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The automotive industry faces a revolution by connecting vehicles to the 

communication infrastructure in the scope of intelligent transportation systems (ITS). 

The idea of internet of things (IoT) entering the automotive domain raises much 

skepticism about security and privacy issues. The information received from and sent 

to vehicles bears considerable risks for all components in the transportation system.  

Commonly, the IT industry uses firewall devices to filter communication in both 

receiving and transmitting directions that require heavy maintenance personnel 

support and instant configuration changes. Considering the mobility of vehicles and 

the light-weight nature of in-vehicle networks, firewalls require too many resources 

and miss automated decision making. Intrusion detection systems (IDS) are widely 

used in traditional IT networks and try to close gaps resulting from stateful firewalls.  

This thesis proposes the In-Vehicle Anomaly Detection Engine (IVADE) as an 

anomaly based intrusion detection algorithm for in-vehicle controller area network 

(CAN) applications using machine learning methods. The algorithm aims at 

detecting malicious manipulations of vehicle mobility data (such as position, speed, 

direction) which are exchanged in the form of Cooperative Awareness Messages on 

vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) networks. The 

functionality of IVADE is validated by simulations of a Lane Keeping Assistance 

system that is implemented on a CAN bus together with the electronic control units 

(ECUs) for signal measurement and control computations. The relevant features for 

applying machine learning in IVADE are derived from received CAN message 

fields, supported with automotive domain-specific knowledge of the dynamic system 

behavior and trained with Decision Trees. The obtained simulation results indicate 

that IVADE successfully detects anomalies in in-vehicle applications and hence 

supports safety-critical functions. 
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ÖZ 

 

AKAR, Arif 

Yüksek Lisans, Elektronik ve Haberleşme Mühendisliği Anabilim Dalı 

Tez Yöneticisi: Doç. Dr. Klaus Werner SCHMIDT 

 

Temmuz 2017, 86 sayfa 

 

Otomotiv dünyası, araçları birbirlerine ve Akıllı Ulaştırma Sistemleri’nin (ITS) 

haberleşme altyapısına bağlayacak bir devrimle karşı karşıya kalmıştır. Otomotiv 

dünyasına Şeyler’in İnternetinin (IoT) girmesi, güvenlik ve gizlilik konularında soru 

işaretleri oluşturmuştur. Araçlara iletilen ve araçtan çevreye iletilen bilgi, Ulaştırma 

sistemindeki tüm bileşenler için riskler taşımaktadır. IT endüstrisi hem alım hem de 

iletim yönündeki haberleşmeyi filtrelemek için yoğun bakım desteği ve anlık 

konfigürasyon değişiklikleri gerektiren “Firewall” ekipmanları kullanır. Araçların 

hareketliliğini ve araç içi ağların düşük yoğunluğu düşünüldüğünde, “firewall” 

ekipmanları çok fazla kaynak gerektirmektedir ve otomatize edilmiş karar verme 

yeteneğinden yoksundur. Saldırı Tespit Sistemleri (STS), bilişim teknolojileri 

ağlarında yaygın olarak kullanılmakta ve “Firewall” ekipmanlarının durağan 

doğasında kaynaklı boşlukları kapatmaya çalışmaktadır. Bu tez, araç içi kontrol 

ağları (CAN) uygulamaları için Makine Öğrenmesi metotlarını kullanan anomali 

tabanlı araç içi saldırı tespit motorunu (IVADE) önermektedir. Araçtan araca ağlarda 

(V2V) ve araçtan altyapıya ağlarda (V2I) Kooperatif Farkındalık Mesajı (CAM) 

içeriği olarak paylaşılan ve aracın konum, hız ve yön bilgisini içeren Hareket 

Verisine yönelik veri bozma saldırılarını tespit etmeyi amaçlamaktadır. Algoritmanın 

işlevselliği, Şerit Takip Asistanı (LKA) sistemine ait modelin sinyal ölçümleri ve 

kontrol işlemleri için Elektronik Kontrol Birimleri (ECU) ile bir CAN haberleşme 

hattı üzerine simülasyonu uygulanarak doğrulanmıştır. IVADE’de uygulanan makine 

öğrenmesi özellikleri, araç içi ağdaki CAN ağı üzerindeki mesajların veri 

alanlarından toplanmış, otomotiv sistemlerine özgü dinamik sistem davranışı 

bilgileriyle desteklenmiş ve Karar ağaçları ile öğrenilmiştir. Simülasyon sonuçları, 

önerilen algoritmanın araç içi uygulamalar için anomali tespitini başarıyla yaptığı ve 

emniyet-kritik fonksiyonları koruduğunu göstermiştir. 
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1. INTRODUCTION 

 

1.1 MOTIVATION 

 

The enormous amount of information exchanged in the business sectors and the 

emerging use of information technologies at almost every layer of the IT industry 

poses a significant risk on the maintenance of reliability of the systems and 

perseverance of the internal databases [50]. Traditional sectors such as banking, 

telecommunications and IT in particular have a long history of battles for security 

and privacy, especially after the rapid increase of Internet services being used. 

Consequently, many methods and tools have emerged as a result of the increasing 

needs for security and privacy. 

 

Anti-virus software and firewalls are seen as the main defense mechanisms, yet there 

is still a necessity for complementary approaches. Firewalls are powerful devices 

which are used to restrict unauthorized access to an internal network or host 

machines and to prevent undesirable outbound access. A firewall is integrated to 

networks in order to prevent suspicious traffic based on the selection of firewall 

rules. However, it also has to allow traffic into the network to support continuous use 

of internet services. Firewalls are pre-programmed and their rules are generally based 

on packet header information, typically Port numbers and IP addresses that are used 

by application layer protocols [1].  

 

Pre-programmed and stateful defense mechanisms have revealed a necessity for 

detection of possible intrusions in an investigative manner starting from the end of 

the 90s. The fast emergence of the Internet lacks the necessary standardization for a 

more systematic approach to security. With this motivation and increase of hacking 

activities and network worms, Intrusion Detection was initiated as a complementary 

solution together with conventional security mechanisms [2]. 
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Intelligent Transportation Systems (ITS) are developed with the objective of 

improving the traffic efficiency, comfort and safety by using information 

technologies, communication and control [57,58]. Similar to the Internet history, 

security and privacy concerns for the ITS infrastructure are growing due to the 

increasing connectivity between different entities and the significant rise in the 

amount of data generated through the whole ITS network. There are many encryption 

and trust mechanisms with certificate issuance proposed for ITS system protection, 

especially for the perseverance of system security and privacy of users [6]. At the 

vehicle level, research works for authentication [3] and fingerprinting [4] of ECUs 

are examples of such efforts.  

 

Different from these works, this thesis focuses on detecting malicious manipulation 

of vehicle mobility data which are transmitted periodically to the ITS network via 

vehicle to vehicle (V2V) or vehicle to infrastructure (V2I) communication in the 

form of Cooperative Awareness Messages (CAM). The main motivation for our 

study is that most of the ITS applications depend on the correctness on the mobility 

data of vehicles through CAM transmission [5] and a plausibility check for V2V or 

V2I message content is seen as “the last line of defense” [6]. In particular, we 

consider that malicious manipulations of mobility data might endanger the safety of 

human and risk the resilience of the ITS system. 

 

The automotive world has been introduced to security research works after 2010. In 

an experimental study [7], it is demonstrated that it is possible to inject messages into 

the controller area network (CAN) bus of a modern automobile so as to alter the 

physical state of the car. The idea was staggering in the sense that safety-critical 

functions of a vehicle have become exposed to external attacks. This experiment 

required a physical access to inner parts of the vehicle and the idea was re-used to 

extend the attack surface of the vehicle by realizing remote control [8]. In this work, 

it was possible to execute own code with a remote access. Both works clearly show 

that ECU firmware is vulnerable to physical and remote access and can be altered 

when there is not enough protection mechanism implemented. The hacking spree 
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continued with a 2013 research from Miller and Valasek [9] in which they were able 

to effectively use onboard diagnostic surfaces (OBD) and could manipulate ECU 

firmware for two different car models. Lastly, a remote compromise of an SUV 

vehicle was demonstrated in a 2015 study [10]. The physical state of the vehicle was 

changed remotely from anywhere in USA. In the end, the car brand was forced to 

recall nearly 1.4 million vehicles for software update and security patching. 

 

Automotive networks are not the sole control networks that are vulnerable to such 

cyber-attacks. Industrial Control Systems (ICS), including electric grid networks, 

Supervisory Control and Data Acquisition (SCADA) networks and nuclear stations 

control networks are not immune to possible cyber threats. STUXNET was the first 

malware that is ICS domain specific and was able to make alterations in 

programmable logics, download proprietary information and evade state-of-the-art 

security technologies [11]. Hacking incidents and emerging complex worms have 

changed the conventional understanding of confidentiality, integrity and authenticity 

as security essentials. In the December of 2016, the electric grid system was hit with 

a cyber bomb in the city of Kiev resulting in a blackout. The worm is later identified 

as CrashOverride which is essentially an insider attack that can run its own code and 

can map out hardware units installed in the ICS network. The incident report released 

in June 2017 states that the highest capability to detect this attack and similar threats 

would be the behavioral analytics to identify the communications on the network 

[47]. 

 

The Verizon DBIR 2016 report [12] states that 99% of malware hashes are seen for 

only 58 seconds or less and most of them were seen only once. The report implies 

that hackers quickly adapt their attacks and create variants in short terms making it 

difficult to form unique signatures for the detection of attacks. Known signatures in 

the databases will serve for only one percent of all incidents in the future according 

to the observation. In summary, the scene for future security problems makes it 

necessary to focus on behavioral protection for 0-day attacks instead of relying on 

signature-based approaches. In addition to the evolution of attack trends, the 

abundance of data generated in the world and dramatic developments in the 
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computing power of hardware technology necessitate an increase in research of 

anomaly-based Intrusion Detection System (IDS) approaches and quick penetration 

into industry is foreseen as well. This thesis contributes to this effort in the scope of 

ITS.  

1.2. CONTRIBUTION 

 

In order to use ITS applications cooperatively, vehicles are expected to exchange 

mobility data among each other and with road side units (RSU) in the form of CAM 

messages. CAM messages are predicted to be vital heart beats of ITS systems [15]. 

This thesis work proposes a method for detecting possible manipulations on mobility 

data that are generated by compromised ECUs. The contributions are summarized in 

the following: 

 

- The In-Vehicle Anomaly Detection Engine (IVADE) is proposed as an 

original machine learning-based anomaly detection technique. IVADE 

trains a decision tree based on the nominal behavior and generated 

anomalies of a vehicle application. IVADE is then able to detect 

manipulations of mobility data transmitted in CAM messages 

 

- Anomalies for IVADE are generated based on physical laws as a truth 

mechanism. In the thesis, this concept is applied using the dynamic model 

of a Lane Keeping Assistance System. Labeling of in-vehicle data for the 

use of supervised learning technique for both normal and anomalous 

instances of CAN messages is realized. 

 

- A Matlab/Simulink implementation including the in-vehicle CAN bus of 

the proposed anomaly detection technique is performed. To this end, a 

decision tree is trained with hours of driving data. The evaluation and 

analysis of the implementation is given in the form of anomaly detection 
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performance criteria. The obtained results show a high level of success in 

detecting anomalies.  

 

1.3 OUTLINE 

 

The flow of the thesis work is given as follows. The first chapter emphasizes the 

context of security needs for future transportation system, the motivation behind the 

thesis work and summarizes the main contributions. Chapter 2 provides a detailed 

background on related topics including ITS, V2X communication, In-Vehicle 

Networks and their relations with security concepts.  Anomaly Detection (AD) as a 

form of Intrusion Detection is explained since it is expected that AD-based 

techniques will be a necessity to meet future security objectives. Chapter 3 

introduces the proposed In-Vehicle Anomaly Detection Engine (IVADE) by 

describing techniques, preprocessing of the data set, feature extraction and rules for 

generating anomalies synthetically. Chapter 4 gives implementation details of the 

IVADE algorithm for a Lane Keeping Assistance (LKA) system as an application 

example. The dynamic model of the LKA system is realized in Simulink and 

definitions of the related design blocks are explained. A decision tree is trained using 

in-vehicle CAN bus data of LKA model. Chapter 5 presents results of tests 

performed on the trained decision tree with different driving profiles. The results are 

evaluated against performance criteria with an emphasis on false positive and false 

negatives of the test profile. Finally, conclusions of the thesis work are given in 

Chapter 6. 
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2. BACKGROUND 

 

2.1 INTELLIGENT TRANSPORTATION SYSTEM (ITS) 

2.1.1 DESCRIPTION 

 

Intelligent Transportation Systems (ITS) are an ecosystem for future transportation 

needs of the society in which communication, information and control technologies 

are cooperatively used for automated and connected services [13]. ITS can be 

thought of in the context of smart cities, where several cyber physical systems are 

built to perform intended operations in a dynamic and interactive way. Exchange and 

evaluation of information is considered as the basis for a successful implementation 

of any ITS application. 

 

The technical aspects of ITS have observed a speed-up due to two main causes. First 

is the centralization of population in cities and its effects on emerging patterns of 

transportation between and within cities. According to World Bank statistics, the 

population of rural areas has decreased from 65% to 45% in the last 50 years [14]. As 

a consequence, urban centers have gained complexity in city planning in terms of 

transportation, which required a comprehensive and complementary approach for 

transportation solutions. The second factor is the recent technological revolution for 

the last 20 years mainly in Internet and in mobile technologies. Increasing computing 

capabilities of hardware and scalability of the emerging technologies have lead to 

data generation in every layer of the technology. Data is considered as a valuable 

source of information for intelligent decision making in automated environments 

[51]. 

 

The complexity of city planning requires several complications to be solved. Modern 

society needs environment-friendly, energy and time efficient solutions for 
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transportation. In addition to these, safety and security should be taken as two goals 

that deserve to be highlighted. ITS are considered as a framework which has the 

potential to decrease the fatality rate in accidents significantly and to maintain an 

efficient transportation system with a reduced carbon footprint [15]. All applications 

and services of ITS have a strong potential for solving the mentioned issues with the 

help of emerging technologies in all domains. 

