // Initialize PWM

PWM2_Start();

while(1){

measurement = ADC_Read(2);

ek=(511-(int)measurement); // error signal

dutycycle = (int)uold + (int)(.015*(float)ek - 0.005*(float)eOld);

if (dutycycle > 255)

dutycycle=255;

if (dutycycle < 190)

dutycycle = 190;

uold = (unsigned short)dutycycle; // convert to unsigned int

eOld = ek; // memorize the old error for the next cycle

17



PWM2_Set_Duty((unsigned short)dutycycle);

Delay_ms(10); // wait for 10 ms

}

}

A measurement from the laboratory setup is shown in Figure 1.12. It shows the

amplified voltage from the pressure sensor over time. It captures the return to

the reference value of the water level after applying a disturbance (by switching

of the pump). It has to be noted that, although the current experimental setup

can be used in a feedback control experiment, the pump as described in Section

1.3.2 seems to be very insensitive to input changes. Hence, we suggest to find a

different pump for a more precise experiment.

Figure 1.12: Closed-loop experiment with PI controller on PIC micro-
controller
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CHAPTER II

MODELING

The controller design methods to be used in this thesis are based on analytical

models of the control system [8, 19]. Considering that the water-tank system

turns out to be nonlinear, the nonlinear state equations are employed. They have

the following form

ẋ = f(x, u) (2.1)

y = h(x, u), (2.2)

where x is the state vector, u is the control input vector, f is a nonlinear function

in the state and input, and h is the nonlinear output function. In addition to

the nonlinear state equations, we also use the linear state equations that are for

example obtained after set-point linearization.

ẋ = Ax+B u (2.3)

y = C x+Du (2.4)

Here, A is the dynamic matrix, B is the input matrix, C is the output matrix and

D is the feedthrough matrix. Finally, we use transfer function models for both

the plant and controllers. A plant transfer function model can for example be

obtained from a linear state space model of the plant by evaluating

G(s) = C (s I − A)−1B +D. (2.5)

In this equation, s is the parameter of the Laplace transform and I is the identity

matrix, whose dimension matches the dimension of A.
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2.1 VARIABLES AND PARAMETERS

2.1.1 Pump

We use a DC pump as described in Section 1.3.2. The relevant parameters of the

pump are given by

• Input voltage ui for i = 1, 2, 3. The voltage will be between 0V and 12V

• Pump flow, which is input flow for the water-tank system: qin,i for i = 1, 2, 3,

the unit for the inflow is l/sec.

2.1.2 Tank

Water-tanks of the same kind with a maximum level of 100 cm will be used to

store water. The exact specification of the water-tanks is

• Water level hi for i = 1, 2, 3. The unit is cm and the maximum level of the

water will be 100 cm.

• Surface area Ai for i = 1, 2, 3. The unit is cm2.

2.1.3 Valves

There is one valve for each of the pipes, connecting different tanks. These valves

can be manually closed (zero area) or opened (full area). In addition, there is on

valve for each tank that can be manually opened for outflow of water. We use

the following valve parameters.

• Connection valve area a1,2 and a2,3. The unit is cm2.

• Outflow valve area aout,i for i = 1, 2, 3. The unit is cm2.

In our experiment, the connection valves have a diameter of about 6 cm and the

outflow valves have a diameter of about 8 cm.
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2.2 COMPONENT MODELS

In this section, we develop analytical models for the different components of the

water-tank system.

2.2.1 Pump

For the pump, we propose to use a first-order lag model, since the pump is driven

by a DC motor. We introduce the pump gain Ki and the pump time constant Ti

for i = 1, 2, 3. The first-order differential equation is then

q̇in,i =
1

Ti

(−qin,i +Ki ui) (2.6)

whenT i = 1, Ki = 200

2.2.2 Water-Tank

For the tank, we compute the water level change depending on inflow and outflow.

The situation is shown in Figure 2.1. We call the inflow qin and the outflow qout.

Then, we can write the water level change as follows.

Ai ḣ = qin − qout ⇒ ḣ =
1

Ai

(qin − qout) (2.7)

2.2.3 Valves and Pipes

We model the pipes with valves using the law of Torricelli:

• The discharging pipe is connected to the water-tank with a water level h

and discharges water to the reservoir if the valve is open (area aout. The

modeling equation for the outflow qout from the discharging pipe is

qout = aout
√

2 g h. (2.8)

• The connection pipe between two tanks has a water level h1 in one tank

and a water level of h2 in the other tank. If the valve on the pipe is open,
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                                    Reservoir

q o u t

p u m p

q i n

h 1

Figure 2.1: Water-tank with inflow and outflow

the surface for water flow between tanks is a. Then, the flow q1,2 from tank

1 to tank 2 can be computed as follows.

q1,2 = a
√

2 g (h1 − h2) (2.9)

Figure 2.2: Modeling a connection pipe between two tanks
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2.3 OVERALL NONLINEAR WATER-TANK MODEL

We now put together the component models from the previous sections in order to

obtain an overall model of the water-tank system. Considering that the equations

for the flow between tanks and the outflow are nonlinear, the overall model will

be nonlinear. Since we consider three tanks, we use the water levels h1, h2, h3,

the pump voltages u1, u2, u3, the pump flows qin,1, qin,2, qin,3 and the outflows and

connection flows as described before. We find one first-order state equation for

each pump flow and one first-order state equation for each water level.

q̇in,1 =
1

T1

(−qin,1 +K1 u1) (2.10)

ḣ1 =
1

A1

(qin,1 − qout,1 − q1,2 − qin,2) (2.11)

q̇in,2 =
1

T2

(−qin,2 +K2 u2) (2.12)

ḣ2 =
1

A2
(qin,2 − qout,2 − q2,3) (2.13)

q̇in,3 =
1

T3
(−qin,3 +K3 u3) (2.14)

ḣ3 =
1

A3
(qin,3 − qout,3 + q2,3) (2.15)

