

# SUSPICIOUS HUMAN ACTIVITY DETECTION FROM

SURVEILLANCE VIDEOS

FATHIA SALEM

OCTOBER 2017

# SUSPICIOUS HUMAN ACTIVITY DETECTION FROM SURVEILLANCE VIDEOS

A THESIS SUBMITTED TO

# THE GRADUATE SCHOOL OF NATRUAL AND APPLIED

SCIENCE OF

ÇANKAYA UNIVERSITY

BY

FATHIA SALEM

# IN PARTIAL FULFILLMENT OF THE REQUIREMENTS THE

# DEGREE OF

# MASTER OF SCIENCES

IN

# COMPUTER ENGINEERING

OCTOBER 2017

# Title of the Thesis: SUSPICIOUS HUMAN ACTIVITY DETECTION FROM SURVEILLANCE VIDEOS.

### Submitted by FATHIA SALEM

Approval of the Graduate School of Natural and Applied Sciences, Çankaya University.

Prof. Dr. Can ÇOĞUN Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science.

Prof. Dr. Erdoğan DOĞDU Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Science.

Heallellin

Assoc. Prof. Dr. Reza HASSANPOUR Supervisor

Examination Date: 16.10.2017

**Examining Committee Members** 

 Prof. Dr. Mehmet TOLUN
 (Aksaray Univ.)
 M'K Torran

 Assoc. Prof. Dr. Reza HASSANPOUR (Çankaya Univ.)
 D.H.ccq/lccd/

 Assist. Prof. Dr. Abdul Kadir GÖRÜR (Çankaya Univ.)
 M.M.C.

#### STATEMENT OF NON-PLAGIARISM PAGE

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last Name: Fathia Salem

- M :16.10.2017

Signature

Date

iii

### ABSTRACT

# SUSPICIOUS HUMAN ACTIVITY DETECTION FROM SURVEILLANCE VIDEOS

#### SALEM, Fathia

M.S., Computer Engineering Department

Supervisor: Assoc. Prof. Dr. Reza HASSANPOUR

October 2017, 104 pages

Video surveillance has been used from a long time to provide security in many sensitive places, so with this great progress in various aspects of life the traditional surveillance operations are facing many problems because of the large amounts of information that must be handled manually in a limited time also the possibility of information loss which can contain important things such as suspicious behaviours. So recently, a large amount of research has been conducted on video surveillance.

In this thesis, we will present a system to support the smart surveillance for detecting abnormal behaviours that represent security risk. The proposed algorithms are intended to detect two cases of human activities namely, walking and running. We impose no restriction on the number of people in the scene, and the direction of the motions. However, we restrict the videos to indoor colour videos, where the video are captured by one stationary camera. The moving objects which correspond to people in the scene are detected by background subtraction algorithm. We consider the displacement rate of the centroids of the segmented foreground areas and the rate of change in the size of the segmented areas as the two main features for activity classification. The proposed algorithms determine the activity type with a high accuracy rate.

Keywords: Video Surveillance, Suspicious Human Behaviour, Security.



# GÖZETİM VİDEOLARI İLE ŞÜPHELİ İNSAN FAALİYETLERİNİN BELİRLENMESİ

### SALEM, Fathia

Yüksek Lisans, Bilgisayar Mühendisliği Anabilim Dalı

Tez Yöneticisi: Doç. Dr. Reza HASSNPOUR

Ekim 2017, 104 sayfa

Video gözetimi birçok hassas yerde güvenliği sağlamak için uzun zamandan beri kullanılmaktadır ve hayatın çeşitli yönlerinde meydana gelen bu büyük ilerleme nedeniyle, geleneksel gözetim faaliyetleri sınırlı bir alanda ele alınması ve kullanılması gereken büyük miktarlardaki bilgiler yüzünden birçok problemle karşı karşıyadır ve şüpheli davranışlar gibi önemli hususları içerebilen bilgilerin kaybedilmesi olasılığı da dikkate alınmalıdır. Son zamanlarda, video ile gözetim konusunda çok sayıda araştırma yapılmıştır.

Bu tezde güvenlik riskini temsil eden anormal davranışların saptanması için akıllı gözetimi destekleyecek bir sistem sunacağız. Önerilen algoritmalar, iki insan faaliyetini, yani yürüme ve koşmayı tespit etmeyi amaçlamaktadır. Olay yerindeki kişilerin sayısına ve hareketlerin yönüne hiçbir kısıtlama getirmeyeceğiz. Bununla birlikte, görüntünün sabit bir fotoğraf makinesiyle yakalandığı kapalı renk videoları kısıtlıyoruz. Olay yerindeki insanlarla uyumlu olan hareketli nesneler geri plan çıkarım algoritması tarafından algılanır. Biz faaliyet sınıflandırması açısından iki önemli özellik olarak, bölümlere ayrılmış ön alanların ağırlık merkezinin yer değiştirme oranını ve bölümlere ayrılmış alanların boyutundaki değişim oranını dikkate alıyoruz.

Önerilen algoritmalar, etkinlik türünü yüksek doğruluk oranı ile belirler.

Anahtar Kelimeler: Video Gözetimi, Şüpheli İnsan Davranışı, Güvenlik.



### ACKNOWLEDGMENT

# "Never give up on a dream just because of the time it will take to accomplish it. The time will pass anyway." — Earl Nightingale

### "I am really thankful to my GOD for showing the right path to me"

To spirit of my father and my mother, I present my success to them and how much I wish they would be with me at this moment, God's mercy on them.

I am deeply indebted to everyone who contributed to the completion of this dissertation even though a simple words, Foremost, I want to express my sincere gratitude for my Supervisor Assist. Prof. Dr. Reza Hassnpour for all his advices and guidance, which were very deep and inspirational to my thesis, which without it I would never have reached this point.

My special thanks for my dear husband "Rafi" to support me against all the difficulties with me, to my children little prince and princess "Hussam", "Pinar" and my new angel "Al-zobair", who gave me a moral support to continue in weakness times.

I give my great thanks to my family brothers and sisters (Hamida, Hammad, Moftah, Sameer, Mlla, Saadona) for support me in all my different stages life.

Finally, I thank all my friends who encouraged me as much as possible.

# TABLE OF COTENTS

| STATEMENT OF NON-PLAGIARISM PAGE | iii  |
|----------------------------------|------|
| ABSTRACT                         | iv   |
| ÖZ                               | vi   |
| ACKNOWLEDGMENT                   | viii |
| TABLE OF COTENTS                 | ix   |
| LIST OF FIGURES                  | xii  |
| LIST OF TABLES                   | XV   |
| LIST OF ABBREVATIONS             | xvi  |