 

Fatalities from vehicle accidents have been the primary driving force for the 

development of new transportation technologies. A report by the National Highway 

Traffic Safety Administration (NHTSA) [16] states that an average of 30.000 fatal 

incidents and an average of 2.500.000 individual injuries were caused by motor 

vehicle traffic crashes in the five-year period between 2009 and 2014. Numbers were 

in a decreasing trend from the previous years between 2003 and 2008 thanks to an 

increase in traffic safety legislation, education efforts for drivers and automotive 

safety systems deployment [5]. 

 

ITS can only be built with the contribution of several parties including governments, 

highway and transportation agencies, regulatory institutions and companies including 

automotive manufacturers and equipment suppliers [15]. Both in Europe and in the 

United States, there are several initiatives that have been defining and describing the 

ITS ecosystem, services and regulations. Consortium projects including the 

IntelliDrive Project from USA and the Car2Car Communications Consortium (C2C-

CC) from Europe are supported by governments. Additionally, IEEE, ISO, European 

Committee for Standardization (CEN), Society of Automotive Engineers (SAE) are 

among Standards Development Organizations that invested and supported the 

standardization process of ITS [5]. However, it is critical to reach a worldwide 

regularized standardization since ITS have a large-scale and involve challenging 

technical issues such as communication technologies and computer vision 

technologies for vehicles. This requires a collaboration of all stakeholders to build, 

operate and maintain the ecosystem. The road map of ITS and road safety from 

Europe is given in Figure 1 [15]. 
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Figure 1. Europe ITS Roadmap. 

 

The scope of this thesis in related to two vehicular networks of ITS in particular. 

Firstly, Vehicle-to-X (V2X) is known as the inter-vehicle network between vehicles 

(V2V) and between vehicles and infrastructure (V2I). There will be road side units, 

traffic lights and other smart units in the infrastructure that are deployed to 

communicate with vehicles in the system. They also act as a mediator between the 

decentralized part (V2V communication) and centralized (central management 

entities) part of ITS. Secondly, in-vehicle networks of vehicles that are typically 

control networks to perform mobility functions are in the scope of this thesis work. 

ITS is a data driven system and data is mainly generated in V2X and in-vehicle 

networks. 
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2.1.2 ARCHITECTURE 

 

Efforts from a number of Standard Development Organizations resulted in a 

standardized ITS architecture. The concept of ITS Station is described in ISO 21217 

based on the starting standard Communication Access for Land Mobiles (CALM) 

[49]. ITS Station (ITS-S) defines a set of functionalities in a bounded, secured and 

managed domain which is a communication basis for inhabitant applications [15]. 

 

ETSI EN 302 665 adopted the concept of ITS-S and defined four main types: 

Vehicle ITS-S, Roadside ITS-S, Central ITS-S and Personal ITS-S. Vehicle ITS-S 

are typically onboard embedded devices which are responsible for the 

communication establishment and functionalities required on vehicle. On the other 

hand, Roadside ITS-S are installed at the infrastructure side, i.e. roadside units, 

traffic lights and gateways. Central ITS-S are installed in the centralized part of the 

network to handle the data flow from and to the transportation channels. Personal 

ITS-S can be considered as user owned mobile devices such as tablet PCs and smart 

phones. ITS integrates all types of ITS stations in a connected framework. 

 

A reference architecture of ITS Station is provided in both [17] and [49] and shown 

in Figure 2.  
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Figure 2. Architecture of ITS-S. 

 

2.1.3 SERVICES AND APPLICATIONS 

 

Applications to improve safety and efficiency have been primary goals for ITS 

development. Vehicles are increasingly getting smarter by the penetration of more 

ECUs and latest sensor technologies. The awareness of vehicles will increase with 

the help of emerging sensor and camera technologies penetrating into vehicles 

together with wireless and cellular communication connectivity.  

 

ITS applications can be classified into four classes based on the primary goals of ITS 

infrastructure. These are hard safety applications, soft safety applications, 

mobility/efficiency applications and convenience applications [5].  This thesis work 

aims to contribute to security aspects of ITS. Security risks of ITS might endanger 

the safety of ITS applications. Therefore, hard-safety applications are at focus of 

interest considering the relation between security and safety. 
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Hard-safety applications 

These are the most time-critical applications that require guaranteed minimal latency 

since there may be hazardous situations for a vehicle’s state. Latencies must be 

typically less than 100ms for this class [18]. Hard-safety applications explained in 

the study [5] are given below. 

 

a. Emergency Electronic Brake Lights (EEBL): This application sends “Hard 

Brake” message to surrounding vehicles. 

 

b. Forward Collision Warning (FCW): This application warns the driver of a 

collision risk with a vehicle in the forward direction.  

 

c. Lane Change Warning (LCW) and Blind Spot Warning (BSW): This application 

warns the driver about possible vehicles in the blind spot in which a lane change 

maneuver could be dangerous. 

 

d. Do Not Pass Warning (DNPW): This application warns the driver when a passing 

maneuver cannot be completed safely. 

 

e. Intersection Movement Assist (IMA): This application warns the driver when 

approaching to an intersection about a risk of collision with other vehicles. 

 

f. Control Loss Warning (CLW): This application sends a broadcast message to 

warn surrounding vehicles of a loss of control in vehicle maneuvering.  

 

Soft-safety applications 

Icy Bridge Warning, Disabled Vehicle and Construction Zone Warning applications 

can be counted as examples of this class of applications. This type of applications are 

not as demanding as hard safety ones in regard of latency and mostly for warning the 

driver of road and weather conditions. 
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Mobility Applications and Convenience Applications 

 

While mobility applications mainly put emphasis on efficiency of time and energy 

consumed in transportation system, convenience applications focus on entertainment 

and personal activities to increase the passengers’ life quality during transportation. 

Convenience applications are less dependent on time requirements, yet bandwidth 

requirements might be tight to enable audio and video streaming. These applications 

also involve synchronization to consumer electronics to personalize experience and 

allow for smart phone capabilities.  

2.1.4 ITS COMMUNICATION NETWORKS 

 

ITS stations mentioned in the previous section are communication end units in the 

network. Personal ITS-S (smart devices), Central ITS-S (server-side central units), 

Roadside ITS-S which is often denoted as Roadside Units (RSU) and Vehicle ITS-S 

which is often called as Onboard Unit (OBU) constitute ITS communication 

networks. The ITS network including all end units is shown in Figure 3. 
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Figure 3. ITS Networks. 
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V2X Networks 

 

V2X denotes a communication in vehicular networks as X refers to a single end unit 

according to the type of communication. X refers to an OBU when it is between two 

vehicles (V2V) and refers to an RSU when communication is between vehicle and 

infrastructure (V2I). The communication technology is usually a mix of protocols 

and technologies. It might be Dedicated Short-Range communications (DSRC), 

cellular networks or Wireless Access in Vehicular Environments (WAVE) which is 

built on IEEE 802.11p [15]. 

 

There are two safety messages standardized by ETSI which can be referred to as 

Decentralized Environmental Notification Messages (DENM) and Cooperative 

Awareness Messages (CAM) in V2X networks. CAMs are sent from vehicles to the 

surroundings in the region of the awareness range. They are transmitted periodically 

with high frequency in order to update neighborhood tables. Neighborhood tables are 

considered to be an important element for safety of future automotive applications. 

DENMs are event-triggered messages delivered to vehicles about a triggering event. 

Road safety applications, especially hard-safety applications rely on these two 

messages to perform their operations [17]. 

 

Onboard Unit 

 

It is noteworthy to mention the connection interfaces of an onboard unit (host type 

ITS-S) that is used in the Vehicle Safety Communications-Applications Project is 

shown in the Figure 4 [5]. The VSC-A project is the product of a collaborative work 

between the US Department of Transportation and Vehicle Safety Communications 2 

(VSC2) Consortium which includes automotive manufacturers Ford, GM, Honda, 

Mercedes-Benz and Toyota. The basic architecture is shown in Figure 4. As can be 

seen from the figure, there is a dedicated onboard unit that has connection surfaces 

with both internal CAN network and the outside world. Almost all V2X projects 

involve similar onboard units to establish communication with surroundings. 
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Figure 4. VSC-A Hardware Components [5]. 

 

In-Vehicle Networks 

 

In-vehicle networks are onboard communication networks that interconnect 

subsystems of a vehicle to perform segregated or distributed functions. In-vehicle 

networks comply with the typical controller network model by having three different 

nodes: a sensor, an actuator and a controller. An ECU is an electronic control unit 

that usually controls actuators by observing inputs from sensors. In-vehicle networks 

have sub-networks in which ECUs are connected for a functional purpose. These 

functions can be stated as powertrain control, chassis control, infotainment control 

and body control [55].  

 

In-vehicle networks are traditionally simpler than IT networks, yet it is crucial to 

ensure message transmission by eliminating conflicts and to be resilient to noise. As 

the number of electronic components penetrating into vehicle subsystems is 

increasing, the in-vehicle networks are given significance as a medium for exchange 
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of information. The distributed functions among different subsystems triggered the 

complexity level of networks and transform in-vehicle networks into advanced 

controller area networks. Upcoming autonomous driving abilities and ITS 

applications that require collaboration of several subsystems force automotive 

manufacturers and equipment suppliers to add new hardware and software layers to 

their products, making in-vehicle networks a source of data. By increasing 

connectivity surfaces of vehicles to support ITS, vehicles are becoming vulnerable 

against malice and misbehaviors [8].  

 

Controller Area Network (Can) 

 

Controller Area Network (CAN) is the dominant in-vehicle network in the 

automotive industry because of its integrity, simplicity and resilience against noise 

[52]. CAN is message based and works on carrier sensing multiple access with 

collision detection (CSMA/CD) protocol with prioritization by arbitration. The 

priority of the message is designated by its header that has normal and extended 

forms as 11 bits (CAN2.0A) and 29 bits (CAN2.0B) length, respectively. 

Prioritization of messages makes CAN an attractive choice for real-time environment 

[53]. 

 

The usage of V2X is transforming in-vehicle networks into large-scale networks with 

complex functions and increasing connection surfaces. Vehicles can be regarded as 

safety critical systems for drivers, passengers and pedestrians in the sense that 

uncontrolled behaviors or actions might result in highly undesirable outcomes. 

Therefore, mobility-related functions, their corresponding ECUs and the control 

network in which these safety-critical functions are deployed are vital for the 

perseverance of ITS. CAN bus is historically the main choice for implementing 

mobility-related safety-critical functions. 
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2.2 SECURITY 

2.2.1 OBJECTIVES 

 

For internet and communication technologies, there are four conventional security 

principles for information security. Preservation of these objectives is intended to 

ensure secure and private communication in the ITS infrastructure. These security 

principles are defined in the following with the perspective of vehicle networks [6]. 

 

Confidentiality:  

 

Confidentiality requires the content of a message not to be disclosed to any parties 

other than the intended ones. Encryption mechanisms are proposed for ITS networks 

to satisfy this objective. 

 

Authenticity: 

 

One of the primary objectives in vehicle communication is to ensure only 

trustworthy entities are included in networks. Authenticity is being able to verify the 

sender of any message in the system.  

 

Integrity: 

 

To maintain the accuracy and completeness of message content is the objective of 

Integrity principle. Public Key Infrastructure (PKI) solutions proposed for ITS 

communication ensure integrity and freshness of messages. 

 

Availability: 

 

Availability urges the nodes of networks and information or a service for necessary 

receivers shall be available whenever a request is ready. To preserve the functional 
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state of ECUs in a vehicle network is to be ensured to complement the security 

requirements of a complex system. 

 

2.2.2 THREAT MODEL 

 

Threat model in a security mechanism refers to the main characteristics of possible 

adversaries, their capability level and an estimation of their tools [30]. A threat is an 

unauthorized attempt to access valuable assets, to manipulate information and to alter 

a system’s state into instability or unreliability [7]. Threats violate essential measures 

of security in a way to leverage their purpose.  

 

It is important to describe a threat model in order to implement a layered and holistic 

security mechanism. Once a threat model is defined, attacker types and attack vectors 

can be derived according to the capabilities of adversaries, their possible intentions 

and the valuable assets in a host PC or network. The attack vector can be 

implemented as test procedures later to verify security implementation. The threat 

models are valuable simulations of possible attacks, yet, it is nearly impossible to 

cover the complete space of attack types in real life.  

 

2.2.3 ITS SECURITY 

 

Traditional IT networks have a long history of security approaches which resulted in 

many solutions and measures aiming to maintain holistic security coverage. 

However, the characteristics of in-vehicle networks are different than traditional IT 

networks in many aspects. We assess these differences from the perspective of 

network behaviors, in order to explore distinguishing properties that can be captured 

by our anomaly detection algorithm. The study in [21 investigates differences 

between IT and CPS networks intrusion detection systems with a four step 

methodology. We restructure these steps to explore similarities and differences 

between traditional IT networks and in-vehicle networks as follows: 
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Physical Process Monitoring: IT networks can be monitored by measuring user and 

machine/server activities. In-vehicle networks can be monitored by measuring 

physical properties. This provides a ground for laws of physics that can explain the 

behavior of vehicle motion. 

 

Closed Control Loops: IT networks are triggered by user inputs and the nature of the 

traffic being multivariate increases the unpredictability of behavior. On the other 

hand, although there is also user input triggering for in-vehicle networks, in-vehicle 

network messages are usually periodical or event-based. In-vehicle networks 

reflecting a time driven and semi-automated behavior provides predictability for 

network profiling. 

 

Attack Sophistication: The infiltration into a complex social transportation system 

might be a valuable target for adversaries to gain leverage. Therefore, for ITS 

infiltration, attack sophistication is at least as high as for penetration into a closed 

intra network of a bank or state. 

  

Legacy Technology: Hardware units of IT networks are usually physically 

inaccessible while ECUs of an in-vehicle network can be easily accessed and 

tampering of in-vehicle hardware might present trivial ways of compromise to 

adversaries. 