In these state equations, we use the output flow

qout,i = aout,i
√

2 g hi, i = 1, 2, 3 (2.16)

and the flows in the connecting valves

q1,2 =







a1,2
√

2 g (h1 − h2) if h1 ≥ h2

a1,2
√

2 g (h2 − h1) if h2 > h1

(2.17)

q2,3 =







a2,3
√
2 g h2 − h3 if h2 ≥ h3

a2,3
√

2 g (h3 − h2) if h3 > h2

(2.18)

Together, we obtain a 6-th order nonlinear model with three inputs u1, u2, u3

and three outputs h1, h2, h3, considering that the water level can be measured.
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Since, we want to apply linear control system design methods, we next perform

a linearization of the nonlinear system.
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CHAPTER III

LINEARIZATION

In the study of dynamical systems, linearization is used for assessing the local

stability of an equilibrium point of a system of nonlinear differential equations

[4]. It is also employed in the process of approximating a nonlinear system model

by a linear model, that is valid for small deviations from the equilibrium. The

model of the three tank system is nonlinear. In this chapter, we present how we

construct the linearized model of different subsystems of the three tank system.

We employ set-point linearization, where the set-point is defined as a stationary

(non-changing) state of the system such that the system state maintains a con-

stant set-point value. We compute a small signal approximation of the nonlinear

model, that is valid close to the set-point. In principle, the system state and

output equations are approximated using Taylor expansion, and the difference

variables, that represent the deviation of state, input and output from the set

point. An important restriction for the set point linearization is that the linear

model is only valid in the vicinity of the set-point.

In our system, the water level is selected to be the state variable for the set point.

In the following section, we study a one-tank system, and two different two-tank

systems as subsystems of the three-tank system. After performing the set-point

linearization, we compare the original non-linear model and the linearized model

by doing simulations in Matlab.
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3.1 LINEARIZATION OF THE ONE-TANK SYSTEM

The three tank system becomes a one-tank system when we close the valve that

will connect between tank 1 and tank 2, and do not run the pump between tank

1 and tank 2 as shown in Figure 3.1.

Figure 3.1: One tank system.

The system model before linearization is represented with the following differen-

tial equations which describe the dynamics of water flow, qin,1 and water level h1

in tank 1.

q̇in,1 =
1

T1
(−qin,1 +K1 u1) (3.1)

ḣ1 =
1

A1
(qin,1 − aout,1

√

2 g h1) (3.2)

Let u1SP , h1SP and qin1SP denote the set points for u1, h1 and qin,1 respectively.

There is no deviation in the system state at the set point hence, by equating (3.1)

and (3.2) to zero where we get:
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qin1SP = aout,1
√

2 · g · h1SP (3.3)

u1SP =
qin1SP
K1

. (3.4)

We now apply the small signal analysis to find the matrices A, B, C, D in (2.3)

and (2.4) by taking the partial derivatives with respect to qin,1 and h1. The

resulting matrices are

A =





−1/T1 0

1/A1
aout·2·g

A·2·
√
2·g·h1SP



 (3.5)

B =





k1
T1

0



 (3.6)

C =
[

0 1
]

(3.7)

Note that D = 0 for our example.

Subsequently, the continuous time system is represented in the s-domain as shown

in (2.5). We use the parameter values introduced in Section 2.1 and a set-point

value for the water level as h1SP = 50 (cm). Then, the transfer function of the

one-tank system plant is

G(s) =
H1(s)

U1(s)
=

0.4444

s2 + 0.5018 s+ 0.0008831
. . (3.8)

Here, H1(s) and U1(s) denote the Laplace transforms of the water level h1 and the

input voltage u1. We later use this transfer function in Chapter 5 for controller

design.

If we want to change the set point for example to h1SP = 30, we evaluate (3.4)

and (3.4) with the new value of h1SP . This leads to a modified transfer function

G(s) =
H1(s)

U1(s)
=

0.4444

s2 + 0.5023s+ 0.00114
. . (3.9)
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3.2 TWO-TANK SYSTEM WITH ONE PUMP

In this model, we close the valve that connects tank 2 and tank 3. In addition,

we disable the second and third pumps as we see in Fig. 3.2.

Figure 3.2: Two tank system with one water pump.

The differential equations for this system are as follows:

q̇in,1 =
1

T1

(−qin,1 +K1 u1) (3.10)

ḣ1 =
1

A1

(qin,1 − qout,1 − q1,2) (3.11)

ḣ2 =
1

A2
(q1,2 − qout,2) (3.12)

(3.13)

Let u1SP , qin1SP , h1SP and h2SP be the set-point values of the system variables.
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Then, for the two-tank system:

aout
√

2 · g · h1 − aconn
√

2 · g · (h1 − h2) = 0 (3.14)

⇒h1SP =
2 · h2SP · a2out + 2 · g · aconn2 · h2SP

2 · g · a2conn
(3.15)

From h1SP , the values for qin1SP and u1SP can be computed in the same way as

in the previous section.

Following the same method of small signal linearization as for the one tank system,

we determine A, B, C, D as follows

A =











−1/T1 0 0

1/A −aout1·2·g
A·2·

√
2·g·h1SP

− aconn·2·g
A·2·

√
2·g·h1SP−h2SP

aconn·2·g

A·2·
√

2·g·(h1SP−h2SP )

0 aconn·2·g

A·2·
√

2·g·(h1SP−h2SP )

−aout2·2·g
A·2·

√
2·g·h2SP

− aconn·2·g

A·2·
√

2·g·(h1SP−h2SP )











(3.16)

B =









0

k1
T1

k2
T2









(3.17)

C = ([0 0 1]) (3.18)

D is again zero. Assuming a set-point value of h2SP = 30 (cm), we compute the

plant transfer function of the two-tank system as

G(s) =
H2(s)

U1(s)
=

0.01599

s3 + 0.5729 s2 + 0.03646 s+ 0.0000016
(3.19)

3.3 TWO-TANK SYSTEM WITH TWO PUMPS

Lastly, we consider two tanks, each of which has one pump. In this system we

close all the connection valves and run pump 1 and pump 2, as we see in Figure

3.3 and we make the outflow valves open. Pump 1 pumps water to tank 2 and

pump 2 takes water from tank 1 and pumps it to tank 2.