# CHAPTERS:

| 1. | INTRODUCATION |                            |   |
|----|---------------|----------------------------|---|
|    | 1.1           | Motivation                 | 2 |
|    | 1.2           | Scope of Thesis            | 3 |
|    | 1.3           | Organization of the Thesis | 3 |

| 2. | LITER | RATUR                                  | ATURE SURVEY 4         |    |  |
|----|-------|----------------------------------------|------------------------|----|--|
|    | 2.1   | Introd                                 | Introduction 4         |    |  |
|    | 2.2   | Object Detection                       |                        | 4  |  |
|    |       | 2.2.1                                  | Background Subtraction | 5  |  |
|    |       | <b>2.2.2</b> Optical Flow              |                        | 17 |  |
|    |       | <b>2.2.3</b> Frame-To-Frame Difference |                        | 21 |  |
|    |       |                                        |                        |    |  |

|    | 2.3   | Objects classification 24      |       | 24                                                 |     |
|----|-------|--------------------------------|-------|----------------------------------------------------|-----|
|    | 2.3.1 | Shape-based classification 24  |       |                                                    | 24  |
|    | 2.3.2 | Motion-based classification 28 |       |                                                    | 28  |
|    | 2.4   | Object t                       | racki | ng                                                 | 39  |
| 3. | PROP  | OSED M                         | IETH  | OD                                                 | 42  |
|    | 3.1   | INPUT                          | r vid | ЕО 4                                               | 42  |
|    | 3.2   | EXTR                           | ACTI  | NG FRAMES                                          | 42  |
|    | 3.3   | BACK                           | GRO   | UND SUBTRCTION                                     | 43  |
|    | 3.4   | NOISE                          | E REN | MOVAL                                              | 44  |
|    | 3.5   | FORG                           | ROUI  | ND DETECTION                                       | 45  |
|    |       | 3.5.1                          | Para  | llel with the camera                               | 45  |
|    |       | 3.5.2                          | To/a  | way from the camera                                | 45  |
| 4. | EXPE  | RIMENT                         | ΓAL F | RESULTS                                            | 48  |
|    | 4.1   | Walking                        | g     |                                                    | 48  |
|    |       | 4.1.1                          | Para  | llel with the camera                               | 48  |
|    |       | 4.1.                           | 1.1   | Walking parallel with the camera (One object/Right | to  |
|    |       |                                |       | left/ near)                                        | 49  |
|    |       | 4.1.                           | 1.2   | Walking parallel with the camera (One object/Right | to  |
|    |       |                                |       | left/ far)                                         | 50  |
|    |       | 4.1.                           | 1.3   | Walking parallel with the camera (One object/Left  | to  |
|    |       |                                |       | right/near)                                        | 52  |
|    |       | 4.1.                           | 1.4   | Walking parallel with the camera (One object/Left  | to  |
|    |       |                                |       | right/ far)                                        | 54  |
|    |       | 4.1.                           | 1.5   | Walking parallel with the camera (Tw               | VO  |
|    |       |                                |       | objects/near)                                      | 56  |
|    |       | 4.1.                           | 1.6   | Walking parallel with the camera (Two object       | ts/ |
|    |       |                                |       | middle)                                            | 58  |
|    |       | 4.1.                           | 1.7   | Walking parallel with the camera (Two object       | ts/ |
|    |       |                                |       | far)                                               | 50  |
|    |       | 4.1.2                          | To/ . | Away from the camera                               | 62  |
|    |       | 4.1.2                          | 2.1   | Walking to the camera (One object)                 | 63  |
|    |       | 4.1.2                          | 2.2   | Walking to the camera (Two objects)                | 64  |
|    |       | 4.1.2                          | 2.3   | Walking away from the camera (Two objects)         | 66  |

| 4.2 Running                          |                                                         |                  |                                                      |
|--------------------------------------|---------------------------------------------------------|------------------|------------------------------------------------------|
|                                      | 4.2                                                     | .1 Paral         | lel with the camera                                  |
| 4.2.1.1 Running parallel with the ca |                                                         | 4.2.1.1          | Running parallel with the camera (Two objects /near) |
|                                      |                                                         |                  |                                                      |
|                                      |                                                         | 4.2.1.2          | Running parallel with the camera (Two objects        |
|                                      | /Middle)                                                |                  |                                                      |
|                                      | 4.2.1.3 Running parallel with the camera (Two objective |                  |                                                      |
| /Far)                                |                                                         |                  |                                                      |
|                                      | 4.2                                                     | <b>2.2</b> To/ A | Away from the camera                                 |
|                                      |                                                         | 4.2.2.1          | Running away from the camera (Two objects) 75        |
|                                      |                                                         | 4.2.2.2          | Running to the camera (Two objects) 77               |
|                                      | 4.3 Co                                                  | nfusion N        | latrix                                               |
| 5.                                   | DISCUSS                                                 | ION AND          | FUTURE WORK                                          |
| 6.                                   | REFERNO                                                 | CES              |                                                      |

# LIST OF FIGURES

# FIGURES

| Figure 1  | Object detection                                                          | 2  |
|-----------|---------------------------------------------------------------------------|----|
| Figure 2  | Object tracking (normal activity)                                         | 41 |
| Figure 3  | Object tracking (suspicious activity)                                     | 41 |
| Figure 4  | Extracting frames (convert video to frames)                               | 43 |
| Figure 5  | Morphological operations                                                  | 44 |
| Figure 6  | Background subtraction                                                    | 46 |
| Figure 7  | System Architecture                                                       | 47 |
| Figure 8  | Walking parallel with the camera (One object/Right to left/ near)         | 50 |
| Figure 9  | Curve of walking parallel with the camera (One object/Right to le near)   |    |
| Figure 10 | Walking parallel with the camera (One object/Right to left/ far)          | 52 |
| Figure 11 | Curve of walking parallel with the camera (One object/Right to le far)    |    |
| Figure 12 | Walking parallel with the camera (One object/Left to right/ near)         | 54 |
| Figure 13 | Curve of walking parallel with the camera (One object/Left to right near) |    |

| Figure 14 | Walking parallel with the camera (One object/Left to right/ far)         | 55 |
|-----------|--------------------------------------------------------------------------|----|
| Figure 15 | Curve of walking parallel with the camera (One object/Left to right far) |    |
| Figure 16 | Walking parallel with the camera (Two objects/near)                      | 57 |
| Figure 17 | Curve of walking parallel with the camera (Two objects/near)             | 58 |
| Figure 18 | Walking parallel with the camera (Two objects/ middle)                   | 60 |
| Figure 19 | Curve of walking parallel with the camera (Two objects/ middle)          | 60 |
| Figure 20 | Walking parallel with the camera (Two objects/ far)                      | 61 |
| Figure 21 | Curve of walking parallel with the camera (Two objects/ far)             | 62 |
| Figure 22 | Walking to the camera (One object)                                       | 64 |
| Figure 23 | Curve of walking to the camera (One object)                              | 64 |
| Figure 24 | Walking to the camera (Two objects)                                      | 66 |
| Figure 25 | Curve of walking to the camera (Two objects)                             | 67 |
| Figure 26 | Walking away from the camera (Two objects)                               | 68 |
| Figure 27 | Curve of walking away from the camera (Two objects)                      | 68 |
| Figure 28 | Running parallel with the camera (Two objects /near)                     | 70 |
| Figure 29 | Curve of running parallel with the camera (Two objects /near)            | 71 |
| Figure 30 | Running parallel with the camera (Two objects /Middle)                   | 72 |
| Figure 31 | Curve of running parallel with the camera (Two objects /Middle)          | 73 |
| Figure 32 | Running parallel with the camera (Two objects /Far)                      | 74 |
| Figure 33 | Curve of running parallel with the camera (Two objects /Far)             | 75 |
| Figure 34 | Running away from the camera (Two objects)                               | 76 |
| Figure 35 | Curve of running away from the camera (Two objects)                      | 77 |
| Figure 36 | Running to the camera (Two objects)                                      | 78 |

| Figure 37 | Curve of running to the camera (Two objects) | 78 |
|-----------|----------------------------------------------|----|
| Figure 38 | GUI window                                   | 79 |
| Figure 39 | GUI after apply our system                   | 79 |
| Figure 40 | Confusion Matrix                             | 80 |