 

The nature of in-vehicle network data according to the four mentioned criteria 

presents the basis for developing a behavior-based intrusion detection technique for 

in-vehicle networks.  

 

2.3 INTRUSION DETECTION SYSTEMS 

 

The main security mechanisms include firewall solutions, anti-virus products and 

even training of users in a system to raise awareness of threats. On the other hand, 

the approach of this thesis work is more comprehensive than proposing mainstream 
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security measures. In other words, the proposed work in this thesis aims to 

investigate whether the implementation of an anomaly-based intrusion detection 

system (IDS) is feasible for in-vehicle networks. Therefore, a section of IDS is 

included with the intention of presenting basic IDS principles, common techniques 

and classification taxonomies in the literature. 

 

2.3.1 DEFINITION  

 

“IDS” is a system that detects possible intrusions or the effect of the intrusions in a 

system. A research in 1987 [22], was one of the earliest works that proposed a model 

for detecting intrusions. IDS are deployed to detect and identify malicious activities 

and prevent them to access to valuable assets such as information, control and 

process abilities of a network or a machine. An asset is a resource that might have a 

value or power in its context. All the approaches being software-based or hardware-

based that are dedicated to detect or prevent a malicious activity can be included in 

the IDS concept. 

 

Intrusion means an ill affected and anti-policy access to a valuable asset or an 

attempt to break the control hierarchy of a system. Every machine or network that 

has a valuable asset or a control power might be a gainful target for intrusions [23]. 

Especially, systems that have safety critical functions are sensitive targets and may 

not tolerate vulnerability in defense mechanisms. The higher the value of assets and 

control power of a system, the higher the possibility of being a target is an inherently 

expected principle. Therefore, it is reasonable that either the value of the asset must 

be decreased or more precautionary measures must be deployed to increase the safety 

and security of such systems.  

 

Many IDS tools have been developed since the end of 90s. Bro, Snort, EMERALD 

and NETSTAT were early examples of software-based IDS [23]. Snort is a free 

open-source network intrusion detection software that has dominated the software-
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based IDS market. As the throughput requirement increased, IDS algorithms were 

also implemented in hardware [24]. 

  

IDS itself might also be a target of attack due to its critical functions for defense 

mechanism. It shall be developed in a way to survive attacks and to carry out its 

functions since it is one of the last defending mechanisms. In addition to traditional 

IDS, newly emerging machine learning based IDS also pose vulnerabilities for 

adversarial training. An attacker might explore ways to train the IDS with adversarial 

samples and try to leverage its false learning for the purpose of exploitation. For the 

scope of this thesis work, a threat to IDS is not considered and it is assumed to be in 

safe operating conditions. 

 

2.3.2 CLASSIFICATION OF IDS 

 

Intrusion Detection Systems have been classified in the literature using different 

taxonomies. Acquisition of data, detection techniques and time of detection are 

among the main dimensions for the classification of IDS [21]. Various selections of 

these three criteria also imply the purpose of the IDS, its scope of the protection and 

the effective time behavior of the used system.   

 

Using the data acquisition dimension, IDS are classified into two categories; namely, 

host based IDS (HIDS) and network based IDS (NIDS) [25]. HIDS is designed to 

protect a single machine entity and operates by using the resources of the hardware 

and software properties of its host computer system. The data is collected among the 

operating system and all the necessary data analysis work is performed at the host 

level. On the other hand, NIDS requires a collection of network data from 

communication media and usually works through network sensor agents placed 

across the network topological structure. It monitors and collects the data for analysis 

and creates alarms for handling the intrusion incidents [23]. The IDS proposed in this 

thesis work are of type NIDS due to the usage of the CAN bus in-vehicle network 

data.  
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IDS are classified into three categories in a study according to detection techniques; 

namely, pattern-based detection, anomaly-based detection and specification based 

detection [21]. Pattern-based detection is also known as misuse detection in which a 

known attack is detected by searching a match of a special encoding of the attack 

which is called “signature”. Signature is a trace of a particular attack that is usually 

represented as strings. They are stored in databases and pattern matching algorithms 

use signatures to match in the ongoing or logged network stream. Anomaly-based 

IDS outline a normal behavior of a network profile and try to detect intrusions by 

discovering anomalies in the data stream. Pattern-based IDS and anomaly-based IDS 

systems are explained in the next sections in detail. Specification-based IDS systems 

can be defined under the anomaly-based IDS class since they also generate a profile 

for the normal state of the system based on system specifications. It creates rules 

depending on the specification used and labels every deviation from these rules and 

normal operation states as an anomaly. 

 

Pattern-based IDS 

 

The idea of pattern-based IDS lies in exploitation of knowledge for known attacks in 

the form of signatures. Signatures are pre-configured encoded patterns of known 

attacks and are constantly registered to the IDS database. Updating of this database is 

crucial to mitigate vulnerabilities until necessary patch is applied to the 

aforementioned software or the system [24]. 

 

The implementation of pattern-based IDS algorithms were done as both software-

based and hardware-based [24]. The initial proposals for IDS were software-based 

implementations and evolved into very advanced tools that have been dominating the 

IDS market. Since the first examples of IDS solutions, pattern-based IDS systems are 

currently deployed in traditional IT systems extensively. They need to act within the 

speed of network connection in order to provide a timely and exhaustive monitoring. 

Therefore, a need for fast processing is required for keeping up with the incoming 

traffic stream, resulting in looking for hardware-based solutions [24]. For the pattern-
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matching and classification tasks, hardware implementation is performed to increase 

the speed of processing by dedicated hardware units.  

 

Advantages and Disadvantages of Pattern Based IDS 

 

For most networks, pattern-based intrusion detection systems are deployed since they 

generate low false positive rates against known attacks [23]. Signatures of attacks are 

constantly added to databases which in the end provide a comprehensive solution for 

known attacks. Another advantage of this type of IDS is that it is immediately 

effective after installation. Different from anomaly-based IDS, it doesn’t need a 

learning or configuration period before effectively performing detection process. On 

the other hand, pattern-based IDS are inevitably helpless against unknown and new 

(zero-day or 0-day) attacks since there hasn’t been a signature pattern formed yet for 

the particular attack type and registered to the signature database [21]. The effective 

time of reaction to intrusion is a rather significant criterion for the performance of 

IDS systems, and hence, detecting an intrusion unfortunately becomes only possible 

after analyzing the incident and creating a corresponding signature for it. The time 

passes during such process is a critical period for most of the industries that can’t 

tolerate vulnerability in their internal networks [24], [25]. 

 

Anomaly-based IDS 

 

The definition of anomaly is originated from statistics and probability. Anomaly 

refers to a point in a data set that does not conform to other points in forming a 

pattern [25].  Being different from an outlier which can be the indicator of the data 

model dysfunction, anomaly is more likely to be the result of an unexpected event 

meaning an illegitimacy of appearing in the data set. For this reason, phenomena like 

an unexpected credit card transaction, a sudden fault in a system, a cyber-attack and 

an abrupt stock market change are all considered to be represented as anomalous 

events [26]. 
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In [26], types of anomalies are stated as point anomalies, contextual anomalies and 

collective anomalies. As an example to this classification, a message of an in-vehicle 

CAN network can be classified under contextual anomaly category due to the reason 

that it can be normal or anomalous in a specific context, i.e. according to the state of 

the vehicle and according to the past and current inputs. Considering the automotive 

domain, a CAN message from the in-vehicle network might represent an anomaly 

although in other cases, the state of the vehicle can justify the same CAN message as 

a normal packet. Therefore, it is necessary to think in contexts for a better 

understanding of anomalies from in-vehicle networks. 

 

Anomaly is similar to noise, both being undesirable deviation from the main signal 

or data set. The underlying difference is that noise can be explained with the 

deviations of the system dynamics and; most of the time it is expected and 

precautions are taken against it [26]. Hence, even intense noise levels do not result in 

dramatic consequences. On the other hand, anomaly indicates a transition into an 

unwanted state or reveals an unprecedented input given to the system and probably 

results in unexpected consequences which may not be tolerated by the system.  

 

Anomaly detection is based on the idea of creating a profile of the normal behavior 

for a system. The deviations from the normal behavior are assumed to indicate 

possible intrusions. The challenges of anomaly detection rise exactly from this 

assumption. That is, it is a very difficult and exhaustive task to define the normal 

behavior of a system in a comprehensive way [27]. Objects of a system, attributes 

defining these objects, links connecting them and the data exchanged between them 

all contribute to the baseline profile of the normal state of a system. In [23], an 

illustration of an anomaly detection model is given.  
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Figure 5. Anomal Detection Framework. 

 

The assumption of building IDS by using anomaly detection techniques underlines 

that all intrusions create anomalies in the system behavior which are necessarily 

different than the normal (profiled) behavior [28]. The set of intrusions is assumed to 

be a subset of anomalies [25]. Therefore, by applying anomaly detection techniques, 

IDS is considered to be used as a security mechanism.  

 

Classification of Anomaly Detection Methods 

 

A good review work on the classification of anomaly detection is done by [25]. 

According to this study, the classification of network-based anomaly detection can 

be based on the used techniques and consists of the following techniques given in 

Figure 6.  

 

In Chapter 2.1.3, we made a comparison of in-vehicle networks and conventional IT 

networks. It was noted that in-vehicle networks can be monitored by measuring 

physical signals or observing messages that are usually periodical or event-based. 

Knowledge based anomaly detection methods can be used expressing in-vehicle 

network behavior by defining rules of the system. Additionally, since the nature of 

network data is periodical or related with events, exploitation of statistical inference 

of in-vehicle network data is possible by using statistical anomaly detection methods. 
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Figure 6. Classification of Anomaly Detection Methods [25]. 

 

Advantages of Anomaly-Based IDS  

 

The principal benefit of anomaly-based IDS is that it can detect unknown (0-day) 

attacks, having a significant advantage over pattern-based IDS systems. 0-day attacks 

pose a great risk for the healthy operation of systems. For systems having safety-

critical functions such as a vehicle’s driving operation and considering its relation 

with the future V2X infrastructure, anomaly-based techniques have a great potential 

for mitigating these risks. Security is not an easy task to be accomplished; it needs a 

holistic approach with layered defense and trust mechanisms. The most sophisticated 

attacks will be performed on the most critical systems [21]. For insider attacks in 

CPS architecture, anomaly detection-based IDS research proposes most promising 

ways by detecting 0-day attacks [21]. 
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Attackers tend to explore ways to overcome security measures and try to extend their 

attack over time as in the case of CrashOverride that resulted in a blackout in Kiev. It 

is stated that attackers have been inside of the network for months [47]. Anomaly-

based IDS might be effective for this type of stealthy attacks too. Additionally, since 

it is difficult for hackers to predict what knowledge is learnt inclusively in the model, 

it is more likely that they will cause alarms for their actions. 

 

Challenges of Anomaly Based IDS 

 

The challenges to develop AD-based IDS might be summarized as: 

 

It is an extremely difficult task to profile the normal behavior of the system. An 

exhaustive process including defining rules and specifications for the system might 

be required. 

 

It is also difficult to locate genuine anomalies for the system. Therefore, there might 

be a need to generate anomalies synthetically which also might require expensive 

labeling work and making undesirable assumptions. 

 

It can be hard to generalize to scale the AD-based IDS due to proprietary knowledge 

of every system model. The inherited knowledge in the model might not work for 

other networks due to difference between attributes, communication media, object 

features…etc. 

 

There might be a need of a huge amount of data to model the system in the case of 

classification-based anomaly detection. 

 

AD-based IDS might require IT maintenance support to evaluate false alarms in case 

of high False Positive rates. 
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AD-based IDS might not scale up to limits of speed of the communication. Hardware 

implementation of algorithms might be required as in the case of pattern-based IDS. 

 

The practical contribution of this thesis work is demonstrated with the 

implementation of the IVADE algorithm to detect any manipulation in CAM 

messages. The collaborated ITS applications such as collision avoidance, 

autonomous driving and platooning heavily based on CAM messages for receiving 

and validating the mobility information of surrounding vehicles. CAM messages 

contain position, speed and global data of the host vehicle and is shared between 

vehicles in short range. Mobility data is updated as a result of vehicle’s motion and 

the change in mobility data is originated from inputs given into control network of 

the vehicle. In a study [19], eight types of detection sensors are presented for 

automotive bus systems. With our implementation, (S-3) Range Sensor, (S-7) 

Plausibility Sensor and (S-8) Consistency Sensor check are applied as a form of 

anomaly detection between in-vehicle network parameters and mobility information 

in CAM messages.  
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3. IN-VEHICLE ANOMALY DETECTION ENGINE (IVADE) 

 

3.1 DESCRIPTION AND MOTIVATION 

 

IVADE is an anomaly-based network IDS which is proposed to detect insider attacks 

in the CAN bus of an automotive system. Anomaly-based algorithms essentially 

require definition of a “normal” profile for the system in order to detect anomalies by 

observing deviations from the “normal” profile. In [25], it is stated that when the 

degree of deviation is high enough with respect to the profile of the system then the 

instance of the system is classified as anomaly. The behavioral profiling of IVADE 

algorithm is performed using machine learning techniques. In this sense, IVADE 

algorithm is suitable to generalize the profiling of any vehicle subsystem’s network 

behavior by monitoring in-vehicle network data.  

 

The goal of the IVADE system is to detect insider or internal attacks in the form of 

compromised ECU and CAN injection attacks performed onto in-vehicle 

communication of vehicles by monitoring CAN channels. An internal attacker 

definition is given in [30] as adversaries which are equipped with cryptographic keys 

and credentials to overcome security protocols. The threat model is assumed as a 

sophisticated entity with physical and remote access to the in-vehicle network which 

is able to run its own code to compromise ECUs of the vehicle. 