Similar to the previous systems, we first construct the differential equations for

the non-linear system as follows:
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Figure 3.3: Two-tank system without the connecting pipe.

q̇in,1 =
1

T1

(−qin,1 +K1 u1) (3.20)

q̇in,2 =
2

T2

(−qin,2 +K2 u2) (3.21)

ḣ1 =
1

A1
(qin,1 − qout,1 − qin,2) (3.22)

ḣ2 =
1

A2
(qin,2 − qout,2) (3.23)

(3.24)

We now use the set-point values u1SP , qin1SP , h1SP , h2SP , qin2SP . From the set-

point computation, we obtain

qin(1)SP = aout(2) ·
√

2 · g · h2SP (3.25)

qin(2)SP = qin(1)SP (3.26)

Using set-point linearization, we next compute the state space model, where

D = 0.
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A =















−1
T1

0 0 0

1
A1

0 0 1
A2

0 0 aout,1·2·g

A2·2·
√
2·g·h1SP

1
A2

0 0 0 −1
T2















(3.27)

B =















K1

T1
0

0 0

0 0

0 K2

T2















(3.28)

C =





0 1 0 0

0 0 0 1



 (3.29)

Assuming that the set-point value of both water levels is 30 cm, we compute the

transfer matrix between the inputs u1, u2 and the outputs h1, h2.

G(s) =





0.4444
s2+0.5051s+0.002565

− 0.4444
s2+0.5051s+0.002565

0 0.4444
s2+0.5051s+0.002565



 . (3.30)

such that




H1(s)

H2(s)



 = G(s)





U1(s)

U2(s)



 (3.31)
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CHAPTER IV

CONTROLLER DESIGN METHODS FOR LTI SYSTEMS

After completing the necessary steps of modeling and linearization in the previous

sections, it is now possible to apply linear controller design methods for the

control of the water-tank system. The basic feedback control loop for our setup

is shown in Figure 4.1. Here, that plant represents the water-tank system to

be controlled including the tank(s), the DC pump(s). The output signal of the

plant is determined by the pressure sensor(s) in the tank(s). The controller is

practically implemented on a PIC microcontroller. The main task of this section

is to determine different control algorithms that are suitable for different control

tasks of the water-tank system.

con t ro l l e r

e r r o r

e
r

s y s t e m  

  i npu t

u

o u t  p u t

s e n s o r

    senso r

m e a s u r m e n t

-
+

w a t e r  t a n k  

s y s t e m

y

r e f r e n c e

Figure 4.1: Basic feedback loop for the three tank system

The basic control tasks to be addressed in this thesis are related to the water-

level control in one or two tank systems as modeled before. That is, we want to

keep the water level in one or two tanks constant, while dealing with disturbances

such as unknown outflow from one or two tanks. We will focus on design meth-

ods in the frequency domain. Methods to be used include the pole placement
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method, the root locus method, the symmetrical optimum method and the youla

parametrization method.

The controller design experiments are chosen such that they can be applied in

different laboratory sessions of the courses mentioned above. The controllers are

designed in the frequency domain in continuous time, that is the resulting con-

troller is represented by a transfer function. Then, the controllers are converted

to a discrete-time representation for implementation on the microcontroller. All

experiments are simulated in Matlab/Simulink and the simulation results are

explained in reference to the different controller design methods.

4.1 POLE PLACEMENT

Pole placement method is one of the classical controller design methods for LTI

systems in the basic feedback control loop that only work with state-space plant

models [15] as shown in Figure 4.1. It can be applied to both continuous-time

systems and discrete-time systems . The basic idea of the pole placement is to

first choose the desired poles of the closed-loop transfer function of the system ac-

cording to given performance specifications. That is, the denominator polynomial

Q(s) of the closed-loop system is pre-determined. Then, the controller transfer

function C(s) is directly computed. This method is studied in the courses ECE

441 (continuous-time systems) and ECE 438 (discrete-time systems).

Suppose that we have a closed-loop system described by the rational transfer

function:

G(s) =
B(s)

A(s)
, (4.1)

where B(s) is the numerator polynomial

B(s) = bns
n + bn−1s

n−1 + ....+ b0 (4.2)

and A(s) is the denominator polynomial of the system:
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A(s) = ans
n + an−1s

n−1 + ....+ a0 (4.3)

n is called the degree of the system. The controller transfer function is

C(s) =
P (s)

L(s)
(4.4)

with the controller numerator

P (s) = Pms
m + Pm−1s

m−1 + .... + P0 (4.5)

and the controller denominator

L(s) = lms
m + lm−1s

m−1 + .... + l0 (4.6)

m is the controller degree. Now assume that Q(s) represents the desired closed-

loop polynomial. The task is to compute the coefficients of P (s) and L(s) such

that the closed-loop polynomial Q(s9 is obtained. This is achieved by the design

equation

Q(s) = A(s)L(s) +B(s)P (s). (4.7)

In the lecture, basically two versions of the pole placement design are discussed:

pole placement without additional requirements and pole placement with integral

action.

• For the pole placement method without additional requirements, the con-

troller degree is usually chosen as m = n − 1. This means, if the degree

of the system is n = 1, the controller type will be proportional controller

m = 0 but when the system order is larger (n > 1), then the controller type

will be a lead/lag compensator in the following form

C(s) =
p0 + ... + pn−1 s

n−1

l0 + ... + ln−1 sn−1
(4.8)

with l0 6= 0. The only disadvantage of this method is that it does not lead

to an integral controller. That is, the feedback loop will generally show a

non-zero steady-state error for reference and disturbance steps.
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• Pole placement with integral action solves this problem by increasing the

controller degree. The choice is now m = n and the controller transfer

function :

C(s) =
p0 + · · ·+ pn s

n

(l0 + · · ·+ ln−1 sn−1) s
(4.9)

is used. Evaluating the design equation leads to integral control. Depending

on the system degree n, different controller types are achieved. For example,

n = 1 leads to PI-control and n = 2 leads to PID-control.