# LIST OF TABLES

# TABELS

| <b>Table 1</b> Results of walking one object (near) from right to left           | 49   |
|----------------------------------------------------------------------------------|------|
| <b>Table 2</b> Results of walking one object (far) from right to left            | 51   |
| <b>Table 3</b> Results of walking one object (near) from left to right           | 53   |
| <b>Table 4</b> Results of walking one object (far) from left to right            | 54   |
| <b>Table 5</b> Results of walking two objects (near)                             | 56   |
| <b>Table 6</b> Results of walking two objects (middle)                           | 58   |
| <b>Table 7</b> Results of walking two objects (far)                              | 61   |
| <b>Table 8</b> Results of Walking one object to the camera                       | 63   |
| <b>Table 9</b> Results of walking two objects to the camera                      | 65   |
| Table 10 Results of walking two objects away from the camera                     | 67   |
| <b>Table 11</b> Results of running two objects parallel with the camera (near)   | 69   |
| <b>Table 12</b> Results of running two objects parallel with the camera (middle) | 71   |
| Table 13 Results of running two objects parallel with the camera (far)           | . 73 |
| <b>Table 14</b> Results of running two objects away from the camera              | 75   |
| Table 15 Results of running two objects to the camera                            | . 77 |

# LIST OF ABBREVATIONS

| HOG      | Histogram of Oriented gradient.                            |
|----------|------------------------------------------------------------|
| SVM      | Support vector machine.                                    |
| CAMSHIFT | Continuously adaptive mean shift.                          |
| DE       | Displacement error.                                        |
| ROI      | Region of interest.                                        |
| GMM      | Gaussian Mixture Model.                                    |
| HOOF     | Histogram of oriented optical flow.                        |
| MFPM     | Mean Feature Point Matching algorithm.                     |
| SURF     | Speeded-Up Robust Features method.                         |
| MSER     | Maximally Stable Extremal Regions.                         |
| DOG      | Difference of Gaussian.                                    |
| ADI      | Absolute value of the differential in image.               |
| ART      | Angular radial transform.                                  |
| EBD      | Entropy Based Discretization.                              |
| DOF      | Difference Of Frames.                                      |
| DBN      | Dynamic Bayesian Networks.                                 |
| SIFT     | Scale Invariant Feature Transform trajectories descriptor. |
| MEI      | Motion Energy Images.                                      |
| MHI      | Motion History Images.                                     |
|          |                                                            |

| STIP     | Spatio-Temporal Interest Point.  |
|----------|----------------------------------|
| HOF      | Histogram Optical Flow.          |
| BOW      | Bag of Word.                     |
| UTD-MHAD | Multimodal Human Action Dataset. |
| ATS      | Adaptive Temporal Sampling.      |
| DMMs     | Depth Motion Maps.               |
| DSM      | Depth Static model.              |
| PCA      | Principal Component Analysis.    |
| MSR      | Microsoft Research.              |

### **CHAPTER 1**

#### **INTRODUCTION**

In recent times, the world has become dependent on multiple types of applications, which serve us in all areas of life. One of most important of these applications are the video surveillance systems [1, 2, 3, 20, and 21]. Therefore, these systems play an important and effective role in providing security and guarantee it to individuals. Therefore, this project is important in this area to reduce the work of the riots and the deployment of security as much as possible

We can present video surveillance system as analysis of the consecutive video frames to search for suspicious activities and detect them. Traditional surveillance systems can be done manually "semi-autonomous" this means by security individuals, but this way is complicated, expensive and the accident rate is high, so the best way is fully autonomous system or a video surveillance system.

The process of detecting moving objects in video is one of the basic steps in the task of video analysis figure 1, where the moving objects are detected from the stationary background by using certain techniques. These techniques are: "Background Subtraction Method [4, 5, 6, and 7]", "Optical Flow Method [8,9,23,24]" and "Frame-To-Frame Difference Method [10,11,25,26]". In this research we will use "Background Subtraction Method" to detect the moving objects from the stationary background. There are many challenges in this project these challenges occur due to changes in environmental conditions like lighting, reflections and shadows, so the segmentation of objects is a difficult issue and need to be dealt with well by using a robust surveillance system, we reduced it by used the morphological operations to reduce the noise. Also there is an important step which is object classification where this step is done by using two main approaches, "shape-based classification" and "motion-based classification", where spatial information is used in "Shape-based methods", as for "Motion-based methods" they use temporal information to classify objects.

After object classification phase the next step in this system (video analysis sequence) is detect the activity and determine if it is suspicious or non - suspicious and this step applies to the following:

- 1. For the objects that are moving parallel with the camera, we have to find value of centroid to know if this object (human) is moving from right to left or from left to right, we do this by calculating the absolute value of the x coordinate of centroid for consecutive frames, and compare the displacement value in x with the threshold value to know if this activity is normal (walking) or suspicious (running).
- 2. For the objects that are moving (To/ away) from the camera we compute the change area for object size between consecutive frames, if the change is small that means the activity is normal (non-suspicious/walking), vice versa if the change is big that mean the activity is suspicious (running).

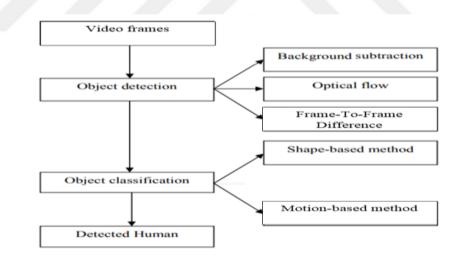



Figure 1: Object detection.

### 1.1 Motivation

Video surveillance systems are playing an important role in providing security and ensuring it in all places, whether private or public this is the main aim for it, where this detects the suspicious activities such as running ,fighting and reduce their occurrence, thus providing security and preventing any incidents that may disturb security. Therefore, minimizing terrorist operations that could occur.

#### **1.2 Scope of Thesis:**

This system focuses on detecting the suspicious activities by using Background subtraction method for object detection and uses the morphological operations to reduce the noise that results from natural changes like lighting and shadows, where the input video will be indoors and it will be captured by one fixed camera in MOV format with 23 frames per second, the size of the object will range from 1-2 meters (taller than 1 meter , shorter than 2 meters), the distance between the object and the camera will range from 4-5 meters for near cases and 9-10 meters for far cases. The video will contain an object or two as a maximum; furthermore our data set has a faint lighting and does not have any reflections.

### **1.3 Organization of the Thesis:**

The organization of this thesis is as following:

Chapter 1 presents the introduction where the problem is presented, how we solved it, and the motivation (why we use this system?). Finally, scope of this thesis.

Chapter 2 presents the literature survey we summarize the work done by other researchers in this field.

Chapter 3 presents the proposed method where we described and gave all details of our method.

Chapter 4 presents the experimental results where we discussed the results that we got.

Chapter 5 presents the conclusion and the future work where we provide a short summary about our work, also we presented how our methods can be extended and which parts can be improved.