 

Mobility functions of a vehicle are carried out by multiple ECUs on a basis of CAN 

message exchanges in a networked model. The engine and transmission networks are 

dedicated to generate outputs for creating motion according to inputs coming from 

steering wheel, gas and brake pedals in classical vehicles. In modern vehicles, most 

of these inputs are expected to be autonomous. Computer vision systems have found 

significant use within the recent development of automotive technologies. Cameras 
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with high resolution capability have penetrated in the car supply chains and 

consequently, there has been an increase in the vision capabilities of vehicles. In 

addition to cameras, emerging sensor technologies such as LIDARs are being used in 

autonomous vehicle designs both to support current automotive technologies and 

upcoming technology rush for autonomous driving capabilities [31]. Additionally, 

vehicles are driven by auto-pilots that are capable of arranging traction force and 

brake force inputs automatically in semi-autonomous and fully-autonomous cases. 

 

Whether coming from a human or from dedicated sensors, inputs given into the 

motion-related ECUs and the outputs of these ECUs are transmitted to and received 

from in-vehicle networks. Therefore, the observation of the vehicle’s state can be 

performed at the network level. The dynamics of the vehicle define the relationship 

between inputs and outputs as the driving experience continues. In other words, for 

the inputs and outputs of a vehicle’s subsystem; there is always a dependency 

dictated by the dynamic model of the vehicle [44]. Although proprietary design by 

the vehicle manufacturer is the decisive factor for this dependency, we aim to build a 

model of network in order to predict the authenticity of outputs depending on the 

inputs and the state of the vehicle at the time of inputs. 

 

3.2 RELATED WORK 

 

An IDS proposal for critical infrastructure system is presented in [29]. In this study, 

real network data is recorded from a Programmable Logic Controls (PLC) hardware 

of a critical infrastructure control system. The intrusion instances are generated 

artificially and randomly based on the intrusion attempts. A window-based feature 

extraction technique is applied since the network packet stream is described as time 

series data. Based on the extracted features, a combination of Error Back-

Propagation and the Levenberg-Marquardt algorithm is applied with neural networks 

to train boundaries of the clusters of the recorded normal behavior. The results are 

promising that perfect detection rates and zero false positives are reached against an 

unknown test set. 
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An IDS using deep learning neural networks for in-vehicle networks is proposed in 

[43]. This research uses the probability of each bit in a CAN message to extract 

features that represent the statistical behavior of the in-vehicle network. Three 

techniques including the proposed technique, SVM and artificial neural network are 

compared, showing that the deep neural network based proposed algorithm 

performed the best. The provided results are promising but it is required to define 

attack scenarios as mode information so that weights of the neural network should be 

trained fitted to each scenario. Additionally, CAN bus data is simulated synthetically 

without any prior knowledge or precise model. Another research [44] uses in-vehicle 

data that is acquired from the CAN bus of a real vehicle. The CAN sub-network from 

which data is acquired consists of an engine control module, parking control, motor 

control and transmission control modules.  A number of in-vehicle signals including 

RPM, Speed, MAP, MAF, AccPedal and Throttle sensor data are extracted as 

features of the algorithm for the representation of behavior. The features are trained 

with deep learning technique and it is stated that a model representing the normal 

operation of the vehicle can be learnt and any significant deviation from the model 

can be received as alarms for intrusions. The method of what the scale of deviation 

should be and how thresholds will be decided is not stated.   

 

3.3 ALGORITHM FOUNDATION 

 

IVADE is proposed to detect anomalies for in-vehicle networks by modeling in-

vehicle network behavior. The flow of the algorithm showing phases and data 

transition is given in Figure 7.  
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Figure 7. Flow Of Alogirthm. 

 

3.3.1 DATA STRUCTURES 

 

Data to be used to train and test the proposed IVADE algorithm shall be acquired 

from the in-vehicle network of vehicle. CAN bus is chosen to demonstrate the 

algorithm since it is the most dominant communication standard for vehicles. 

According to the CAN specification, the payload of a CAN message can be as many 

as 8 bytes, but payload length is not a condition for our algorithm. The range of 

values that can be represented in a byte is between (0-255). Many different CAN 

messages each having a unique task are transmitted to the network.  

 

In a study [34], 20 recordings of vehicle CAN data each having 100,000 messages 

are logged from a vehicle. From their observation, there were four different CAN 

field types; constant fields, multi-value fields, counter fields and sensor fields. Our 

algorithm uses all these types of fields as source of attribute selection. 
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3.3.2 ATTRIBUTE SELECTION 

 

Idea 1: The analytics of motion essentially depends on the relation between input 

force, geometry of the road and the vehicle dynamics. Speed, Distance and their 

rate of change over time in a coordinated universe are correlated with inputs, i.e. 

input force and geometry of the road. 

 

In a given time, i.e. in a window of time, expected values of mobility data might be 

calculated based on the current speed, distance taken and the global orientation of a 

vehicle. In this regard, in-vehicle data attributes extracted from CAN messages can 

be regarded as time-series multivariate data and might be used as attributes of a 

machine learning technique. 

 

Input-output relations of ECUs can be exploited for causality of vehicle’s physical 

state. Therefore, the input-output causality approach can be used for structuring data 

for the formation of an attribute vector of IVADE in order to correctly profile the in-

vehicle network. For the case of in-vehicle networks, any motion-related signal can 

be an appropriate attribute for in-vehicle network profiling. As a matter of fact, the 

idea can be generalized to any vehicle subsystem by extracting ECU relations and 

related in-vehicle messages. In Figure 8, the mentioned approach is visualized. 
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Figure 8. IVADE attribute extraction. 

 

For any vehicle system that consists of a number of ECUs connected within a 

network, attributes can be extracted from all motion-related signals in order to profile 

the behavior of the network. While forming the attribute vector, related byte fields of 

all CAN messages that arrive in a time interval ti are sampled. 

 

Definition: The number of attributes is constant and equals the sum of all different 

CAN data fields from all unique CAN messages. m, being the number of attributes 

(byte fields chosen as attributes) per each CAN message and n, being the number of 

different CAN messages; the number of attributes sampled in one sampling period is: 

𝑛𝑢𝑚𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 =  ∑ 𝑚𝑖

𝑛

𝑖=1
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With a sampling period of t seconds, there will be T/t instances of every CAN 

message in a each time interval T; resulting in an attribute vector of dimension in T 

second: 

𝐷𝑖𝑚[𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟] =
𝑇

𝑡
 𝑋 𝑛𝑢𝑚𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 

 

3.3.3 FEATURE EXTRACTION 

 

A compromised ECU may alter the correct outputs with falsified values. By 

observing CAN messages independently, detecting a possible manipulation in one 

CAN instance is considered as a difficult task considering the missing contextual 

information. Detection of manipulation gains coherence when it is conceived in a 

time basis since the content of CAN messages shows a time-series behavior during 

runtime [32]. ECUs, by design, work with recently received CAN messages and 

perform according to their current state. Therefore, it is vital to define the normal 

profile of the CAN bus by considering conditional probabilities of interrelated 

events. In the studies [48] and [29], previous values of parameters are utilized to 

detect targeting interrelated events.  

 

Idea 2: A sliding-window approach is more suitable for feature formation.   

 

The instantaneous CAN messages deliver timely information, yet this transient form 

of information on the system state might be too volatile to take into consideration. 

Therefore, a sliding window approach to define a feature vector is used in the form 

of window-frames consisting of consecutive instances of attributes. 

 

Idea 3: The length of a time window shall be long enough to store adequate 

amount of information on the system, while it is short enough to provide an ample 

resolution of measurement [33]. 
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The length of the window depends on the physical properties and the objectives of 

the application. Experiments and observations on the dynamic model might help to 

determine the length of the window in the case of vehicles. Additionally, the 

response requirement of the application might dictate limitation on the length of the 

window when quick detection and response is needed.  

 

In order to predict output signals of any ECU at a particular time, it is necessary to 

consider previous values of the input and output signals, i.e. derived attributes from 

CAN fields; by doing so it is possible to have a contextual understanding of the 

network behavior. l can be defined as the length of the sliding window frame. Let A 

be an instance of the attribute vector, and W be the corresponding instance of the 

feature vector and l being the length of the window: 

 

𝑊𝑤  ≝  {𝐴𝑖−𝑙+1, 𝐴𝑖−𝑙+2, 𝐴𝑖−𝑙+3, … 𝐴𝑖} 

 

Feature extraction from the attribute vector with the sliding window approach is 

shown in Figure 9. 



 

36  

 

attr
1

attr
2

- - - - - - - - attr
m

A
i-l+1

A
i-l+2

A
i

Attribute Vector
N

u
m

b
e

r 
o

f 
In

s
ta

n
c

e
s

Number of Attributes

FEATURE EXTRACTION

feat
1

feat
2

- - - - - - - - feat
j

W
1

W
2

W
w

N
u

m
b

e
r 

o
f 

W
in

d
o

w
s

Number of Features

Feature Vector

}

l x A

A
i-l+1

A
i-1

A
i

A
i+1

A
i-21

Window

W
w

Message stream

 

Figure 9. Feature Extraction. 

 

A window of consecutive attribute instances is transformed into a feature vector by 

calculating some metrics. These metrics are generally chosen to be indicators of the 

deviation between an anomalous instance and a normal instance. In anomaly 

detection, distance metrics are a quantitative degree of how two objects are far or 

close from each other. The Chebyshev distance is used as a similarity measure in 

IVADE to indicate the deviation [25]. The Chebyshev distance represents the 

maximum distance between two vectors or two points along any coordinate 

dimension. Other metrics are mean values, expected values and tangent of 

consecutive attribute instances in a window.   

 

max
𝑖

 | 𝑥𝑖 − 𝑦𝑖| 

 

Definition: 𝑛𝑢𝑚𝑓𝑒𝑎𝑡 being the number of features, a feature vector with window size 

l derived from attribute vector has dimension of: 
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𝐷𝑖𝑚[𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟] = (
1

𝑙
∗

𝑇

𝑡
) 𝑋 𝑛𝑢𝑚𝑓𝑒𝑎𝑡 

 

3.3.4 ANOMALY GENERATION AND ATTACK SIMULATION 

 

The rate of anomalies in the training dataset affects the learning bias of any machine 

learning algorithm intrinsically. Anomaly detection can be also considered as a rare 

class classification problem in the sense that anomalies in the data sets are almost all 

the time in minority. The unbalance between classes in a training set might result in a 

skewed and inherently biased learning which is not regarded as proper generalization 

[35]. Studies like [36] propose ways both to generate non-existing rare class 

instances and to over-sample rare class instances that have significance. IVADE also 

needs a particular amount of anomalous data for a proper learning. 

 

In this thesis work, we take a different approach for anomaly generation by building 

rules of motion. Once these rules are formally stated, it becomes clear in what way 

anomaly class instances would be generated. First, we create physical rules as a 

ground check mechanism, then build up violation scenarios for each rule and lastly, 

generate synthetic anomalies for each scenario by injecting anomalous information in 

the data set. It has to be noted that observation on behavior of each parameter and 

experiments on the boundaries before introducing any violation scenario are required 

to embed system knowledge into rules and conditions. These rules, conditions and 

violation scenarios are stated in the following part. 

 

Rules for Anomaly Generation 

 

a) Violation of Parameter Range 

Knowledge of parameters’ range in a system can be used as a ground truth. 

b) Violation of Similarities 
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Anomaly class instances are at a distance from normal class instances. A 

distance manipulation can be used to generate anomaly samples from normal 

samples.  

c) Violation of Physical Rules 

Vehicle dynamics is a valuable source of knowledge to found a ground truth. 

d) Violation of Input-Output Relation 

The input output relations of a system are proprietary information and 

predefined at design phase. Distortion of input-output relationship can be 

used to generate anomalies.  

e) Violation of Message Frequency 

In-vehicle networks transmit periodic and event-based messages. The 

frequency knowledge of message transmissions can be exploited for anomaly 

generation.   

 

3.4 TRAINING WITH DECISION TREES 

 

Supervised machine learning techniques have a training phase to represent the 

inductive inference among a data set as a classifier. The classifier of IVADE is 

formed by training the Feature Vector of CAN messages with decision trees. 

Decision trees are easy to build by quickly fitting the data set and use low memory 

resources with a fast response of prediction [56].  

 

Feature Vector including features for windows of CAN messages and its 

corresponding Output Vector representing classes of every instance are used to train 

a decision tree in MATLAB. The Fitctree function is used to build a classification 

decision tree that uses the CART algorithm.   
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3.4.1 DECISION TREES 

 

A decision tree is a representation of a tree from root to leaf nodes, applying 

classification of instances. The core of the decision tree algorithm is the Iterative 

Dichotomiser 3 (ID3) algorithm [37] that performs a greedy search in the space of all 

possible decision trees. A successor of the ID3 algorithm, C4.5 is introduced in [38] 

with a number of extensions to the core algorithm. The search begins to find the best 

candidate attribute for the root node of the tree by applying a statistical test to decide 

which attribute is able to classify the instances best by itself. After the selection of 

the root node, the search continues repetitively to find the descendant nodes using 

instances related with each branch.  

 

The statistical test used as classification measure is information gain. The ID3 

algorithm processes the information gain test repetitively to find the best attributes 

that can classify the instances from root to down. The information gain is stated 

formally as the decrease in the entropy as a result of partitioning by an attribute. In 

other words, the best attribute is the one that causes the minimum decrease in entropy 

by partitioning the data set. Entropy of system S is given as 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) ≡  − 𝜌+  log2 𝜌+ − 𝜌− log2 𝜌−  

 

 

Then, the information gain using the concept of entropy is given as; 

 

 

𝐺𝑎𝑖𝑛(𝑆, 𝐴) ≡ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) −  ∑
|𝑆𝑣|

|𝑆|
 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣)

𝑣 ∈ 𝑉𝑎𝑙𝑢𝑒𝑠(𝐴)

 

 

Training decision trees is essentially a search for the best tree fitting the data set 

among a hypotheses universe. There will be many decision trees that can be justified 

by different hypothesis. On the other hand, the bias learnt through heuristic 
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information gain test can be stated as shorter (simpler) trees are preferred over larger 

trees [39]. 