Although pole placement directly assigns the denominator polynomial of the

closed-loop system transfer function, there is no direct influence on the numerator

polynomial. As a result, pole placement design can lead to large overshoot in the

reference or disturbance step response. This problem can be solved by adding a

pre-filter to the feedback control loop as shown in Figure 4.2.
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Figure 4.2: Water-tank control system with filter

Consider that the closed-loop system transfer function is given by the comple-

mentary sensitivity T (s) =
V +(s) · V −(s)

Q(s)
. Here, we let V +(s) contain the zeros

of the numerator polynomial in the right half plane and V −(s) contain the zeros

of the numerator polynomial in the open left half plane. Then, the pre-filter

transfer function is chosen as

F (s) =
Q(0)

V −(s)
. (4.10)

The idea of the pre-filter is to cancel out the numerator polynomial of the closed-

loop transfer function T (s), which removes the overshoot.
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4.2 ROOT LOCUS DESIGN

Root locus design is a graphical technique for the closed-loop design in the basic

feedback control loop. The root locus allows us to find the poles of the closed-

loop system by starting from the open-loop system’s poles and zeros. Using this

information it is possible to perform controller design based on the root locus

for both stability and transient system response. The root locus method can be

applied to systems of arbitrary order, however, the root locus can become very

complex for systems of degree n = 4. The root locus design is explained in ECE

388, ECE 441 and ECE 438.

The basic steps in applying the root locus method are as follows

• Determine the open loop transfer function with a free gain parameter K:

Go(s) = K C(s)G(s)

• Sketch the root locus plot of Go(s) (this can be done manually or using

Matlab)

• Move the closed-loop poles to desired locations according to the closed-loop

specification

• Determine the controller gain K

• Simulate the feedback loop with the designed controller and verify if the

closed-loop behavior is as desired

4.3 SYMMETRICAL OPTIMUM METHOD

The (Kessler’s) symmetrical optimum method is used for controller designs that

lead to reasonable responses both for reference steps and disturbance steps. Usu-

ally, responses are fast with zero steady-state error but with overshoot. The

symmetrical optimum method requires plant models that can be represented in

the following form.

G(s) =
K

(1 + s T1) · · · (1 + s Tn)(1 + s τ)
. (4.11)
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In this model, T1, . . . , Tn are time constants that are large compared to the single

time constant τ . If the plant model is accordingly, a controller of the following

form is used.

C(s) = Kp

(1 + s Tp)
n

s (1 + s τP )n−1
, (4.12)

where

• n+ 1 is the order of the plant

• KP is the controller gain

• TP is the numerator time constant

• τP is the denominator time constant that is usually chosen as τP < 0.1 TP

Using the plant parameters n, T1, . . . , Tn, τ and K, the design equation for the

symmetric optimum controller is given by

Kp =
1

2K τ

T1 · · ·Tn

(4n τ)n

Tp = 4n τ

In summary, the symmetrical optimum enables the design of PID-type controllers

for systems with several large time constants and one small time constant. It has

a straightforward design equation, and leads to closed loops with fast responses

to reference and disturbance steps . The symmetrical optimum is studied in ECE

441.

4.4 YOULA PARAMETERIZATION METHOD

This section presents the Youla parameterization method (or Q-Parameterization

method), which is a modern control design method [14, 7]. The Youla parametriza-

tion actually allows to parametrize all stabilizing controllers for a control system

design in the basic feedback control loop. The Youla parametrization requires

that the plant is stable and has a positive relative degree. In order to perform the

Youla parametrization, we look at the complementary sensitivity parametrized

as T (s) = Q(s)G(s). Here, Q(s) is a desired open-loop controller that leads to
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the closed-loop transfer function T (s). At the same time, the closed-loop transfer

function is computed as

T (s) =
G(s)C(s)

1 +G(s)C(s)
(4.13)

Solving for C(s) gives

C(s) =
Q(s)

1−Q(s)G(s)
=

Q(s)

1− T (s)
(4.14)

That is, if we know Q(s), we can directly compute C(s). In summary, the Youla-

parametrization design works as follows. First a desired complementary sensitiv-

ity T (s) is chosen. Then, the parameter Q(s) = T (s)/G(s) is computed. Next,

C(s) is directly found from (4.14).

Finally, we list some properties of the Youla paraemtrization.

• Any complementary sensitivity with a relative degree larger or equal to the

plant relative degree can be achieved. However, the controller order can be

large and the controller might be non-standard

• Youla parametrization can lead to bad disturbance rejection

• Youla parametrization requires stable plants with positive relative degree

Youla parametrization is taught in the course ECE 441.

4.5 DISTURBANCE FEED-FORWARD CONTROL

Disturbance feedforward is a method that can be used if a disturbance, that

acts on the plant, can be measured [1]. In that case, it is possible to directly

react to the disturbance. We consider the block diagram in Figure 4.3, that has

the structure of a one-tank system. The water-tank system is separated in the

pump and the tank, and a disturbance acts between these two components. The

disturbance in this case is a flow that removes water from the tank, and it is

assumed that this flow can be measured by a flow sensor.
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Figure 4.3: Feed-forward controller architecture

If we want to remove the disturbance before its effect to the output , we must

fulfill the following equation according to the block diagram.

−1 + F (s)P1(s) = 0 (4.15)

Here, F (s) is the disturbance feedforward transfer function and P1(s) is the pump

transfer function. Solving for F (s) leads to

F (s) =
1

P1(s)

(4.16)

If F (s) in (4.16) is not proper, it is generally multiplied by a lag transfer function.

An example of this is shown in Section 5.3.2. Disturbance feedforward is part of

the lecture ECE 441.

4.6 CONTINUOUS AND DISCRETE-TIME CONTROL

In many cases, controllers are designed in the s-domain but realized on a digi-

tal computer such as a microcontroller or programmable logic controller (PLC).

That is, the continuous-time controller transfer function has to be converted to

a discrete-time (digital) representation. We use three classical approximation

methods to perform this task.