#### **CHAPTER 2**

### LITERATURE SURVEY

#### 2.1 Introduction

Automatic determination of human activity type has attracted a vast number of researchers in the recent years. This trend has been intensified by the recent security threats and the need for real-time analysis of the surveillance videos. In this thesis, we will focus on the abnormal detection in surveillance videos and all things related to this subject, especially the abnormal detection that related to running indoor, because this is the most dangerous activity that most likely will lead to a security disorder. Many different approaches address the problem of suspicious human activities [4, 5, and 8]. These approaches can be categorized as:

- 1. Object detection.
- 2. Object classification.
- 3. Object tracking.

In the following sub-sections, we describe main methods from each group.

#### 2.2 **Object Detection:**

The majority of systems that work based on visual surveillance systems begins with Motion Detection, there are many methods or techniques that are used for Motion Detection these methods depend on trying to locate the regions of pixels which reflect the moving objects in the scene, These methods are summarized in *"Frame-To-Frame Difference Method"* [10, 11, 25, 26], *"Background Subtraction Method"* [4, 5, 6, 7], *"Optical Flow Method"* [8, 9, 23, 24]. Where we can say the desired result of the motion detection is segmenting the corresponding areas for the objects that move from the rest of the image, concept of motion and object detection is always based on background models.

### 2.2.1 Background Subtraction :

Background subtraction [4, 5, 6, 7] is one of the methods that is characterized by a smoothness apply so it enjoys a wide popularity for applications that have static backgrounds, detecting the moving areas in the image by taking the difference between the current image and background image reference by using a pixel-by-pixel way, this method is very sensitive to light and its changes.

- The authors in this paper [4] worked on the recognition of human activity and behavior and in the final step get important information to the observers who are responsible for the internal control system. Also, we shall notice that the worker group on this paper interested to using "background subtraction algorithm" for the purpose of multi-object detection ,and they used "HOG feature" and "SVM classifier" to recognize the human in the image, on the other hand they used "Viola–Jones algorithm" to capture the face of the person they want to detect, finally they used "Mean Shift Technique" to detect the behaviors and this happens by tracking the person based on their individual appearance, this algorithm is a method for non-parametric clustering that means the foreknowledge of the number of clusters is not required, "Mean-ratio" and "Log Ratio operators" are used to change detection.

The steps of System Model it was as follows: a) Video Input, b) Background Image Acquisition: In this section they based on capture the frames as the reference for images to use these references for any additional processing, moreover the background is set only once, where the camera is programmed to capture direct video specifically for observation region, c)Image pre-processing: Here are the images that were obtained are pre-processing in order to improve its frames, as we know that the video frames contain a lot of noise due to several reasons such as shadows and lighting where must remove this noise to be getting good results and this is done at this stage pre-processing, After several days in the digital domain is performed pre-processing video process which is done after the digital video capture, d) Change Detection: They used Mean-ratio operators for change detection, as we know in the past step we stored the reference of frames which are took and have been processed, In this step the video that was taken in order to be detected any change with the reference frame as a reference condition. Where it is to use the tools available within the MATLAB environment to handle images that have been obtained so that the control of the camera, which is

connected directly with the computer where operated those functions to get the shots required of the camera, after obtaining all required snapshots which is actually is the input video then the separation foreground images from the background images is achieved at this stage.

The authors also discussed foreground extraction: the backgrounds that were obtained in previous steps that was considered as a reference image so as to be ready for image segmentation and here are rebuilding the foreground object, by removing the background elements. Where it is converting images from the colored images to grayscale because work with grayscale images 2-D is much easier than work with color images (RGB) 3-D especially to compare a pixel to pixel for identifying the foreground images. As well as the noise has been removed from the images by using morphological operations so that we get a binary dilated image which is used structuring elements which return the dilated image and this enables them to collect a large amount of information in a short time. Also, this leads to the reduction of time that spent in processing and thus use the time for more image processing operations.

On the other hand they wrote about Change Detection, the sequential steps algorithm of this algorithm are as following: 1) When starting in processing a new image, we note the probability of pixel value in the new image will be equal to pixel value in background image, 2) If the value of pixel is greater than the value of the allowable range (threshold), then the pixel is stored and put in as a mark to indicate that it is a part of the foreground image. This is based on if this pixel belongs to the background image and that is through the allowable range is also expected that this pixel will be repeated for a long period of time, 3) If it was the pixel which was observed within the threshold value, this means that is part of the background image and is replaced it with a value of zero. As well as if there was a major change in pixel value, it is kept and considered as part of the change in the foreground.

As for that abandoned object detection, the authors here discussed this issue based on the timer idea, which starts to work in case of detecting the presence of the object in the image and grows significantly until it finds the static object. Compared the incremented timer against threshold timer value which has been defined previously, if the incremented timer value equals or exceeds the threshold value until just once it means this object will be ignored. Moreover, the next step is to raise an alarm about an abandoned object as well as identifying the object by using a rectangle on the screen to focus on the area which has been monitored. Also they indicated to activity analysis this activities include running, walking, jumping and bending: for *running* this based on the speed when the change in value of X-axis across the subsequent frames exceed the range of threshold value, *walking* But if the value of speed was less than features of threshold it is considered as a normal walk, as for *Jumping* this is based on change of Y-axis value Furthermore, the speed of this up and down motion should be exceed the range of threshold value, *bending* can be detect about this activity when the aspect ratio of the detected object decreases across the frames exceed the range of threshold value.

Where the distance has been calculated by using formula of centroid, the value of variables are the positions of pixel for the person from first stage to final stage:

Distance = 
$$\sqrt{(x^2 - x^1)^2 + (y^2 - y^1)^2}$$
 (2.1)

Where,

X1: previous pixel position.

X2: pixel position in width.

Y1: previous pixel position.

Y2: pixel position in height.

They can be determined the speed of moving the object by using the distance of travelled by the centroid to the frame rate of the video.

If we want to discuss the advantages of the proposed algorithm which is background subtraction algorithm with Mean Shift technique and Thresholding, by using the morphological operations they remove the noise from images so they only deal with important information in the image therefore reducing the processing time, we can note from the final results it is effective with regard to detection of the object abandoned and the abnormal behaviors in safe areas, where the result of walking was Motion\_X=10, Velocity=10.1783, Motion\_Y=4, Aspect ratio=2.7213, So it was classified as walking because the value change of X-axis is too small, while the result running (abnormal behavior) Motion\_x=169, Velocity=131.4364, of was Motion\_Y=68, Aspect ratio=3.8769 classified as running because the1 value of X-axis across the subsequent frames exceed the range of threshold value, for bending was Motion\_x=3, Velocity=13.3417, Motion\_Y=13, Aspect ratio=0.03333 classified as bending because aspect ratio across the frames exceed the range of threshold value, and jumping was Motion\_x=12, Velocity=42.72, Motion\_Y=41, Aspect ratio=3.0946 classified as jumping because aspect ratio decreases across the frames exceed the range of threshold value.

For disadvantages I think that there is a congestion of methods which have been used and thus can be difficult to control the results and to get a clear result after the implementation of all these methods at the same time, also this system is very sensitive for lighting also it needs to deal with removing noise from all frames to get clear backgrounds and this will be difficult.