 

Apart from ID3 and C4.5, another known algorithm is CART [41] which is also the 

default algorithm used in MATLAB for building decision trees. Instead of 

information gain, CART uses the Gini index. It is stated [40] that when there are 2 

classes as in the binary classification problems, the regarding function for building 

decision trees fitctree always uses an exact search by using a computational shortcut 

described in [41]. With this method, categories can be ordered by probability for one 

of the classes in a classification problem and by mean response in regression 

problems. Consequently, computational challenges are avoided in classification cases 

with two classes (normal and anomaly). 
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4. IMPLEMENTATION OF IVADE 

 

 

The proposed in-vehicle anomaly detection engine (IVADE) is implemented and 

tested in Matlab/Simulink. The performance of the algorithm is demonstrated by 

securing CAM messages against manipulation of mobility data which is generated by 

a Lane Keeping Assistance (LKA) application. LKA has strict safety-critical 

functions and can be regarded as a cooperative application since it has also a V2X 

connection interface with ITS infrastructure. The rest of Chapter 4 starts with a 

description of LKA and its parameters, a signal generator ECU block that produces 

input signals for LKA and a V2X transmitter ECU block that transmits in-vehicle 

mobility data to outside world. The in-vehicle network is implemented as a CAN bus 

and by applying varying driving scenarios the CAN data is acquired from network 

for the implementation of IVADE. 

 

4.1 LANE KEEPING ASSISTANCE  

4.1.1 MODEL DESCRIPTION 

 

Lane Keeping Assistance (LKA) model is used as a test bed to simulate vehicle 

mobility and to implement the in-vehicle CAN network for the thesis work. LKA is 

an Advanced Driver-Assistance System (ADAS) that is different from Lane 

Departure Warning Systems. LKA provides a semi-autonomous driving ability while 

the latter is essentially a warning system to inform the driver when the vehicle moves 

out of the intended lane. LKA is developed in the simulation and analysis 

environment Matlab/Simulink due to its renown abilities and wide spread use for 

control systems.   

 



 

42  

 

Automotive industry has already developed many LKA systems that actively apply 

steering torque in case of a deviation from the followed lane [42]. Existing models 

help to keep the vehicle in the center of the road lane by constantly observing lane 

markings through automotive vision systems.  

In our implementation, the LKA system receives radius information of the road as an 

input from a dedicated ECU that is assumed to calculate the road radius constantly 

using automotive vision sensors. In practice, such automotive vision ECUs are being 

developed using front, back and top cameras, LIDARs and several other sensor 

technology.  

 

4.1.2 TECHNICAL FOUNDATION 

 

The LKA model is used to simulate vehicle mobility and to generate realistic 

mobility data for an in-vehicle CAN network in which different ECUs are connected. 

The goal of designing an in-vehicle network simulation is to generate in-vehicle 

network data which is required to train IVADE; therefore, acquisition of CAN bus 

data for several road profiles is the expected outcome of the simulation. Theoretical 

foundation and technical details of vehicle dynamics model of LKA will not be 

explained in detail as the emphasis is to demonstrate securing of a next-generation 

ADAS system and an ITS service message, Cooperative Awareness Message 

(CAM), by applying the IVADE algorithm. On the other hand, it is worth mentioning 

that the LKA model was able to deliver a close approximation to similar real-life 

LKA systems by having reasonable and compatible mobility data outputs and 

satisfying the deviation limits from intended road profiles. Previous studies as in [43] 

used purely hypothetical simulation data without considering any dynamic model or 

are contended with CAN bus data taken from a car’s control network with lack of 

proprietary knowledge of car manufacturers [44]. To the author’s best knowledge, 

our research is the only work in the literature that intends to develop and test an IDS 

system for in-vehicle automotive networks using a vehicle dynamic model and 

hence, is able to validate the results of the anomaly detection algorithm. 
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The LKA model considers lateral and longitudinal dynamics of the vehicle and 

applies active steering to keep up with the intended track of the lane. The LKA is 

assumed as a planar model in which the vertical dynamics are not considered for a 

simplified discussion. There are two controllers designed in the LKA control system 

as can be seen in Figure 10. The first controller C1 is computing a desired yaw rate rd 

that is then regulated by the second controller C2 that computes the steering angle δ 

for the vehicle.  

 

C1

Lane Tracking

Controller

C2

Steering Wheel

Controller
Vehicle Model

_

_
0

Rho

Flf

r

yL

δrd

r        : Yaw Rate

yL    : Tracking Error

δ       : Steering Angle

Rho : Reciprocal of Radius

Flf    : Traction Force

 

Figure 10. Block Diagram of LKA model. 

 

As the vehicle model, a bicycle model as shown in Figure 11 is used. The steering 

angle δ is used to perform steering of the vehicle.  
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Figure 11. Schematic of Bicycle model 

 

 

The vehicle is assumed as a front-wheel drive car and the following forces are 

considered to act on the wheels in the longitudinal and lateral wheel directions: 

 

𝐹𝑙𝑓: Longitudinal force at the front wheel in the wheel direction, 

𝐹𝑐𝑓: Lateral (cornering) force at the front wheel perpendicular to the wheel direction, 

𝐹𝑙𝑟  = 0: Longitudinal force at the real wheel in wheel direction. This force is zero 

since front-wheel actuation and rolling is assumed, 

𝐹𝑐𝑟: Lateral force at the rear wheel perpendicular to the wheel direction. 

 

The forces in the body frame can be computed from the forces in the wheel 

directions as follows: 

 

𝐹𝑥𝑓 =  𝐹𝑙𝑓 cos 𝛿 −  𝐹𝑐𝑓 sin 𝛿   (𝑓𝑟𝑜𝑛𝑡 𝑤ℎ𝑒𝑒𝑙, 𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) 

 

𝐹𝑦𝑓 =  𝐹𝑙𝑓 sin 𝛿 +  𝐹𝑐𝑓 cos 𝛿   (𝑓𝑟𝑜𝑛𝑡 𝑤ℎ𝑒𝑒𝑙, 𝑦 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) 

 

𝐹𝑥𝑟 =  𝐹𝑙𝑟 = 0 (𝑟𝑒𝑎𝑟 𝑤ℎ𝑒𝑒𝑙, 𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) 
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𝐹𝑦𝑟 =  𝐹𝑐𝑟 = 0 (𝑟𝑒𝑎𝑟 𝑤ℎ𝑒𝑒𝑙, 𝑦 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) 

 

Dynamic Equations 

 

The longitudinal velocity can be adjusted either by directly changing the longitudinal 

tire force or by controlling the longitudinal tire slip. The following dynamic 

equations are used: 

 

𝑥 ̈ =  �̇�ψ̇ +  
𝐹𝑥𝑓 + 𝐹𝑥𝑟

𝑚
    

𝑦 ̈ =  −�̇�ψ̇ +  
𝐹𝑦𝑓 + 𝐹𝑦𝑟

𝑚
 

 ψ ̈ =   
𝑎𝐹𝑦𝑓 + 𝑏𝐹𝑦𝑟

𝐼𝑧𝑧

           

 

 

Force Model 

 

It is assumed that the tire force depends linearly on slip angle and longitudinal force 

at the front wheel Flf is used as an input signal to control the longitudinal 

acceleration 

 

𝐹𝑐𝑓 =  𝐶𝑓𝛼𝑓 

𝐹𝑐𝑟 =  𝐶𝑟𝛼𝑟 

 

Where 𝐶𝑓  < 0   and 𝐶𝑟  < 0 are appropriate constants. 

 

4.1.3 MODEL PARAMETERS 

 

The LKA model itself can be described as a group of ECUs which compute the 

requested power for the forward motion and that calculate the necessary steering 

angle to keep the vehicle in the intended route by applying steering torque. For this 
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model, LKA has an input interface from visual sensors and pedal actuators and it 

outputs mobility related parameters as the result of motion. The communication to 

and from LKA is assumed to be transmitted on the CAN bus. There are two signals 

LKA receives as input from other ECUs in the vehicle. These signals are the 

curvature (reciprocal of road radius) 𝜌 and the traction force of the vehicle Flf. 

Additionally, there are 8 output signals that are transmitted to the outside of the 

model; global X-position X, global Y-position Y, global orientation 𝜓, velocity of the 

vehicle v, acceleration in the x-direction of body coordinate frame �̈�, acceleration in 

the y-direction of body coordinate frame �̈�, rotational acceleration �̈�and deviation of 

the motion from the intended path yl. 

 

For the scope of this thesis work, the curvature 𝜌 (= 1/ radius) is assumed to be 

calculated by an automotive vision subsystems and transmitted to LKA model as an 

input. By applying different 𝜌 profiles, it is possible to generate all types of road 

profiles, from roads with very tight turns to straight roads. In other words, a large 

value of 𝜌 leads to a small radius and dictate a very tight turn while small values of 

𝜌mean a higher valued radius, even converging to a pseudo-straight road profile for 

marginally small values of 𝜌. Since there is a learning phase for IVADE algorithm, it 

is favorable to have different road profiles with a large variety of road data instances. 

Hence, the applicability of 𝜌 input alteration finds a very functional use in generating 

various vehicle driving scenarios. 

 

The second parameter to control the LKA model is the traction force of the vehicle, 

Flf. It is assumed in the dynamic model that the traction force simulates throttle and 

brake pedal actuation. Positive values of Flf demonstrate a stepping on the throttle 

pedal possibly resulting in acceleration while negative values correspond to applying 

of brakes that would result in deceleration. A zero value of Flf would imply no use of 

any of the pedals and results in coasting of the vehicle at a constant velocity 

(neglecting air drag and friction). Large valued (positive) traction forces result in a 

steeper acceleration than moderate values and low valued (negative) traction forces 

result in immediate slow down. Similar to 𝜌, alterations of Flf make it possible to 
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have a large number of driving scenarios and hence, high numbers of different road 

data instances can be generated by applying varying traction forces both at positive 

and negative magnitudes.  

 

Description of model parameters 

Input Parameters 

 

a) Reciprocal of radius 𝜌 

The road curvature parameter is regulated by Highway and Traffic Agencies in many 

countries. Range of 𝜌 to be given to LKA model as an input doesn’t have a 

theoretical limit. In order to have a realistic approach, curvature radius values are 

chosen according to the regulations and real life practices. Minimum road curvature 

radius is one of the road geometry design parameters that affects safety and also is 

regarded as a fundamental parameter for road regulation [45]. Table 1 from [46] and 

Table 2 from [45] show desirable minimum values that are stated as comfortable 

values dictated by design speeds. By observing values from these three countries, it 

would be a roughly correct estimate that a tight radius would be around 100m. 

Therefore, for the tight-turn scenarios, 𝜌ight is chosen as 100m. 

  
 

Table 1. UK highway standards. 

 DESIGN SPEED (km/h) 120 100 85 70 60 50 

H
O

R
IZ

O
N

T
A

L
 

C
U

R
V

A
T

U
R

E
 (

m
) 

Minimum R without 

elimination of Adverse Camber 

and Transitions 

2880 2040 1440 1020 720 520 

Minimum R with 

Superelevation of 2.5% 
2040 1440 1020 720 510 360 

Minimum R with 

Superelevation of 3.5% 
1440 1020 720 510 360 255 
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Desirable Minimum R with 

Superelevation of 5% 
1020 720 510 360 255 180 

One Step below Desirable 

Minimum R with 

superelevation of 7% 

720 510 360 255 180 127 

Two Steps below Desirable 

Minimum R with 

superelevation of 7% 

510 360 255 180 127 90 

 

 

Table 2. Germany and France highway standards for Road Radius. 

Design Speed (km/h) 120 100 90 80 70 60 

Germany 800m 500m 380m 280m 200m 135m 

France 665m 425m - 240m - 120m 

 

 

 

In addition to a tight-turn radius, a moderate-turn radius is chosen as 500m and a 

comfort-turn radius is chosen as 1000m respectively. Straight road radius is also 

simulated as a road curvature radius of 5000m. Four discrete radius values and 

corresponding eight 𝜌 values including negatives used in the simulations are shown 

in Table 3. Positive 𝜌 values represent motion in the counter-clockwise rotation 

while negative values represent motion in clockwise rotation. 

 

 

Table 3. Discrete Values for 𝝆 and Radius. 

Tight-turn 

Curve Radius 

Moderate-Turn 

Curve Radius 

Comfort-Turn 

Curve Radius 

Straight Curve 

Radius 

100m 500m 1000m 5000m 

𝜌 = 0.01, -0.01 𝜌 = 0.002, -0.002 𝜌 = 0.001, -0.001 𝜌 = 0.0002,-0.0002 

 

 

 

 

 



 

49  

 

b) Traction Force Flf 

 

The traction force input, Flf depends on the requested motor torque and the road 

conditions such as the friction coefficient of the road. The higher the positive traction 

force input represents a greater gas pedal actuation involvement. Similarly, as the 

negative traction force given into LKA model decreases, it implies harder brakes that 

would cause deceleration and a probable stop of the motion in the end. It is also 

possible to simulate a driving profile of coasting by applying a traction force close to 

“0” representing neither gas nor brake pedal is involved.  

 

The intention of the data generation in the thesis work is to create in-vehicle network 

data for all types of movement; acceleration, deceleration, coasting (constant-speed 

drive) and variations of these three main movement types with different rates. In 

other words, a hard acceleration produces significantly different data from a soft 

acceleration does and similarly, a hard brake generates quite different in-vehicle 

network data than a smooth slow down drive. In order to create profiling of many 

different movement scenarios, a set of discrete values are chosen for the traction 

force input. Table 4 summarizes all the values used in the simulation that represent 

different possible drive scenarios. 

 

 
 

Table 4. Discrete Values for Traction Force, Flf 

Hard Acceleration 2000 

Moderate Acceleration 1000, 1250 

Soft Acceleration 750, 500 

Coasting 10 

Soft Brake (deceleration) -250, -500 

Moderate Brake (deceleration) -750, -1250 

Hard Brake (deceleration) -1500 
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Output Parameters 

 

LKA model is a Lane Keeping Assistance system that applies steering torque to keep 

the vehicle in the intended route in accordance with the observed road radius and 

traction force input. As the drive goes on with given inputs, vehicle experiences a 

change in the motion parameters. There are 8 output signals from LKA model that 

are related with the change in the motion. These output signals contain information 

on global positions, orientation, velocity, acceleration and deviation from the 

intended path of the vehicle. All the output parameters are explained in this section to 

have a better understanding of the model.  