• Euler method when:

s =
z − 1

T
(4.17)
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• Euler backward method when:

s =
z − 1

ZT
(4.18)

• Trapeziodal method when:

s =
2

T

z − 1

z + 1
(4.19)

where T is the sampling period. This technique is studied in detail in the course

ECE 438.
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CHAPTER V

APPLICATION OF CONTROLLER DESIGN METHODS

In this chapter, we apply the controller design methods discussed in Chapter 4

to the different configurations of our water-tank system. We first discuss the

one-tank system in Section 5.1. The different two-tank systems are explained in

Section 5.2 and 5.3.

5.1 ONE-TANK SYSTEM

We apply the pole placement method with and without integral action to the

one-tank system.

5.1.1 Pole placement method (without integral)

In order to apply pole placement, we first need a plant transfer function of the

one-tank system as is shown in (4.1). Next, we have to decide on the desired pole

locations of the closed-loop system in the complex plane in order to determine

the control system performance. Finally, we will use the design equation 4.7 to

find the controller transfer function.

From the linearization in Section 3.1, we get the plant transfer function

G(s) =
0.4444

s2 + 0.5018s+ 0.0008831
(5.1)
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That is, we find the numerator polynomial

B(s) = 0.4444 (5.2)

and the denominator polynomial

A(s) = s2 + 0.5018s+ 0.0008831 (5.3)

The plant is of degree n = 2 with poles at s1 = −0.5 and s2 = −0.0018. In order

to speed up the behavior of the closed loop in comparison to the plant, we choose

closed-loop poles at s = −0.2. Moreover, we get m = n−1, which leads to degree

3 of the closed-loop polynomial:

Q(s) = (s+ 0.2)3 = s3 + 0.6 s2 + 0.12 s+ 0.008. (5.4)

It remains to evaluate the design equation

Q(s) = A(s)L(s) +B(s)P (s), (5.5)

and we find the controller transfer function

C(s) =
0.133 s+ 0.0178

s+ 0.1
. (5.6)

As discussed before, the controller is of degree m = 1 and is of the so-called

lead/lag type. In order to realize this controller transfer function on a digital

controller, the next step is to determine the discrete-time approximation of the

controller transfer function. We use the formulas (4.17), (4.18) and (4.19) as

presented in Section 4.6. We get the following discrete-time transfer functions for

the different methods:

• Euler method:

CEuler =
0.133 z − 0.133 + 0.0178 T

z − 1 + 0.1 T
(5.7)

• Euler backward method:

CEulerbackward =
(0.133 + 0.0178 T ) z − 0.133

(1 + 0.1 T ) z − 1
(5.8)
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• Trapezoidal method:

Crapezoidal =
(2 0.133 + 0.0178 T ) z + (−2 0.133 + 0.0178 T )

(2 + 0.1 T ) z + (−2 + 0.1 T )
(5.9)

As the final step of this controller design, we verify the correctness of the compu-

tation by simulation in Matlab/Simulink. We perform a step of the water-level

reference value from the value 0 to 5. The block diagram for the simulation

is shown in Figure 5.1. For comparison, we show both the continuous-time (s-

domain) and discrete-time (z-domain) case. In discrete-time, we use different

values of the sampling time T in order to find a good sampling time for the

one-tank system.

Figure 5.1: Simulink model of the one-tank system control

The following figures illustrate the simulation results for sampling times T = 0.01,

T = 0.1 and T = 1 (according to the modeling in Chapter 2, the unit is seconds).

The left hand plot shows the time evolution of the water level, whereas the right

hand figure shows the flow of the pump.

Looking at the previous figures, the feedback loop is stable for all values of T .

However, it can be observed that for example the Euler backward method at

T = 1 leads to oscillations around the reference value of the water level. Hence,

we conclude that the sampling time should be chosen sufficiently smaller, for

example in the order of T = 0.1. We also observe that all experiments lead to
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Figure 5.2: Water level control for the one-tank system by using pole
placement without integral and without pre-filter for T = 0.01.
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Figure 5.3: Water level control for the one-tank system by using pole
placement without integral and without pre-filter for T = 0.1 .
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Figure 5.4: Water level control for the one-tank system by using pole
placement without integral and without pre-filter for T = 1.

significant overshoot. This is a basic property of the pole placement design. By

assigning the poles of the closed-loop arbitrarily, the closed-loop transfer function

obtains zeros, that cause this overshoot. A remedy is to use a pre-filter, that filters

the reference signal before it is applied to the feedback loop. We compute the

filter as described in Section 4.1.

We now perform the same simulations as before, only using the additional pre-

filter. It can be seen that the previously observed overshoot is almost entirely

removed from the step response. This can also be explained when looking at the

flow of the pump. In comparison to the case without pre-filter, the initial flow of

the pump is much reduced. Hence, a steady increase of the water level without

overshoot is achieved.

F (s) =
0.008

0.05912 s+ 0.007912
(5.10)

The simulation result in Figure 5.5 to 5.7 now shows that there is no more over-

shoot and that the final value is achieved without any steady-state error.
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Figure 5.5: Water level control for the one-tank system by using pole
placement without integral but with pre-filter for T = 0.01.
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Figure 5.6: Water level control for the one-tank system by using pole
placement without integral but with pre-filter for T = 0.1.
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Figure 5.7: Water level control for the one-tank system by using pole
placement without integral but with pre-filter for T = 1.