- In this paper [5], the proposed system offers an "*adaptive subtraction for background*" which is also consistent with differentiating for foreground extraction this done by extracted map of foreground from background model during the processing. Afterwards, it proposes an elimination phase to deal with shadow, light and labelling problem. Beside this, the model uses a colour correlogram for tracking. As for the terminological part of the proposal, we can firstly mention about the term morphological operation. Simply put, morphological image processing means operations which has been carried out such as erosion and dilation in order to remove noise and repair deadlock from the extracted foreground where used an array with arbitrary size which is a components of 0 and 1 it has name a template. Secondly, colour histogram means the tonal dispersion in the video. Lastly, colour correlogram represents a term calculating the tonal dispersion in the video as well but here it is has another attribute that is spatial information, so the process of description is more clarity and accuracy.

The method of this model is carried out by several phases. First, "a hybrid background subtraction algorithm" does the foreground detection. Afterwards shadows are removed and it is followed by morphological operations. Then the noise elimination phase and labelling are performed respectively. Lastly, the whole process is ended by the tracking phase. In the first phase, known as the detection of foreground, the model uses "a hybrid background subtraction algorithm". This algorithm works by subtract pixel x from the foreground and pixel x from existing frame if difference density is more than existing threshold this mean the model of background it will update for

every pixel followed for non-foreground in the existing frame, thus it can handle with changing of gradual lighting which is usually use for define the updating rate. Also there is other method used for same aim which is temporal differencing as follows the detected of pixel x is done basis on this pixel belongs to foreground if density of difference between the current frame and previous frame is higher than the certain threshold, thus here the background model is not really important, this model is effective to changes in the dynamic scenes, where it is the combination of the previous methods to give a better results for segmentation. They also used a new better technique that is exempted parameter of standardization process.

The model aims to calculating brightness and chromatic disorder, which are calculated on the assumption that  $I(x)=[I_R(x),I_G(x),I_B(x)]$  based on RGB which is a mixture of pixel x that from existing image also  $B(x)=[B_R(x),B_G(x),B_B(x)]$ , those pixels corresponding in background of image, where  $\delta B(x)$  is brightness distortion, that clarifies result of subtraction between B(x) and I'(x), I'(x) is projection of I(x) on B(x). This algorithm allows us to repair the pixel differences between the frames in the video, and provides us information to solve illumination change to differentiate foreground from background. One of the most important interventions to recognize the objects is to cope with noise and light problems. For this, morphological applications are carried out by the model to remove noise and other occlusions from foreground objects where dilations then apply erosions after that apply dilations process again on elements of the various structuring which got it in training phase, as a result of these operations the holes that in image get corrosion also for the discontinuities in image get filled. The last thing in this phase is to use the results that have been gotten in phase of shadow detection that to detect about all wrong pixels in foreground that is happened as a result of highlighting, also the writers are used the graph algorithm to express the different objects during the all operations by using the different shapes like a rectangle or masses centres...etc.

As for the tracking phase, the model firstly uses centre of mass technique to remove the mismatch between the previous and present objects. The *colour correlogram* is used to multiple matched candidates where used to obtain spatial information and brings much more qualified information and results about objects thanks to the distance calculation technique of pixels. In case of intense occlusion, the model applies a calculation period to detect and repair occlusions that emerge as problems for the continuity of the video. Where a centre of mass is a rate of x'th, y'th for put a rectangle about the object. A correlogram indicate to possibility of presence pixel for object with specific colour, let's say that  $c_i$  is a different pixel located at a specific distance, k is a specific colour, colour correlogram is indicate to spatial information which indicate to density of the colour ,reverse the colour of histogram. As a result, we note the field of colour correlogram gives us good results. The measured the distance between the two images is done by I and I'. Background model, a correlogram colour and the histogram are need to the process of updating. Therefore, the models of objects can handle with the difference in distortions or lighting...etc.

The researchers also discussed Occlusion Handling, were said, it is important to detect on events of occlusion, where it can be said that the occlusion occurred when the number of objects increased or there are any frame containing a number of surplus objects which overlap more than the previous object there are named occluded objects properly, every pixel is belong to this collection it will be computed through calculate the histogram for ratio back-projection also for correlogram correction factor.

For Experimental Results and Analysis phase, the same sample sequences they used standard "*Continuously adaptive mean shift* (CAMSHIFT) "to keep the processing and tracking the results. They compared between different data such as Ground Truth Data (x, y co-ordinates), CAMSHIFT results," Hosain and Saha" results, and current system results, they used 25 frames, where DE is" Displacement error", ROI is "Region of interest", the results show us the average DE of CAMSHIFT is 30, and average DE which is describe through "Banerjee and Sengupta" is 2.62, the average DE of current system is 1.74. So these results show us the current system is better than others.

As a result of comparison with two other works, the model's works remain more accurate in terms of the distance between the ground truth data and the tracking centre of location of interest. Additionally, even though one of the two works has used a colour correlogram, this model's systems work more effectively compared to that work, since a hybrid algorithm had already detected the foreground and eliminated shadow before. The results also show that this model is much more successful in detecting occlusion problems and solving them after splits in various environments such as indoor and semi-outdoor milieus. All in all, the results show that the system of this model offers much more accurate results coping with changing environments, lightning problems, occlusions, rotations, splits and mismatch between previous and

present objects, thanks to its new algorithm approach and colour correlogram technique which reduces the possible mismatch and the possibilities of other occlusions in the video.

To sum, this model offers a solid and faster approach for video surveillance issue. Therefore, the model applies two various algorithms which are the adaptive technique and robust method to detect foreground and shadow. In the tracking phase, the model uses a technique with colour correlogram and histogram. The model aims at reducing distance measures to get the correct match between objects by using more effective correlogram. However, the model cannot fairly cope with umbra shadow and it assumes background totally static while dealing with penumbra shadow in a great way. Yet, for this problem, this model also offers that changing background can be solved by means of analysis of temporal variations. Therefore, the model aims at widening future works in order to cope with changing background problem and develop much better performance for tracking phase. But there are some disadvantages in this paper which are in Feature extraction phase they are not covered sufficiently it has been necessary to identify those features such as height or width or ... etc. This algorithm is not effective with complex scenes also when the background has similar conditions with the objects so it does not give us the desired results Also about Kalman filter phase this phase is important and the writers did not discussed it sufficiently.

- The researchers in the proposed algorithm of [6], they have discussed the subject of the human behavior detection based on "*Background Subtraction Algorithm*", also they apply threshold segmentation technique, differencing technique, morphological operations technique, and object tracking technique, all these techniques apply in real time.

Where they discussed the moving object detection as an additional process this is occur after classified it in the real time development application, the big challenge here is detection of objects within a period of time without any pressures by using available hardware and high efficiency where background subtraction process occur by input the stream video in real time to process this stream, generation this video and discrimination each frame and find the threshold for tracking objects, when capturing a new image they compute the differential between background and the image for moving object detection but this process is a complex so they used another approaches to perform this process effectively, Note that detection the moving objects are used heavily and this operations for the purpose of developing real-time applications which are used in the process generation of surveillance with high efficiency, as we know in each research there are many challenges the moving object detection is one of difficult challenges especially in applications of real time visualization system, With regard to detect object categorization worthily there is a main technique which is "edge localization", it is used "a gradient operator" to create a map of images gradient which is consisting of inputs and background images where is calculated the map of gradient difference from map of gradient images also it is detected the moving object by using "masking of suitable directional and threshold", when we focus on the processing of movies in real time applications we can conclude the human can move in any direction with semantic or normal behavior also he can do some unnecessary activities which is provide in video processing this categorization, might happen defect between the natural movement of the human body with the factual information event generation also the activity anomaly can occur in video surveillance with things other unwanted there realistic generation in cases of processing.