 

Global positioning of the vehicle is given in a hypothetical planar universe with only 

X and Y coordinates. The vertical movement of the vehicle is omitted for the 

simplification of the discussion since the essential goal of the thesis is to simulate the 

in-vehicle network data for different road profiles. The starting point of the vehicle in 

each drive simulation is considered as the origin of the universe with the coordinates 

(X, Y) = (0, 0). As the movement goes on, global positions of the vehicle is updated 

according to the direction of the motion and the distance taken in both X and Y 

direction. Since the starting point of the drive is at point (0, 0), global position-X and 

global position-Y can take both positive and negative values. 

 

The velocity of the vehicle is a result of the inputs and the model outputs the 

instantaneous velocity of the vehicle through the simulation. Velocity parameter can 

take only non-negative scalar values without implying any vectored direction. By 

adjusting inputs accordingly, velocity of the vehicle in the simulation is tried to be 

limited between 0 – 180 km/h in order to have a realistic driving simulation. 

 

Output parameters X, Y and 𝜓 are considered in global coordinates. Conversely, 

acceleration parameters�̈�, �̈� and �̈� are given in the body frame coordinates. The 

velocity parameter designated as v is the velocity of the vehicle in the direction of the 

motion by not being represented in any coordinate system. 
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The lateral deviation of the vehicle from the intended route is designated with yl 

parameter. Lateral deviation information is informative on the success of the LKA 

model to keep the vehicle in the safe distance limits. In other words, higher values of 

yl would mean that the intended route is not achieved and the safety of operation is 

failed. There is not an official upper limit for this deviation, yet a 50cm deviation is 

considered as a suitable value to ensure a safe drive.  

 

Global Position X 

 

LKA model outputs the instantaneous X-coordinate of the global position of the 

vehicle and the signal is designated with X. LKA model outputs instantaneous X-

coordinate of the current position, therefore distance taken in the coordinate system 

is represented in meters unit. 

 

Global Position Y 

 

LKA model outputs the instantaneous Y-coordinate of the global position of the 

vehicle and the signal is designated with Y. LKA model outputs instantaneous Y-

coordinate of the current position, therefore distance taken in the coordinate system 

is represented in meters unit. 

 

Global Orientation 𝜓 

 

LKA model outputs the instantaneous global orientation of the vehicle and the signal 

is designated with 𝜓. The orientation of the unit is considered as 0 radian in the 

direction of +X coordinate and increases in the counter clockwise direction to a 

maximum of 2π. In other words, 𝜓is periodical in 2π radian scale, making a full 

circle turn of 360° would have a global orientation equals to 0 (= 2π). 
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Velocity v 

 

LKA model outputs the instantaneous velocity of the vehicle in the direction of 

motion and the signal is designated with v. The velocity of the vehicle is in 

meter/second unit. 

 

Lateral Deviation yl 

 

LKA model outputs the instantaneous lateral deviation of the vehicle from the 

intended route and the signal is designated with yl. The lateral deviation of the 

vehicle is in meter unit. 

 

4.2 SIMULATION OF IN-VEHICLE NETWORK 

 

The scope of this thesis work is not to propose the technical realization of the LKA 

model and control system but is to develop a simulation and test platform for the 

implementation and evaluation of the proposed Intrusion Detection System IVADE. 

The LKA model is developed in Matlab/Simulink environment due to its wide spread 

use for control systems. In addition to control systems, Matlab/Simulink environment 

can be used as an integration platform for models from different specialization areas 

as it is done through this thesis work. A pure dynamic model of LKA system 

implemented in Simulink is transformed into an in-vehicle network using Vehicle 

Network Toolbox design blocks by introducing CAN bus channels as 

communication layer. 

4.2.1 DESCRIPTION OF THE SIMULATION MODEL 

 

The in-vehicle network is formed by four main components in the final phase; LKA 

dynamic model, a custom signal generation block to provide two inputs 𝜌 and Flf to 

the LKA, a V2X transmitter ECU to send the mobility data of the vehicle to V2X 

infrastructure and lastly, the Intrusion Detection System which monitors CAN bus 
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channels and detects anomalies. The main components of the network will be 

discussed in detail in the following section.    
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Figure 12. Schematic representation of In-Vehicle Network. 

 

 

4.2.2 DIRECT AND NETWORKED MODEL 

 

The first phase of simulation environment is called Direct Model in which three 

components in the network are directly connected in Simulink. The direct Model is 

basically the native form of the model without a CAN BUS implementation. Three 

main components of the network are; LKA dynamic model, input signal generation 

block and V2X transmitter ECU are linked to each other and the architecture is 

shown in FIGURE X. The direct Model provides an environment to test and observe 

the behavior of the LKA model, i.e. the response of output parameters that are to be 

sent to V2X infrastructure for various combinations of input parameters. The 

nominal behavior of the model is observed and noted before modifications for 

Networked Model are applied. 
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Figure 13. Schematic representation of Direct Model 

 

The second phase of the simulation environment is called Networked Model in 

which modules of the Direct Model are assumed as ECUs of a vehicle control 

network which are connected through CAN Bus channels with each other. In other 

words, instead of using direct links to connect design blocks and LKA model, signals 

are transmitted through CAN bus networks as CAN messages from and to the LKA. 

This is the final form of the simulation set-up in which different driving scenarios are 

run by generating appropriate inputs. The CAN Bus network data including inputs to 

the model and outputs from it are logged.  
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Figure 14. Schematic representation of Networked Model. 

 

 

The real output of the simulation is the motion in the coordinate universe. Therefore, 

in order to compare the Direct Model and Networked Model, same input 

configuration is fed into both models and the route in the coordinate universe is 

observed. It would be naïve to expect the route of the Networked Model to be 

identical to the Direct Model considering that the signals are not transmitted instantly 

through a direct link but in message-wise communication through a CAN bus 

channel. On the other hand, Networked Model is a more realistic model in the sense 

that in real in-vehicle networks, information is also transmitted in the same fashion; 

through control networks with time multiplexing or event-based message 

transmission as in the Flexray, CAN or Ethernet case. DM and NM are run with 

same input signals and speed (v) output is observed. The difference between models 

can be seen in Figure 15. The lagging behavior of NM model can be explained with 

delays resulting from input bus CAN Channel 1 and output bus CAN Channel 2. 
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Figure 15. Speed vs Time in DM and NM. 

  

4.2.3 IN-VEHICLE CAN BUS IMPLEMENTATION 

 

The Direct Model is transformed into Networked Model by implementing CAN Bus 

Channel communication interface for transmission of signals. CAN Bus is a widely 

used communication protocol that has been in use for three decades now. Controller 

Area Network (CAN) is a serial De Facto Standard for in-vehicle control area 

networks especially for subsystems that is related to mobility functions, i.e. engine, 

transmission, steering and all type of ADAS. Although Ethernet is perceived as a 

strong alternative for future vehicles’ internal networks due to its wide bandwidth 

and scalability, CAN is going to be dominating sub-control networks which carry out 
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mostly mobility-related safety-critical functions. Therefore, because of the wide-

spread use in ADAS systems and current dominance in the industry, CAN bus is 

chosen as the communication layer for the in-vehicle network. 

 

Vehicle Network Toolbox (VNT) of Matlab/Simulink provides a connection 

interface with CAN devices, both through virtual channels for simulation purposes 

and through vehicle networks. It is possible to carry out operations such as sending, 

receiving, coding and decoding of messages. There are also functional blocks 

maintained in VNT for monitoring of CAN channels, analyzing messages and 

logging them for future use. Throughout the work in this study, many of these 

functions have been used and implemented. 

 

4.2.4. MAIN COMPONENTS OF THE SIMULATION 

LKA Model 

 

LKA dynamic model is developed in Simulink and perceived as a black box in the 

simulation environment. The input and output interfaces of LKA model were 

transformed into CAN channels by using generic Vehicle Network Toolbox blocks 

of Simulink. The dynamic model is essentially used to simulate a Lane Keeping 

Assistance system driving the vehicle on a given route. The input and output 

parameters of the model is explained in detail in the previous section. 

 

Input Signal Generator 

 

The input parameters, reciprocal of the road radius 𝜌 and traction force Flf, to be 

given to the LKA model is generated by a custom function block developed in 

Simulink. Input signal generator block simulates two possible ECUs which are 

dedicated to generate 𝜌 information from automotive vision and sensor system by 

observing road radius and to generate gas and brake pedal actuation information Flf. 
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This function block produces all different input combinations of 𝜌 and Flf for several 

driving scenarios.  

 

Distinct values of inputs are chosen from the following sets: 

 

𝜌 ∈  {−0.01, −0.002, −0.001, −0.0002, 0.0002, 0.001, 0.002, 0.01}  

𝐹𝑙𝑓 ∈   {−1500, −1250, −750, −500, −250, 10, 250, 500, 750, 1000, 2000}   

 

The number of different 𝜌 values is N𝜌 = 8 and the number of different Flf values is 

NFlf = 11. The number of all different input combinations is N𝜌 x NFlf = 88. All 

possible input combinations are given in Table 5. 

 

Table 5. Different Input Combinations. 

𝜌 /Flf -1500 -1250 -750 -500 -250 10 250 500 750 1000 2000 

-0.01 S1 S9 S17 S25 S33 S41 S49 S57 S65 S73 S81 

-0.002 S2 S10 S18 S26 S34 S42 S50 S58 S66 S74 S82 

-0.001 S3 S11 S19 S27 S35 S43 S51 S59 S67 S75 S83 

-0.0002 S4 S12 S20 S28 S36 S44 S52 S60 S68 S76 S84 

0.0002 S5 S13 S21 S29 S37 S45 S53 S61 S69 S77 S85 

0.001 S6 S14 S22 S30 S38 S46 S54 S62 S70 S78 S86 

0.002 S7 S15 S23 S31 S39 S47 S55 S63 S71 S79 S87 

0.01 S8 S16 S24 S32 S40 S48 S56 S64 S72 S80 S88 

 

Signal generator function block outputs one of the 88 different input combinations 

for 5 seconds per one output state randomly. Since, the order of the state is not pre-

decided, there is a risk of the vehicle speed exceeding or falling below the practical 

limits. In order to keep the vehicle in motion during the simulation, the velocity must 

be positive. Therefore, when velocity of the vehicle decreases below a threshold, a 

positive Flf is applied for 5 seconds. Similarly, when speed goes up to a higher 

threshold, a negative Flf is applied for 5 seconds.  

 

The essential motion types were defined as acceleration, deceleration and coasting 

previously. These 88 different input combinations are all examples of the three basic 

motion types, acceleration, deceleration and coasting, with different rates of road 
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curvature and traction force. The input sequence pattern is one of the significant 

factors that is critical to have a rich data set including all of the possible driving 

scenarios. The numerical information on simulation data is given in Chapter 5. 

 

Can Bus Channel Blocks 

 

In order to implement CAN Bus communication using Vehicle Network Toolbox, 

there are necessary blocks to be used. Two CAN channels are implemented for 

inputs and outputs of LKA model, i.e. CAN Channel 1 is created for inputs to LKA 

model, 𝜌 and Flf; CAN Channel 2 is created for mobility parameters of CAM 

messages X, Y, 𝜓 and v. IVADE is assumed to be connected to both channels to 

observe inputs and outputs of LKA model. The following blocks are used and 

configured with appropriate parameter settings to achieve a healthy and functional 

CAN communication. 

 

Vehicle Network Toolbox Simulink Blocks: 

 

CAN Configuration: This block is used to configure the setting of a CAN Channel. 

This block must be used for each channel created. 

 

CAN Pack: This block is used to pack the signals into a CAN message. 

 

CAN Transmit: This block is used to transmit packed CAN messages to a selected 

channel. 

 

CAN Receive: This block is used to receive CAN messages from a selected channel 

 

CAN Log: This block is used to log CAN messages into a file for future use. 
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4.3 ANOMALY GENERATION AND ATTACK SIMULATION 

 

Supervised learning methods require both positive (normal) and negative (anomaly) 

class samples in the training set. We derived rules according to IVADE Anomaly 

Generation principles explained in 3.3.4 Anomaly Generation and Attack Simulation. 

We simulate manipulation of mobility data (Global Position, Speed, Global 

Orientation) that is vital for V2X CAM messages.  

 

Rules for Anomaly Generation 

 

a) Manipulation of Velocity Data 

 

Rule 1: Speed cannot decrease at certain conditions. Condition can be given as 

(radius is MODERATE to STRAIGHT) AND (Flf is POSITIVE). 

 

This rule is violated by injecting point anomalies in which speed is decreased by a 

percent.  

 

Rule 2: Speed cannot increase at certain conditions. Condition can be given as 

either Flf is negative OR (radius is TIGHT and Flf is close to ZERO). 

 

This rule is violated by injecting point anomalies in which speed is increased by a 

percent. 

 

Rule 3: Speed cannot increase instantly. There is no condition for this rule. 

 

This rule is violated by injecting point anomalies in which speed is increased 

dramatically. 

 

Rule 4: Speed cannot decrease instantly. There is no condition for this rule. 
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This rule is violated by injecting point anomalies in which speed is decreased 

dramatically. 

 

Rule 5: The change in velocity in a window-frame should be bounded by a small 

constant. 

 

This rule is violated by injecting point anomalies in which speed is manipulated by a 

constant deviation from the dynamic model behavior. 

 

b) Manipulation of Position Data 

 

Rule 6: The change in displacement in a window-frame should be bounded by a 

small constant. 

 

This rule is violated by injecting point anomalies in which GPS-X and GPS-Y are 

manipulated by a constant deviation from the dynamic model behavior. 

 

Rule 7: If Global Orientation is in the neighborhood of n*pi/2, i.e. if it is closer to 

x = y OR x = -y lines; X component of displacement should be comparably similar 

to Y-component of the displacement. 