5.1.2 Pole Placement Method (with integral)

The controller derived in the previous section is of lead/lag type. Hence, it does

not allow a steady-state error of zero for reference or disturbance steps. If we want

to achieve this, we would like to design PI- or PID-controllers, that is, we need to

add an integral action to the controller. We proceed as described in Section 4.1

for the pole placement design with integral action. As discussed before, the plant

is of degree n = 2 and A(s) and B(s) can be found from (5.2), (5.3). We again

choose closed-loop poles at s = −0.2. Moreover, we get m = n − 1 + 1, which

leads to degree 4 of the closed-loop polynomial:

Q(s) = (s+ 0.2)4 = s4 + 0.8 s3 + 0.24 s2 + 0.032 s+ 0.0016 (5.11)

The resulting controller transfer function is given as

C(s) =
0.2075 s2 + 0.07052 s+ 0.0036, s+ 0.01751

s2 + 0.3 s
. (5.12)

Looking at C(s), it can be seen that the controller is of second order with an in-

tegral part. Similar to the previous section, we finally transform the continuous-

time controller transfer function to discrete time. We apply the different approx-

imation methods as described before. Again, T denotes the sampling time.
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• Euler method:

CEuler(s) = 0.2075 z2+(0.075052 T−2 0.2075) z+(0.2075−0.075052 T+0.0036 T2)

z2+(0.3T−2) z+1−0.3T
(5.13)

• Euler backward method:

CEulerbackward(s) = (0.207+0.07052 T+0.0036 T2) z2+(−0.07052 T−2 0.207) z+0.207

(1+0.3T )z2+(−2−0.3T ) z+1
(5.14)

• Trapezoidal method:

Crapezoidal(s) =

(0.8292+0.14104 T+0.0036 T2) z2+(−1.65+0.0072 T2) z+0.8292−0.14104 T+0.0036 T2

(4+0.6 T ) z2−8 z+4−0.6T

(5.15)

The simulation result of a reference step from 0 to 5 for the closed feedback loop

is investigated for the three sampling times T = 0.01, T = 0.1 and T = 1. The

result is shown in the following figures.
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Figure 5.8: Water level control for the one-tank system by using pole
placement with integral and without pre-filter for T = 0.01.

We see from the plots that all approximation algorithms and all selected sampling

times lead to a stable closed-loop system. However, it has to be observed that the

deviation from the continuous-time simulation increases for larger sampling times.

Hence, the most suitable sampling time is again T = 0.1 (which corresponds to

100ms). In addition, there is overshoot for all experiments, since no pre-filter is
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Figure 5.9: Water level control for the one-tank system by using pole
placement with integral and without pre-filter for T = 0.1 .
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Figure 5.10: Water level control for the one-tank system by using pole
placement with integral and without pre-filter for T = 1 .
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used up to now. We now design a suitable pre-filter for the water level control

of the one-tank system with pole placement and integral action. We now design

a pre-filter in order to reduce the overshoot. The filter transfer function is as

follows in the s-domain

F (s) =
0.0016

0.09221 s2 + 0.03134 s+ 0.0016
(5.16)
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Figure 5.11: Water level control for one tank system by using pole place-
ment with integral (with filter) when T=0.01

The simulation result in Figure 5.11 to 5.13 now shows that there is no more

overshoot and that the final value is achieved without any steady-state error.

5.2 TWO-TANK SYSTEM (WITH ONE PUMP)

The one-tank system from the previous section is now extended by a second tank.

This tank is connected to the first tank by a pipe as described in Section 3.2. We

apply different controller design techniques, and want to control the water level
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Figure 5.12: Water level control for one tank system by using pole place-
ment with integral (with filter) when T=0.1
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Figure 5.13: Water level control for one tank system by using pole place-
ment with integral (with filter) when T=1
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in the second tank by manipulating the voltage of the inflow pump for the first

tank. The results are simulated in Matlab/Simulink. As computed in Section 3.2,

the linearized model of this two-tank system is given by the transfer function in

(3.19)

G(s) =
0.01599

s3 + 0.5729 s2 + 0.03646 s+ 0.0000016

Figure 5.14: Simulink control loop for the two-tank system with one
pump

5.2.1 Pole placement (without integral)

We apply the pole placement method as described in Section 4.1 with the desired

closed-loop polynomial

Q(s) = (s + 0.2)5 = s5 + s4 + 0.4s3 + 0.08s2 + 0.008s+ 0.00032 (5.17)

Using G(s) and Q(s), we find the following controller transfer function in the

s-domain.

C(s) =
0.3764s2 + 2.889s+ 0.1512

s2 + 0.4694s+ 0.1354
. (5.18)

By design, this controller does not have an integrator. We finally transfer this

controller to the z-domain as described in Section 4.6. Note that we already

discussed the influence of the sampling time T on the closed-loop system. In

Section 5.1, we found that a sampling time of T = 0.1 (sec) is suitable for the
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water-tank system. In order to keep the presentation short, we now continue

using this sampling time T = 0.1. We find the controller transfer functions for

the different integral approximations.

• Euler method:

CEuler(z) =
0.3764z2 − 0.4639z + 0.08901

z2 − 1.953z + 0.9544
(5.19)

• Euler backward method:

CEulerbackward(z) =
0.6361z2 − 0.9937z + 0.3591

z2 − 1.953z + 0.9539
(5.20)

• Trapezoidal method:

Crapezoidal(z) =
0.5091z2 − 0.7346z + 0.2269

z2 − 1.953z + 0.9542
(5.21)

The resulting step response for a reference step (water level in tank 2) of 5 (cm)

is shown in Figure 5.15. Since there is no integrator in the controller, it can be

seen that there is a steady-state error.
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Figure 5.15: Pole placement for the two-tank system with one pump (no
filter) with T = 0.1 .

Note that the flow on the right hand side of Figure 5.15 is negative, because

it represents the difference from the set-point. We next design the pre-filter as

described in Section 4.1. The filter transfer function in the s-domain is
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F (s) =
0.00032

0.0007627s2 + 0.005854s+ 0.0003065
. (5.22)

In the z-domain (for T = 0.1), we get

• Euler method:

FEuler(z) =
0.004196

z2 − 1.232z + 0.2365
(5.23)

• Euler backward method:

FEulerbackward(z) =
0.002368z2

z2 − 1.562z + 0.5645
(5.24)

• Trapezoidal method:

Frapezoidal(z) =
0.0007575z2 + 0.001515z + 0.0007575

z2 − 1.443z + 0.4457
(5.25)

The step response for the closed loop including the pre-filter is shown in Fig-

ure 5.16. It can be observed that now the steady-state error is removed. However

there is still overshoot in the step response. This can be explained as follows.

The controller design uses the linearized model of the two-tank system. However

the real system is nonlinear. This leads to small deviations from the designed

closed-loop behavior.