For motivation they said there are many current techniques that are used for video surveillance which are efficient in categorizing the objects, but they also pointed out that those techniques did not detect all things that are unnecessary in the human body, so it was necessary to reach to technique for detection of suspicious activities which relevant to the development applications in real time and this is considered one of the important *challenges* in this paper.

On other hand they proposed frame subtraction method to detect categorization of the objects, is being used it has been proposed by an algorithm by "Widyawan Muhammad" which is adaptive motion detector, also it has been used by the frame difference method which uses a special technique to select which is a reference image it will use for the motion detection, it is known that the technique is like template matching, there are two methods for this technique which are semantic method and feature method they used to develop the actions that not necessary in real time when the template matching is done successfully that means the event progression is restored with "*data event generation*", they also used *Optical flow* method that for estimate the motion of objects during the string of frames, that method depends on the values of

pixel when the points are located on same object, the values of the object pixel with same location it will have constant brightness all the time, the writers also considered the optical flow have two Ingredients first one is normal flow as for the second one is parallel flow, "Deval Jansari" and "Sankar Parner" suggested an optical flow method for progression the data that in real time, in this method is applied some of procedures to obtain the region of changes, these procedures are subtracted I(x,y,t),  $I(x, y,t + \Delta t)$  and applied thresholding on the difference frame ,but there are some problems in this method like sensitive to noise, the vast amount of calculations, low level performance in the resistance the noise during the real-time. In this paper also they discussed background propagation method which is based on computation of all frames, where it has been calculated density of all existing pixels in each frame so as to reach to the background frame, here is being taken the difference between the existing image and the reference image that is very sensitive so they proposed method for object moving detection that is "*background subtraction method*".

For experimental results they capture two frames that are sequential (N, N+1), time between the frames is limited, converted all frames from color scale to gray scale, after that is subtracted N frame from N+1 frame that to get the difference image also they used "Sobel filtering" and applied it on the difference image for detecting edges of the image and removing the noise, moreover, "median filtering" been applied to reduce the probability noise, here in current technique it marks the location of object frames (N,N+1), they calculated the moving object if it is fast this means distance it will be large, (slowly move, small distance), they show us some results like for each spatiotemporal template it takes less than 0.06 seconds for each frame 2.8 GHz, when they used 432 templates they got time reached to 25 seconds for processing each frame. In this paper there are many disadvantages which are there are some false positive cases and error rate is exist in the results, the results it is not discussed enough to figure out what the system was working efficiently or not, also we note the big disadvantages in Sobel filtering is very sensitive to noise also the accuracy is low for object detection phase, they also used the median filter as we know, the cost of this filter is usually too high, also it is not comprehensive and does not give good results, as for the advantages, firstly they used more than one method for detection the moving objects which are "Optical flow and Background subtraction" and cover those topics in several respects and this is was a good idea to offer more robustness ,also they covered many points like low costing, rapid accurately detect, view same place from various angles, the possibility of night vision, they used Sobel filtering and median filtering to reduce the noise.

- The worker team on this paper [7] were discussed and clarified many important things as we shall see. Detecting and tracking moving objects might be a crucial problem due to some blockages that hinder computers from identifying active objects. Therefore, there should be some developed automatic tools to deal with this problem. In this context, till now, many different approaches and algorithms have been carried out to deal with this identifying problem, in order to develop new tools with the aim of overcoming this problematic situation as well. However, a new model called "Gaussian Mixture Model (GMM)" comes into prominence among them, with its holistic approach to track moving objects. This model catches attention thanks to its speed in detecting moving objects and its success in dealing with complicated situations.

As we know, the main goal of all the surveillance systems is to identify repeated objects. These surveillance systems are essential for areas requiring high security systems, in today's world, such as banks, roads, official buildings, etc. In other words, advanced detection systems should be applied in order to track the objects in dynamic milieus. In this respect, separating objects and background subtraction images is very important. Thus, this model based on "*Gaussian Mixture Model (GMM)*" proposes a holistic subtraction technique to separate the background subtraction images. All in all, this model, thanks to its subtraction technique and algorithm aims at tracking active objects by dealing with background shadow problem.

As maintained above, there are many approaches that have already worked on the issue of detecting and tracking objects [24]. Even though these approaches have many advantages in terms of tracking objects in a fast way, the main deficiency of these works is that those are not able to determine and to track broken background pixels and to solve the shadow and noise problem. Thus, taking a correct result started to be more difficult. However, of course, some following works made some contributions in terms of reducing processing and recognition rate. Yet these works also fell short in determining and tracking problematic foreground and background objects, calculating video frames and solving shadow and noise problem. Thus, a huge necessity emerged for understanding the behaviour of problematic moving objects to overcome these deficiencies by a new holistic approach.

Therefore, first and foremost, this model based on "*Gaussian Mixture Model* (GMM)", will create the video frames to detect Foreground of the object also pixels of background, Secondly, solve some problems like remove problems of shadow and this will by using HSV model, then they move to pre-processing phase that to decreasing the noise in the image, after that they focus on separating active objects and store it's features in queue intended for feature extraction for compare it with the object that have new moving.

For the results of the proposed system, they applied GMM for algorithm of background subtraction, here in this technique every pixel is represented as a mix that is the amount of K.

#### Where,

Xt is the density of the pixel in time t from pixel, after that store it {X1,X2,.....Xt} also the pixel is represented by use mixture K Gaussian distribution, and expresses probabilities of monitoring for density the pixel in time t by:

$$P(X_{t}) = \sum_{i=1}^{k} \omega_{i}, tn(Xt, \mu_{i}, t, \sum_{i}, t)$$
(2.2)

Also,

 $\omega i$  indicates to amount of Gaussian groups to models pixel of history.

t is a factor of weight connect with collection of i in the time t.

*n* is Gaussian pdf.

 $\mu$ , *i*,  $\Sigma i$ , *t* represents average and variance array of Gaussian collection.

Every Gaussian ranked depending on  $\frac{\omega}{\sigma}$  .

P is the estimated total weights of the ranked Gaussian until threshold, which reaches TH=0.25, against of K distributions are checked for every pixel to get the matching, range of pixel value is 2.5 times of standard deviation.

As described above, one of the task which this model espouse, is to solve the shadow problem that is an important part to foreground detection which other approaches has not solved before. In this respect, the model uses HSV colour space model, here HSV values is obtained by existing frame I(x,y) and frame of background such as following:

$$V = \frac{lv(x,y)}{Bv(x,y)}$$
(2.3)

$$S=Is_{(x,y)} - Bs_{(x,y)}$$
(2.4)

$$H=|Ih(x,y - Bh(x,y))|$$
(2.5)

$$S(x, y) = \begin{cases} 0, \text{ if } (\alpha < \nu < \beta) \land (s < Ts) \land (h < Th) \\ 1, \text{ otherwise} \end{cases}$$
(2,6)

In the next phase, the model implements a process to solve noise and the mismatch among shapes. The model of post-processing, by morphological filtering, where uses a restructuring technique to determine the number of pixels which have been added (dilation) or removed (erosion) especially for the boundaries of object. Afterwards, the extraction phase comes before us. In this phase (Feature extraction), the algorithm used in extracting feature gives us important information about video frames and scenes such as a centroid where detect object It is done by represent the object centroid in regular form about borders of object.