 

This rule is violated by injecting point anomalies in which GPS-X and GPS-Y are 

manipulated so that similarity of displacements is distorted. 

 

Rule 8: If Global Orientation is NOT in the neighborhood of n*pi/2, i.e. if it is 

NOT close to x = y OR x = -y lines; the ratio between X component and Y 

component of displacement should be comparably similar to global orientation. 

 

This rule is violated by injecting point anomalies in which GPS-X and GPS-Y are 

manipulated according to a percent of instantaneous global orientation. 
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c) Manipulation of Global Orientation Data 

 

Rule 9: The change in global orientation in a window-frame should be bounded 

by a small constant. 

 

This rule is violated by injecting point anomalies in which global orientation is 

manipulated by a constant deviation from the dynamic model behavior. 

 

Rule 10: Change of 𝝍 in a window-frame should be non-negative when radius of 

the road is counter-clockwise. 

 

This rule is violated by injecting point anomalies that makes the change of Psi 

negative.  

 

Rule 11: Change of 𝝍 in a window-frame should be non-positive when radius of 

the road is clockwise. 

 

This rule is violated by injecting point anomalies that makes the change of 𝝍positive. 

 

By applying these rules, manipulations of the CAN message instances are created in 

attribute vector and these anomalous instances are transferred to feature vector by 

modifying the 20th instance of each frame. In other words, manipulations are always 

applied to the newest element in a window frame. We limited the structure of 

algorithm by manipulating only the last element in the window for a simplified 

discussion. In the future, we aim to improve IVADE so that manipulations can be 

detected at any location of the window. Together with the attribute vector, feature 

vector representing windows and its corresponding output vector also updated with 

anomalous class frames. 

 

 



 

63  

 

 

 

5. EVALUATION AND RESULTS 

 

5.1 SIMULATION PARAMETERS 

 

This section includes all numerical data of the simulation experiments. The necessary 

details and explanations are provided accordingly. 

5.1.1 CAN MESSAGES AND DATA FIELDS 

 

CAN data fields are up-scaled with proper constants in order to have a better 

resolution. Up-scaled values of X, Y and V are too high to be transmitted with 1 byte 

of CAN message field. Therefore, these three signals are represented with 3 bytes. 

Therefore, up-scaled values are divided into multiple bytes before transmission and 

converted back to the original value at reception where the values are down-scaled 

with same constants. The scale constants and byte orders are given in the tables 

below. 

 

As an example when X = 2425,1, it is up-scaled to X’ = 24251 with constant = 10. 

Then, three bytes are calculated with the following formulas: 

 

𝑋′ = 10000 ∗ 𝑋𝑢𝑝 + 100 ∗ 𝑋𝑚𝑖𝑑 +  𝑋𝑙𝑜𝑤 

 

𝑋𝑢𝑝 = 𝑟𝑒𝑚(𝑋′, 10000) = 2 

𝑋𝑚𝑖𝑑  = 𝑟𝑒𝑚((𝑋′ − 𝑋𝑢𝑝 ∗ 10000), 100) = 42 

𝑋𝑙𝑜𝑤 = ((𝑋′ − 𝑋𝑢𝑝 ∗ 10000) − 𝑋𝑚𝑖𝑑 ∗ 100) = 51 

 

The scaling constants and the used CAN messages are shown in Table 6 and 7. 
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Table 6. Scaling Constants. 

Parameter Scaling Constant 

X 10 

Y 10 

V 100 

 
 

Table 7. CAN Messages. 

 CAN Channel 1 CAN Channel 2 

 CAN ID: 100 CAN ID: 200 CAN ID: 300 

1. Byte 𝜌 X_up V_up 

2. Byte Flf_up X_mid V_mid 

3. Byte Flf_low X_low V_low 

4. Byte - Y_up Psi_up 

5. Byte - Y_mid Psi_mid 

6. Byte - Y_low Psi_low 

7-8. Byte - - - 

 

5.1.2 LKA CONFIGURATION SETTINGS 

 

The LKA model parameters are initialized with the values in Table 8. Before every 

drive simulation, a parameter file is executed for initialization. 
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Table 8. LKA Configuration Parameters. 

Vehicle Mass 
2023/2223/2423 

kg 

Distance from center of gravity to front wheel 1.26 m 

Front wheel tire force constant 2.864e5  

Inertia 6286  

Distance from center of gravity to rear wheels 1.9 m 

Rear wheel tire force constant 1984e5  

Nominal Velocity 0.01 m/sec 

Look-ahead distance for road detection 12 m 

KP1 20 

KI1 10 

KP2 30 

KI2 0.01 

KI3 0.01 

Kd 0.05 

Tau 0.01 sec 

Initial velocity in x-direction V (=0.01) 

Initial velocity in y-direction 0 

Initial angular velocity 0 

 

5.1.3 ATTRIBUTE AND FEATURE VECTORS 

 

Attribute Vector is derived from sampled CAN messages. The attributes chosen is 

given in Table 9.  
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Table 9. Attribute Vector Parameters. 

Attr1 Attr2 Attr3 Attr4 Attr5 Attr6 

𝜌 Flf X Y V Psi 

Attr7 Attr8 Attr9 Attr10 Attr11 Attr12 

𝑉𝑖 − 𝑉𝑖−20 𝑋𝑖 − 𝑋𝑖−20 𝑌𝑖 − 𝑌𝑖−20 𝑃𝑠𝑖𝑖 − 𝑃𝑠𝑖𝑖−20 tan(Psi) 𝑋𝑖 − 𝑋𝑖−20

𝑌𝑖 − 𝑌𝑖−20

 

 

Feature Vector is derived from attribute vector, by calculating consecutive instances 

of attribute vector in the same window. The length of the window is chosen as l = 20. 

The chosen metric as feature is calculated for 20 consecutive instances of attribute 

vector. The features selected are given in Table 10. 

 

Table 10. Feature Vector Parameters. 

Feat1 Feat2 Feat3 Feat4 

𝑚𝑒𝑎𝑛(𝜌) 𝑚𝑒𝑎𝑛(𝐹𝑙𝑓) 𝑚𝑒𝑎𝑛(𝑉) 𝑚𝑒𝑎𝑛(𝑃𝑠𝑖) 

Feat5 Feat6 Feat7 Feat8 

tan (𝝍) 𝑋𝑖 − 𝑋𝑖−20

𝑌𝑖 − 𝑌𝑖−20
 

𝑑𝑖𝑠𝑡(𝐼(𝑑𝑉′) − 𝑑𝑉) 𝑑𝑖𝑠𝑡(𝐼(𝑑𝑋′) − 𝑑𝑋) 

Feat9 Feat10 Feat11  

𝑑𝑖𝑠𝑡(𝐼(𝑑𝑌′) − 𝑑𝑌) 𝑑𝑖𝑠𝑡(𝐼(𝑑𝑃𝑠𝑖′) − 𝑑𝑃𝑠𝑖) mass  

 

* 𝑚𝑒𝑎𝑛(𝑝) is defined as average value of an attribute in a window. 

* 𝑑𝑖𝑠𝑡(𝐼(𝑑𝑝′) − 𝑑𝑝) can be defined as the Chebyshev distance between  𝑝𝑖 − 𝑝𝑖−20 and 

interpolation of  𝑝𝑖 − 𝑝𝑖−20 for the last 20 instances. 

* mass is the current mass of vehicle. 

* tan(p) is the tangent of p. 

 

Principles for Attribute and Feature Selection 

  

We have derived three main ideas for determining attributes and extracting features 

from these attributes. As a summary, the motion of a vehicle constitutes a physical 

behavior that can be observed by monitoring physical signals. Firstly, the 
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relationship between input signals and output signals of ECUs comprise knowledge 

of the system behavior. This behavior can be learnt for profiling the in-vehicle 

network. As an example, the global orientation of a vehicle is strictly related with the 

input signal 𝜌, reciprocal of road radius. Similarly, the change of vehicle speed can 

be derived from the change of the traction force Flf. Secondly, network data 

instances have a transient state which is not suitable for observing system behavior. 

Such a sampling would introduce noise that would impair the success of the 

algorithm. Therefore, a time window is considered as a steady point for observation 

of state changes. Lastly, the length of the window has to be short enough for a quick 

response to detection while being long enough to contain necessary knowledge. 

Consequently, all signals of the in-vehicle network that are related to motion and 

indicators of the changes in a system are considered as good attributes. We also 

provide reasons of the selection and contribution of each attribute and feature in this 

section. 

 

Evaluation of Attributes 

 

1.  Reciprocal of Radius: 𝜌, is an input signal that carries the information of road 

radius. It has a dramatic effect on the motion of vehicle, X and Y component of 

distances taken. 

2. Traction Force: Flf is the signal coming from throotle and braking pedal actuators. 

Flf is decisive for the state of motion, whether it is acceleration, deceleration or 

coasting.  

3. GPS Position X: X is the x coordinate of the vehicle’s instantaneous position. The 

signal is informative on the distance taken. Additionally, it also gives a clue about 

vehicle’s orientation when previous values of the signal are considered. 

4. GPS Position Y: Y is the y coordinate of the vehicle’s instantaneous position. The 

signal is informative on the distance taken. Additionally, it also gives a clue about 

vehicle’s orientation when previous values of the signal are considered. 

5. Speed: V is a vital property of vehicle that is informative of the motion. 
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6. Global Orientation: Psi is the heading direction of vehicle. It is particularly related 

with 𝜌 and can be indicator of the shape of the road taken, in other words X and Y 

component of distance taken. 

7. Change of Speed: This attribute is derived from Speed in a time window. The 

change in speed is decisive on the distance taken and it is related with Flf.  

8. Change of Position-X: This attribute is derived from GPS Position X in a time 

window. The distance taken in the coordinate of X is informative on the trend of 

distance taken. It is related with speed, traction force and road radius. 

9. Change of Position-Y: This attribute is derived from GPS Position Y in a time 

window. The distance taken in the coordinate of Y is informative on the trend of 

distance taken. It is related with speed, traction force and road radius. 

10. Change of Orientation: This attribute is derived from 𝝍 in a time window. The 

change in orientation is decisive on the shape of the road and the X and Y component 

of roads taken. 

11. Tangent of Current Orientation: Tangent of instantaneous orientation is 

informative on the recent changes of other parameters. Theoretically, it should be 

related with delta(X)/delta(Y) in a long time window, but the relation is not linear for 

instantaneous response. This signal is representative for short term changes in 

orientation.  

12. Delta(X)/Delta(Y): Unlike tan(𝝍), the signal is chosen for long term 

representation of change in orientation. 

 

Evaluation of Features 

 

Features are derived from attributes with a window approach. The main principles 

for the selection of features are to exploit the behavior of input-output relationships, 

to leverage distance-based similarity comparison and to represent behavioral 

knowledge of the in-vehicle network. All selected features contribute to the  

representation of all three knowledge types, however it is worth to underline 

particular reasons on the selection of each feature. 
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1. Behavioral Knowledge: Average values of 𝜌, Flf, V and Psi: Average values of 

these signals are informative for behavioral learning of in-vehicle network. 

Additionally, the causality between inputs and outputs are useful on the prediction of 

signals. 

2. Temporal Knowledge: Tangent of Current Orientation and Delta(X)/Delta(Y): 

These attributes are preserved as features in order to represent knowledge for the 

prediction of orientation and change of the distance taken in both short-term and 

long-term. 

3. Similarity Knowledge: Distances between instances and interpolated instances are 

derived for X, Y, V and 𝝍 in order to represent the similarity of instances in terms of 

distance metrics. This knowledge is especially critical in the existence of data 

manipulation. 

 

5.2 EVALUATION CRITERIA 

 

Anomaly detection is a classification problem and as it is performed, there are four 

possibilities for the outcome: 

 

Missed Intrusions: Malicious CAN messages which are flagged as normal. These 

messages will be represented as False Negatives (FN). 

 

False Alarms: Benign CAN messages which are flagged as anomalous. These 

messages will be represented as False Positives (FP).  

 

Detected intrusions: Malicious CAN messages which are flagged as anomalous. 

These messages will be represented as True Positives (TP). 

 

Undetected normal packets: Benign CAN messages which are flagged as normal. 

These messages will be represented as True Negatives (TN). 
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Performance Criteria 

 

There are many accuracy measures to evaluate how an anomaly detection algorithm 

performs. Recall and Precision are among the most used metrics for classification 

problems. Recall is the ratio of anomalies that are correctly identified as anomalous 

compared to the whole number of anomalies. It is especially important for anomaly 

detection since the anomaly class has usually fewer numbers of instances in any data 

set. Precision is the measure of how an algorithm was sharp on the point to correctly 

detect anomalies in all alarms. 

 

𝑹𝒆𝒄𝒂𝒍𝒍(= 𝑻𝑷𝑹) =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 

 

In addition, there are four more metrics that are used to analyze performance of 

classification problems: TPR is true positive rate, FNR, false negative rate, TNR, 

true negative rate and FPR being false positive rate. 

 

𝑻𝑷𝑹 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
  

𝑭𝑵𝑹 =
𝑭𝑵

𝑭𝑵 + 𝑻𝑷
 

 𝑻𝑵𝑹 =
𝑻𝑵

𝑻𝑵 + 𝑭𝑷
 

𝑭𝑷𝑹 =
𝑭𝑷

𝑭𝑷 + 𝑻𝑵
 

 

F-measure is one effective metric for classification problems. By representing both 

precision and recall, which are usually inversely proportional, F-measure is used to 

find out a balance point for thresholds that generates the least amount of FP at the FN 

rate that system can tolerate.  
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𝑭 − 𝒎𝒆𝒂𝒔𝒖𝒓𝒆 =
𝟐

𝟏
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏

+
𝟏

𝑹𝒆𝒄𝒂𝒍𝒍

 

 

5.3 EXPERIMENTS 

 

Several experiments are performed in order to improve feature selection process. In 

the beginning, we didn’t use any distance metrics, then we performed more 

experiments by adding distance features to feature vector. 