5.2.2 Pole placement (with integral)

We now add integral action to the controller using pole placement. The desired

closed-loop polynomial is

Q(s) = (s+0.2)6 = s6 +1.2 s5 + 0.6 s4 +0.16 s3 +0.024 s2 +0.00192 s+0.000064

(5.26)

We get the controller in the s-domain

C(s) =
13.74s3 + 10.06s2 + 0.9362s+ 0.03158

s3 + 0.6694s2 + 0.2293s
(5.27)

and convert the C(s) to the z-domain for a sampling time of T = 0.1.
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Figure 5.16: Pole placement for the two-tank system with one pump
(filter) with T = 0.1 .

• Euler method:

CEuler =
13.74z3 − 40.21z2 + 39.22z − 12.74

z3 − 2.933z2 + 2.868z − 0.9354
(5.28)

• Euler backward method:

CEulerbackward =
13.8z3 − 40.44z2 + 39.49z − 12.85

z3 − 2.933z2 + 2.868z − 0.9352
(5.29)

• Trapezoidal method:

Crapezoidal =
13.78z3 − 40.35z2 + 39.37z − 12.8

z3 − 2.933z2 + 2.868z − 0.9353
(5.30)

The step response in the closed loop is shown in Figure 5.17. Due to the integral

action of the controller, the steady-state error is zero. However, there is large

overshoot because of zeros that appear in the closed-loop transfer function.

We now design a pre-filter in order to reduce the overshoot. The filter transfer

function is as follows in the s-domain

F (s) =
6.4 10−5

0.02785s3 + 0.02038s2 + 0.001897s+ 6.4 10−5
(5.31)

and in the z-domain (for T = 0.1)
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Figure 5.17: Pole placement method with integral method for two tank
system with connection pipe when the T=0.01

• Euler method:

CEuler =
2.298 10−6

z3 − 2.927z2 + 2.854z − 0.9275
(5.32)

• Euler backward method:

CEulerbackward =
2.14 10−6z3

z3 − 2.931z2 + 2.862z − 0.9312
(5.33)

• Trapezoidal method:

Crapezoidal =
2.771 10−7z3 + 8.312 10−7z2 + 8.312 10−7z + 2.771 10−7

z3 − 2.929z2 + 2.858z − 0.9294
(5.34)

The step response simulation is shown in Figure 5.18. It can be seen that the

overshoot is significantly reduced compared to the case without filter. However,

there is still some overshoot because of the nonlinearity of the water-tank system

and the saturation of the control input.

5.2.3 Root Locus Method

We next use the root locus method as described in Section 4.2 in order to find a

controller for the two-tank system with one pump. This method requires the poles
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Figure 5.18: Filter for pole placement method (with integral) when
T=0.1

and zeros of the open-loop transfer function. Hence, we first choose a suitable

structure of the controller transfer function as follows.

C(s) = Kp

(1 + T2 s)((1 + T1 s))

s(1 + s τ
10
)

(5.35)

In order to choose T1 and T2, we look at the poles of the plant transfer function

G(s)

P1 = −0.5000, P2 = −0.0212, P3 = −0.0094 (5.36)

We suggest to compensate the two slow poles of G(s) at P2 = −0.0212 and

P3 = −0.0094 by the choice of T1 = −1/P2 and T2 = −1/P3. In addition, we

introduce the fast time constant τ = −0.1/P1 such that the controller transfer

function is proper. Together, we obtain the open-loop transfer function

G(s)C(s) =
50.73

s3 + 5.5 s2 + 2.5 s
. (5.37)

The root locus plot of G(s)C(s) is shown in Figure 5.19. We see that the root

locus has three branches, whereby two branches move to the instability region

for large values of Kp. In order to make the closed loop as fast as possible, we

choose the closed-loop poles at the intersection point of the root locus with the

real axis. The corresponding value is Kp = 0.00586. The resulting controller
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transfer function is

C(s) =
29.34s2 + 0.8977s+ 0.00586

0.2s2 + s
(5.38)
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Figure 5.19: Pole locations for the two tank system with one pump

The controller transfer functions in discrete-time (for T = 0.1) are computed as

follows.

• Euler method:

CEuler =
146.7z2 − 293z + 146.3

z2 − 1.5z + 0.5
(5.39)

• Euler backward method:

CEulerbackward =
98.1z2 − 195.9z + 97.8

z2 − 1.667z + 0.6667
(5.40)

• Trapezoidal method:

Crapezoidal =
117.5z2 − 234.7z + 117.2

z2 − 1.6z + 0.6
(5.41)

It can be seen from the closed-loop simulation in Figure 5.20 that the response

reaches the reference value very fast. However, it has to be remarked that a very

large pump flow is required at the beginning of the experiment. This leads to

overshoot and a slow return to the reference value.
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Figure 5.20: Step response for the root locus design

5.2.4 Symmetrical Optimum

In order to apply the symmetrical optimum method as described in Section 4.3,

we need to look at the poles/time constants of the plant transfer function G(s).

The poles are

P1 = −0.5000, P2 = −0.0212, P3 = −0.0094 (5.42)

as already discussed in Figure 5.19. Accordingly, we can write the plant transfer

function in the time constant form as

G(s) =
9993

(1 + 47 s) (1 + 106 s) (1 + 2 s)
. (5.43)

It can be observed that G(s) is stable and contains one small time constant

τ = −1/P1 = 2 and two larger time constants T1 = −1/P2 = 47 and T3 =

−1/P3 = 106. Then, we can apply the formula in Section 4.3 to find the controller

transfer function

C(s) =
431.8s3 + 53.98s2 + 2.249s+ 0.03124

1.44s3 + 2.4s2 + s
(5.44)

We again convert the controller to discrete time for T = 0.1.
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• Euler method:

CEuler(z) =
8104z3 − 2.421 104z2 + 2.411 104z − 8003

z3 − 2.833z2 + 2.674z − 0.8403
(5.45)

• Euler backward method:

CEulerbackward(z) =
6992z3 − 2.089 104z2 + 2.08 104z − 6905

z3 − 2.846z2 + 2.698z − 0.8521
(5.46)

• Trapezoidal method:

Crapezoidal(z) =
7516z3 − 2.245 104z2 + 2.236 104z − 7422

z3 − 2.84z2 + 2.686z − 0.8464
(5.47)

The resulting step response simulation is shown in Figure 5.21. As is usual for

the symmetrical optimum method, the response is fast, but leads to significant

overshoot. and the flow will increasing and decreasing because the Sampling

Time is too large then the controller needs Large changes of the output.
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Figure 5.21: Step response for the symmetrical optimum method

5.2.5 Youla Parameterization

We finally apply the Youla parametrization method as explained in Section 4.4.