As for the tracking process, the approach of this model locates the important objects throughout their appearance in the video that is given as a sequence. Then, the tracking system applied by this model gives possible positions of the problematic objects during the video and this is provided by the "*Kalman Filter*". This filter shortly provides a robust estimation about the possible positions of the track within every single frame in the video and reduces the difficulty of calculation; the proposed system has been applied on sequence of images with size 640 \* 360 for videos of indoor and other outdoor.

As mentioned before, for many computer based application such as activity and identity recognition, traffic observation and other things related to security concerns,

detecting and tracking moving and active objects are very crucial. This model, in this regard, offers an advanced and holistic approach to detect and track this objects, compared to the works carried out before. Simply put, this model, on the basis of *"Gaussian Mixture Model (GMM)*", uses the background subtraction they used. Beside this, this model provides a faster method in terms of detecting video frames and scenes, thanks the algorithm used during detection process. The experimental consequences of this model also verify that this model's results are more accurate and more useful in terms of performance compared to the others. Additionally, this approach is considered as more robust in changing milieus and times. As for the segmentation different kind of moving objects, it is seen that this model offers more certain results to separate these objects and solutions to deal with the problematic moving objects as well. Finally, this model creates a lesser difficulty to calculate video frames, this model (*GMM*) has some disadvantages such as some issues that related with numeral side require dealing with the process of equalization and applying it in order to eliminate the differences also, this will lead to an increase in cost.

#### 2.2.2 Optical Flow:

Optical flow is a method depends totally dependent on the distribution of velocities, the objects that existing in the image, usually it is used to describe the feature in the images, this method is very effective but is still sensitive to noise and this requires a special equipment for the applications which works in real time.

- In many papers It was discussed subject of the Detecting anomalous human behavior, In this current system there are some of abnormal behavior activities are not detect it like punching and pushing, the intelligent system in this work is proposed to detect most of aggressive human behavior. The researchers on this paper [8] worked on two specific concepts which are HOG (*Histogram of Oriented gradient*) where indicate to shape based feature and HOOF (*Histogram of oriented optical flow*) where indicate to motion features Then, with regard to modelling method they are used the "*support vector machine* (SVM) "to classify the aggressive events from normal events also they are used a benchmark dataset which is UT-interaction dataset.

For the proposed system the architecture is input the data (video) which has been get it from a camera feed, extract the shape feature by use HOG technique where works to detect the shape of the local object in the framework where can be measure it by two things which are edge directions or the intensity gradients, and can be accomplished by division the current image to 16\*16 blocks then each block Composed of 2\*2 cells each cell has size 8\*8, The Gaussian window size sigma value is equal t. Also touched researchers here to explain HOOF and how it is calculated ,this occurs by computed the optical flow for each frame in video stream and ignore each flow vector based on the primary angle from horizontal axis and weighted according to its size, they adopt the optical flow method according to collect two things which are a data term with a spatial term, where data term depends on the fixity of the image feature and the expected value of the difference for the flow based on the spatial term, the Optical flow has been defined by the following formula:

$$E = \iint \left[ \left( I_{xu} + I_{yv} + I_t \right)^2 + \alpha^2 \left( \nabla_u \|^2 + \| \nabla_v \|^2 \right) \right] dx dy$$
(2.7)

Where  $I_x$ ,  $I_y$  are subsumed from image intensity over the x and y ,u are the horizontal of Optical Flow ,v is the vertical of *Optical Flow*, t is time , $\alpha$  is the weight of the regularization term, also the Horn-Schunck optical flow method has been applied to get all features with low level movement for each pixel in the frames.

As I mentioned before they used SVM model to classify the aggressive and normal activities, here they have 30 normal file and 29 abnormal file from the feature, which is extracted after that the descriptor feature is formed, the final thing is set a label and trained with SVM.

Final step in this proposed system is alert system where if any aggressive activity is found then the alarm will generate the system will return to first step that is monitoring the system.

This work was good when it used the optical flow algorithm, they provide a study to classify normal and aggressive activities by using HOG and HOOF, also they adopt a discriminative model which is SVM, but there are some weak points which are: in this current system in pre-processing phase there is an important point namely background noise, the researchers here did not cover this main point completely also the proposed system can't detect many activities just limited activities.

- The aim of this study [9] is to find the events of unusual group in the stream in video, which is the most common and challenging function in computer vision, so we

suggested a way which based on the describe of form and rating of approach to handling this problem, that way is start by apply the *optical flow* method then follow by HOFO descriptor descent which uses for detecting the anomaly activity in queues ,this way can be valuation by using descriptor image and available public dataset, as a feature of HOFO descriptor is to find unusual movement, "Support Vector Machine (SVM)" used for classification program. There was been install surveillance cameras for safe reasons due to the development of technology and the improvement with life style, the revelation of the behaviour of unusual group is a real problem research in the computer vision and system of surveillance. Computer function is a field with a method that used to own, handling, analysis and comprehension image. Analysing events that preternatural in external environment is the most known functions in the computer function.

In this research, the suggested way is to utilize and to identify a set of unusual movement in the video is histogram optical stream introduction (HOFO) which consolidated with some class bolster vector machine (SVM). HOFO descriptor is utilized as highlight to recognize suspicious moving lines and furthermore models a halfway image. SVM is utilized for characterization strategy. The suggested system is intended to recognize the unusual happening which has happen in the video scenes, first of all the user will choose the video then detects the abnormal activities in the video, from the PETS dataset or UMN dataset the user will choose the video which includes the video with normal or abnormal activities, with a specific end goal to distinguish gather exercises in an unsupervised way for outside environment, the processing of video is finished.

In Computation of *Optical Flow* they said "there are many frames which are exist in video so we have to extract some of these frames from it", when all the frames have been extracted, the next step will be calculate with the optical flow for every frame in the input video, these frames are sequences of videos which have a little time between all previous frames, optical flow uses especially for objects which are moving, in this procedure the initial phase incorporates calculation of the optical flow for the features but not for all, this just for grey scale, then it will apply on the sequential frames which have been acquired from the video, so the conclusion of this procedure is a movement vector that perform to the optical flow, also this method can be made by focusing on paring frames to the focuses in the following frame, this kind of points are finished by contrasting the densities of those points in a window that is given, we can make the pairing points by contrasting density of point with another one which has the littlest difference in density, then the matched between points is done, the speed is computed by range of points which are moved. The HOFO descriptor is a feature which utilized to distinguish anomalous moving; in here every frame is split into many blocks, after that HOFO is calculated every block, also it is calculated on a thick grids interlaced block then collects the Histogram of every block to obtain a vector with global nature, a probable vote of every pixel is computed, it is depends on the components of optical flow, after that all these votes are collected into orientation boxes which done over local places districts.

There are two types of techniques that exist in machine learning, these techniques are supervised and unsupervised learning, for first type is a collection of data under training which utilized and takes as inputs then analysis it, the second type is utilized for rating, they use SVM technique to recognize specific event this technique is used for classification, so they acquire a support vector based on every frame which will rated also the event will be found, so when the result of that rating will detected, it will alert if any suspicious event will be found.