 

After deciding final forms of feature vector, we train a decision tree as the final 

experiment and present results of all tests in this section. 

 

5.3.1 Experiments for Feature Selection 

 

A number of experiments are presented in this part to demonstrate the significance of 

distance features and the influence of the amount of data. 

 

Experiment 1: Without a distance feature, we observed high numbers of FP and FN 

(Table 11&12). 

 

Table 11. Feature vector. 

Feat1 Feat2 Feat3 Feat4 

𝑚𝑒𝑎𝑛(𝜌) 𝑚𝑒𝑎𝑛(𝐹𝑙𝑓) 𝑚𝑒𝑎𝑛(𝑉) 𝑚𝑒𝑎𝑛(𝑃𝑠𝑖) 

Feat5 Feat6 Feat7 Feat8 

tan (𝝍) 𝑋𝑖 − 𝑋𝑖−20

𝑌𝑖 − 𝑌𝑖−20

 
𝑑𝑉 = 𝑉𝑖 − 𝑉𝑖−20 𝑑𝑋= 𝑋𝑖 − 𝑋𝑖−20 

Feat9 Feat10 Feat11  

𝑑𝑌 =  𝑌𝑖 − 𝑌𝑖−20 𝑑𝑃𝑠𝑖 =  𝑃𝑠𝑖𝑖 − 𝑃𝑠𝑖𝑖−20 mass  
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Table 12. Results of experiment 1. 

Test ID # anomaly # normal FP FN TPR FPR F 

Train: 7200sec Test: 7200sec, Mass = 2023kg 

Test 10303 25696 9522 1247 0.8788 0.37 0.6267 

 

Experiment 2: Distance metric for V is added as Feature 7 = 𝑑𝑖𝑠𝑡(𝐼(𝑑𝑉′) − 𝑑𝑉). 

 

Table 13. Results of experiment 2. 

Test ID # anomaly # normal FP FN TPR FPR F 

Train: 7200sec Test: 7200sec, Mass = 2023kg 

Test  10513 25486 8091 1256 0.8805 0.31 0.6645 

 

Experiment 3: Distance metric for Psi is added as Feat 10 = 𝑑𝑖𝑠𝑡(𝐼(𝑑𝑃𝑠𝑖′) − 𝑑𝑃𝑠𝑖) 

 

Table 14. Results of experiment 3. 

Test ID # anomaly # normal FP FN TPR FPR F 

Train: 7200sec Test: 7200sec, Mass = 2023kg 

Test  10416 25883 7777 603 0.9421 0.3040 0.7008 

 

 

Experiment 4: Distance metric for X is added as Feat8  = 𝑑𝑖𝑠𝑡(𝐼(𝑑𝑋′) − 𝑑𝑋) 

 

Table 15. Results of experiment 4. 

Test ID # anomaly # normal FP FN TPR FPR F 

Train: 7200sec Test: 7200sec, Mass = 2023kg 

Test  10478 25521 2790 556 0.9469 0.1093 0.8557 

 

 

Experiment 5: Distance metric for Y is added as Feat9 = 𝑑𝑖𝑠𝑡(𝐼(𝑑𝑌′) − 𝑑𝑌). The 

results are improved significantly; therefore, we decided to use distance metrics in 

the final feature vector.  
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Table 16. Results of experiment 5. 

Test ID # anomaly # normal FP FN TPR FPR F 

Train: 7200sec Test: 7200sec, Mass = 2023kg 

Test  10378 25621 4 4 0.9996 1.56e-4 0.9996 

 

Experiment 6: We used one hour of drive data for training and one hour of drive for 

testing. Two data sets are randomly generated and test data is not seen by trained 

decision tree before. We observed more false negatives and positives. Then we used 

two hours of data for testing to observe the same trend. Lastly, we decided to use 

more data for training and we observed that more data worked better than the former 

case in terms of performance. Results of three test cases are given in Table 17-19. 

 

Table 17. Results of experiment 6 – step 1. 

Test ID # anomaly # normal FP FN TPR FPR F 

Train: 3600sec Test: 3600sec, Mass = 2023kg 

Test 1 5190 12809 8 6 0.9985 4.68e-4 0.9987 

Test 2 5166 12833 6 5 0.9990 4.67e-4 0.9989 

Test 3 5114 12885 5 6 0.9988 3.88e-4 0.9989 

 

Table 18. Results of experiment 6 – step 2. 

Test ID # anomaly # normal FP FN TPR FPR F 

Train: 3600sec Test: 7200sec, Mass = 2023kg 

Test 1 10375 25624 8 10 0.9990 3.12e-4 0.9991 

Test 2 10341 25658 10 11 0.9989 3.89e-4 0.9990 

Test 3 10484 25515 12 9 0.9991 4.70e-4 0.9990 
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Table 19. Results of experiment 6 – step 3. 

Test ID # anomaly # normal FP FN TPR FPR F 

Train: 7200sec Test: 7200sec, Mass = 2023kg 

Test 1 10303 25696 5 1 0.9999 1.94e-4 0.9997 

Test 2 10421 25578 9 0 1 3.52e-4 0.9996 

Test 3 10395 25604 7 0 1 2.73e-4 0.9997 

 

5.3.2 Main Experiment 

 

Out main experiment includes training a decision tree using in-vehicle network data 

and testing this decision tree with randomly generated test drives. 

 

a. Training Data 

Different driving profiles are generated by applying inputs in a random sequence. 

The CAN log block records all in-vehicle network data in both CAN Channel 1 and 

CAN Channel 2. The recorded data is then processed for further analysis. The drive 

profiles are given in Table 20 for training drives. 

 

Table 20. Training Data. 

TrainingData Vehicle mass Duration # of instances / CAN ID 

Drive 1 2023 2 hours (7200s) 719,979 

Drive 2 2023 2 hours (7200s) 719,979 

Drive 3 2223 2 hours (7200s) 719,979 

Drive 4 2223 2 hours (7200s) 719,979 

Drive 5 2423 2 hours (7200s) 719,979 

Drive 6 2423 2 hours (7200s) 719,979 

 

Each of the 6 driving profiles is different in terms of input state sequence since a 

wide scanning of the training space is intended. Additionally, since the vehicle mass 

has a physical effect on the vehicle dynamic response, the driving profiles are 

generated for three different weights. Firstly, Drive 1-6 are combined to form a CAN 
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bus data vector by applying necessary data transformation, then an attribute vector is 

derived from the CAN bus vector by preprocessing attribute values and is shown in 

Table 21. Lastly, a feature vector is extracted from the attribute vector with the 

window approach and features of each window are calculated. The feature vector is 

shown in Table 22. 

 

Table 21. Content of attribute vector. 

Duration # of instances # of attributes Dimension 

12 hours 4,319,880 12 4,319,880 X 12 

 

Table 22. Content of feature vector. 

Duration # of instances # of features # of anomalies # of normal 

12 hours 215,994 11 61,688 154306 

 

b. Test Data 

 

The trained DT is tested with test drive data. Test drives are generated by random 

input sequences in order not to have similar profiles with training data. Three Drive 

profiles are given in Table 23. Each Drive data is tested with DT five times and 

results are provided in the next section. 

 

Table 23. Content of test data. 

Test Data Vehicle mass Duration # of instances / CAN ID 

Drive 7 2023 2 hours (7200s) 719,979 

Drive 8 2223 2 hours (7200s) 719,979 

Drive 9 2423 2 hours (7200s) 719,979 
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c. Decision Tree 

 

A decision tree based on the feature vector and output vector designating the class of 

each window frame is trained. Classification rules and graphical description of the 

decision tree is given in Figure 16 and Table 24 respectively. 

Table 24. Classification rules for Decision Tree. 

1  if x8<0.00541667 then node 2 elseif x8>=0.00541667 then node 3 else 0 

 2  if x5<0.113278 then node 4 elseif x5>=0.113278 then node 5 else 0 

 3  class = 1 

 4  if x10<0.218567 then node 6 elseif x10>=0.218567 then node 7 else 0 

 5  class = 1 

 6  if x9<0.22013 then node 8 elseif x9>=0.22013 then node 9 else 0 

 7  class = 1 

 8  if x10<0.134464 then node 10 elseif x10>=0.134464 then node 11 else 0 

 9  class = 1 

10  if x9<0.186399 then node 12 elseif x9>=0.186399 then node 13 else 0 

11  if x3<12.0808 then node 14 elseif x3>=12.0808 then node 15 else 0 

12  if x3<1.391 then node 16 elseif x3>=1.391 then node 17 else 0 

13  class = 0 

14  class = 1 

15  class = 0 

16  if x3<1.379 then node 18 elseif x3>=1.379 then node 19 else 0 

17  if x3<2.79375 then node 20 elseif x3>=2.79375 then node 21 else 0 

18  if x10<0.112365 then node 22 elseif x10>=0.112365 then node 23 else 0 

19  class = 1 

20  if x3<2.79 then node 24 elseif x3>=2.79 then node 25 else 0 

21  class = 0 

22  class = 0 

23  class = 1 

24  class = 0 

25  class = 1 
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Figure 16. Decision Tree Graphical View. 
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5.4 RESULTS 

 

Each of the three test drive profiles, Drive7-9, are used to form feature vectors as test 

vector. Since each processing involves random data manipulation for anomaly 

generation, each drive profile is run five times. Test cases and results are evaluated 

by using performance metrics that are common techniques for classification and 

anomaly detection.  

 

The results of our simulation test are summarized in Table 25.  

 

Table 25. Test Results. 

Test ID # anomaly # normal FP FN TPR FPR F 

DRIVE 7, Mass = 2023kg 

Drive7.1 10463 25536 0 0 1 0 1 

Drive7.2 10230 25769 1 0 1 3.88e-5 1 

Drive7.3 10378 25621 0 1 0.9999 0 1 

Drive7.4 10280 25719 1 0 1 3.88e-5 1 

Drive7.5 10381 25618 1 0 1 3.90e-5 1 

DRIVE 8, Mass = 2223kg 

Drive8.1 10166 25833 0 1 0.9999 0 1 

Drive8.2 10219 25780 0 0 1 0 1 

Drive8.3 10307 25692 0 0 1 0 1 

Drive8.4 10281 25718 0 0 1 0 1 

Drive8.5 10204 25795 0 0 1 0 1 

DRIVE 9, Mass = 2423kg 

Drive9.1 10417 25581 1 1 0.9999 3.90e-5 0.9999 

Drive9.2 10388 25610 0 1 0.9999 0 1 

Drive9.3 10330 25668 0 0 1 0 1 

Drive9.4 10417 25581 1 1 0.9999 0 1 

Drive9.5 10348 25650 1 1 0.9999 3.898e-5 0.9999 
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We next comment on the main observations of our tests.  

 

Key Points 

 

At each run of Drive 7, 8 and 9, anomalies are generated according to the rules 

previously mentioned. The rate of anomalies to all instances is around 30% for all 

data sets. The result of the attack detection tests is promising that IVADE can detect 

a point anomaly at the first encounter with high accuracy. The response time of a 

detection is crucial for safety critical systems, therefore detection at first sight is 

favorable. 

 

It has to be noted that the positive results are obtained where both the training data 

and test data are randomly generated. Test data is never seen by trained decision tree. 

 

Results of Drive 1 and Drive 3 are similar whereas Drive 2 has better scores. This is 

partly due to the mass feature. Decision tree is trained with an equal number of 

instances from each mass, hence the average converges to 2223 kg. Therefore, 

DRIVE 8 can be expected to have better results. 

 

The degree of manipulation of anomalies were the same for both training and test 

instances because the same constants and manipulation metrics were used. The 

values of manipulations are distributed but being very low close to 0. IVADE was 

successful at detecting manipulations with values lower than 0.5 m for position (X 

and Y); 0.30 m/s for speed (V) and 2° for orientation (Psi). 

 

The abundance of data contributed to the accuracy of algorithm. Experiments with 

less data yielded more FP and FN. 
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6. CONCLUSION 

 

The automotive world is about to face a revolution regarding the amount of data 

processed and exchanged via communication. The increasing trend in establishing 

connection surfaces between a vehicle’s internal control network and the outside 

world jeopardize one of the main objectives of transportation: safety. The 

conventional security measures may be ineffective for such large and distributed 

systems and complementary approaches for securing a vehicle’s internal network are 

needed. Behavioral profiling of in-vehicle networks is seen as a promising technique 

for security purposes due to the increasing computing capabilities and abundance of 

data. 

 

In the described context, this thesis focuses on the detection of anomalies in in-

vehicle networks. Hereby, we make use of the fact that in-vehicle networks are not as 

random as traditional IT networks in which user-based deviations can be difficult to 

model. Specifically, safety-critical messages in in-vehicle networks are transmitted 

periodically and the message contents depend on the dynamical vehicle behavior. As 

the main contribution of the thesis, we develop a general approach by exploiting the 

behavioral, temporal and distance characteristics of in-vehicle network data, for 

detecting anomalous traffic. The proposed In-Vehicle Anomaly Detection Engine 

(IVADE) collects and preprocesses data and derives attributes and features that are 

considered powerful indicators for the anomaly detection. Using machine learning, 

we train IVADE with Decision Trees because it quickly captures inductive inference 

while consuming modest resources. We use distance-based similarity concept as 

features and a window frame approach to capture contextual information. 

For the evaluation, we implemented IVADE by using the dynamic model of a next 

generation Lane Keeping Assistance system that has safety-critical functions by 

controlling the mobility of vehicle. The model is extended by an internal CAN bus 

network in which signals are transmitted through CAN messages and mobility data 

including position, speed and direction of a vehicle are transmitted to V2X network 
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with an onboard V2X transmitter unit. We collect and process the CAN bus data as a 

data source for IVADE. We use violations of the physical rules of motion for the 

vehicle in order to generate coherent anomalies, instead of generating random noise 

or outliers. The algorithm is trained with hours of drive data and tested against 

manipulations of the mobility data. The results of the implementation are promising 

and encouraging for behavioral protection of not only vehicles but all cyber-physical 

systems. It is observed that anomalies are detected with a very high success rate 

which is paramount for driving safety.  
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