We use the desired closed-loop transfer function

T (s) =
1

(1 + s)3
(5.48)
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and apply the formula in (4.14) to find out the controller transfer function

C(s) =
493.5s3 + 261.8s2 + 7.647s+ 0.04928

s3 + 3s2 + 3s
(5.49)

The conversion of C(s) to the z-domain for T = 0.1 leads to

• Euler method:

CEuler =
493.5z3 − 1454z2 + 1428z − 467.4

z3 − 2.7z2 + 2.43z − 0.73
(5.50)

• Euler backward method:

CEulerbackward =
390.8z3 − 1153z2 + 1133z − 371.1

z3 − 2.729z2 + 2.481z − 0.7519
(5.51)

• Trapezoidal method:

Crapezoidal =
437.7z3 − 1290z2 + 1268z − 415.1

z3 − 2.715z2 + 2.456z − 0.7408
(5.52)

The step response simulation result for this controller design is shown in Figure

5.22. It can be seen that, although fast poles are specified in T (s), the response

reaches the steady-state value slowly. The reason is again the nonlinearity of

the real two-tank system. In the linear controller design, it is assumed that the

pump can run in two directions (it can also take water from the tank). In the

real nonlinear system, the only outflow is from the discharging pipe. This leads

to the slow decrease of the water level.

5.3 TWO-TANK SYSTEM (WITH TWO PUMPS)

In this experiment, we consider the two-tank system that is equipped with two

pumps as discussed in Section 3.3. The first pump pushes water to tank 1, while

the second pump takes water from tank 1 and feeds it to tank 2. We now design

controllers for both tanks and investigate the relationship between both control

loops.
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Figure 5.22: Step response for the Youla parameterization method

5.3.1 Pole Placement Mehtod

In this experiment, the plant consist of two one-tank systems as studied in Section

5.1. That is, we can apply the pole placement controller with integral and filter

as used in Section 5.1.2´for both control loops. The controller transfer function

is

C(s) =
13.74s3 + 10.06s2 + 0.9362s+ 0.03158

s3 + 0.6694s2 + 0.2293s
(5.53)

Figure 5.23 shows a step response simulation for a reference step at time 50 of

the water level in the second tank by 10 (cm). The left hand plot shows the water

level h1 of tank 1 and the right hand plot shows the water level h2 of tank 2. In

order to increase the water level in tank 2, the flow of pump 2 is increased, which

constitutes a disturbance for the water level in tank 1. Hence, the controller for

tank 1 has to react in order to bring the water level back to the initial level.

5.3.2 Disturbance Feed-forward

We now use the same setup and controllers as in Section 5.3.1, but we assume that

the flow of pump 2 is measurable. Then, we can apply disturbance feedforward
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Figure 5.23: pole placement method with filter for control on a water
level in tank1 when T=0.1

as described in Section 4.5. That is, we add a disturbance feedforward controller

F (s). Considering the pump transfer function

P1(s) =
200

1 + 2 s
, (5.54)

we compute with (4.16)

F (s) =
1

P1(s)
=

1 + 2 s

200
. (5.55)

Since F (s) is not proper, we multiply with a first-order lag transfer function with

a small time-constant (fast pole). We finally use

F (s) =
1 + 2 s

200 (1 + 0.2 s)
. (5.56)

Figure 5.24 shows the same step response experiment as in Section 5.3.1 with

and without disturbance feedforward. It can be seen that the water level in tank

2 is not affected, since the disturbance feedforward is applied in the loop with

tank 1. However, the disturbance response in the loop with tank 1 is dramatically

improved if disturbance feedforward is used. This is due to the immediate reaction

to the disturbance based on the disturbance measurement.
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Figure 5.24: Feed-forward control method when T=0.1
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CONCLUSIONS

As reported in the literature, the water level control is a very suitable experiment

for control laboratories. It can be used to study many aspects of control systems,

that can be easily transfered to other applications such as automation systems,

power systems or automotive systems. First, it allows to study basic aspects

of control system design such as nonlinear modeling and set-point linearization.

Second it is suitable for demonstrating a large variety of controller design meth-

ods. Third, it makes students familiar with elementary equipment that is used

in control systems such as pressure sensors and water pumps.

In this thesis, a three tank system for control laboratories is designed. In the

theoretical part of the thesis, basic properties of the system are investigated and

suitable control designs are evaluated. The works include

• Nonlinear modeling of the three tank system

• Set-point linearization for different variants of the three tank system

• Application of basic linear controller design methods

• Discretization of continuous-time control algorithms for the digital con-

troller implementation

• Simulation and validation of control systems using Matlab/Simulink

In the practical part of the thesis, basic components of a one-tank system are

selected and assembled for a feedback control experiment. The works include

• Microcontroller programming in the C language

• Usage of pressure sensors

• Design of high-gain instrumental amplifiers
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• Usage of high-current motor drivers

• Usage of pulse width modulation (PWM)

• Usage of DC pumps

• Implementation of digital control algorithms on PIC microcontrollers

Using the above steps and equipment, it was possible to perform basic feedback

control experiments. However, since the DC pump turned out to be very insen-

sitive, more detailed experiments were not possible. As the main task for future

work, it remains to obtain a more suitable DC pump. All other components

proved to be suitable for the water-tank experiment. As an additional important

result of the practical experiments, the connection and outflow pipes should be

large enough to guarantee a practicable design of the motor tank experiment .

The reason for this is that inflow of water into a tank is conveniently controlled by

pumps. However, sufficient outflow is only possible if the pipes are large enough.
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