There are two dataset PETS 2009 and UMN dataset which are used to examine this method, the datasets have aims which are discover reason and happening such as walk, run,...etc. PETS 2009 datasets have different video scenes, some are normal, other are abnormal events, Initially they prepare these video sequences and train it to identify the unusual events then they test the proposed system by focus on all different snapshots video and take them as inputs, the normal event is presented as a set of people walking without making any suspicious activity, as for the abnormal events are presented as a set of people which are running with quick activity. UMN dataset have different video scenes, like yard, square, indoor, the aim of this paper is the outside environment events so they can implementation this suggested approach on all those scenes, this kind is utilized for preparing and test this system on these kind of activities that include a set of people which are running, the result of detecting abnormal scenes that are include a set of people that are running, the result of detecting abnormal events that depends on HOFO descriptor that give us good results. The basic idea in

this paper is the results of this proposed system are based on distribution the histogram which is related with optical flow and his features also on HOFO and SVM method that are for classification, where SVM technique is a global behaviour so it is a robust and effective in outside.

They also used a confusion matrix, composed of set of information which are represent activities between actual and predicted events, also the diagonal in the matrix are a set of a correctly sample and other Incorrect sample which has error cases, where the Diagonal of the matrix is composed of activities which are walk, move and Run, after that they take the video which has these different activities and train it. As following:

Accuracy=98.99%

20 0 0 1 32 0 0 0 46 Confusion matrix

As a result the proposed system on PETS 2009 and UMN dataset, also on confusion matrix this show us an effective results and a high performance. But there some weak points like this system is apply just outdoor environment also just on some activities, so this system is not comprehensive system, but it covers just some of these possible events, also they used SVM method and there are some disadvantages in it which are the results are not transparent as well as the ratios of financial are very high.

#### 2.2.3 Frame-To-Frame Difference:

This method depends on the difference between the frames that are sequential in sequential images and this is in order to detect the regions that corresponding for objects especially moving one like vehicles or people [10, 11]. Where they play the threshold value a big role in this method, this method is really an efficient method in dynamic environments. This method is considered as very close to the "*Background subtraction method*".

- The researchers in this paper [14] worked on "Mean Feature Point Matching (MFPM) algorithm" for detecting the unusual events also the "Speeded-Up Robust

*Features (SURF) method*" is proposed for extraction the features. Where MFPM algorithm works by comparing feature points from the input image with the feature points from trained dataset.

The proposed system here depends on using cell phones as an unusual event in private regions The system works by taking the material of videos from the camera and use it as input, then detects the unusual events by using trained dataset. After that is applied the SURF technique on a huge set of images which are include unusual events ,this usage happening in different modes to provide larger space to train the system on different segments of cell phone usage. We note the system detected feature points in sample images and extract feature the descriptors in the important points.

This system has been designed based on use 150 important feature points in each image from sample images, then computed the mean feature point and stored for more processing, after that apply MFPM algorithm on input frames to detect the unusual events. As for feature extraction Speeded-Up Robust Features (SURF) method is proposed to detect the blob features, the SURF method used Hessian matrix to feature extraction knowing that Hessian matrix is a second derivative matrix, as for the feature description it is used SURF algorithm which uses the wavelet responses in horizontal and vertical directions and taking size of neighbourhood M\*N about the main point, also divided it to subareas where for each subarea is computed by vector V:

$$V = (\Sigma dx, \Sigma dy, \Sigma |dx|, \Sigma |dy|)$$
(2.8)

The total of dx ,|dx| calculates separately for dv < 0 and  $dv \ge 0$ , also the total of dy and |dy| are divided depending on the sign on dx after that doubles numbers of feature points, those feature points will be extracted from the sample images and stored it in M\*N matrix this matrix it will be converted to single dimension array for more processing and this by calculating the mean feature points, this mean feature point is average value in every column of M\*N feature matrix , the final results it will be to detect the unusual events.

In MFPM algorithm is working by taking the inputs as forms of video then converting the video to group of image frames also cancel the similar frames and convert the input image frames to grayscale mode for more processing.

1. Input the sequences of frames ( $\Sigma$ .)

- 2. Processing the frames.
- 3. Put  $F_0$  as a first frame.
- 4. Move from first frame  $F_0$  to last frame  $F_i$ , i $< N_f$ .
- 5. All frames  $F_i$  are fragmented to quadrants  $Q_i$ .
- 6. These quadrants are compared with the MFP of the object that exist in trained dataset.
- 7. Plot all inputs that contact with  $Q_i$  from  $F_i$  and  $Obj_i$  from  $T_i$  in the matrix  $M[Q_i, Obj_i]$ .
- 8. Matrix of features are calculated by:  $\begin{cases} 0, \text{ if } Q_i \text{ and } Obj_i \text{ is matched} \\ 1, \text{ otherwise} \end{cases}$
- 9. C=C+1 when the value of  $M[Q_i, Obj_i]$  is 1.
- 10. The ratio of matching are calculated by  $R = C/N_f$ .
- 11. Return the matrix of features matching  $M[Q_i, Obj_i]$ .

The results of proposed system shows us that this system is capable on extract the features of interested area from huge image samples, where they used the captured videos as input also from the results can note this system capable to detect each usage of the cell phone in each frame, also the researchers showed us a collection of images to detect by usage of cell phone and in any quadrant from the image this happened, and how the system move from quadrant to other in the sequence when find the object in any quadrant ,and therefore it will reduce from the time complexity.

This system has a high efficiency in detecting unusual events which is here cell phone usage in private places like planes by using the mean feature points matching method, The experimental results show us the efficiency of the system by Implemented it on the input videos, but there is more cases we can add it to the system to test if it able to work with high performance or not, because just one case which is detecting of usage the cell phone not enough, the results also not discussed enough to figure out what the system was already working efficiently where they discussed only some cases without covering the subject by significant number of results to prove the efficiency of the system.

## 2.3 Object classification:

The objects classification [23] is one of the most important phases in video surveillance system as the main purpose is to extract the corresponding area from the object where the extraction occurs for all moving blobs[12,13]. In today's world, to understand and to recognize human motions in videos is a very popular research area. For years, lots of works and researches has been carried out the human recognition process in videos. For example, some works using two-dimensional video has focused on "background subtraction" along with "Gaussian Mixture Model" to carry out segmentation process. Moreover, some other researches use the "spatio-temporal bag of features" for determining action. And in order to classify, they use "a non-linear support vector machine". There are two main sections for classification or recognition phase that are "shape-based classification" and "motion-based classification".

#### 2.3.1 Shape-based classification:

In the classification based-shape, a various characterization of shape information is provided such as a box, blob area...etc. They used them as standard patterns in classification subjects to classify all objects that are moving in the movie such as "R.T. Collins and et al". [15] Where they divided the objects that are moving to some parts by using "neural network classifier", the input features were a mix from images that contains different scenes with different parameters to classify the shape according to those parameters also they applied the classification on all frames and each moving blob inside the frames, the classification results were saved by diagram, in order to be the results more accurate the temporal consistency are taken into consideration.

- As known, the classification process of objects has several phases. In this paper[16], the writers discussed the subject and divided it into three phases, the first phase, as expected, they are discussed detect the object and recognition correctly and then to determine the features of the object detected. As for the third phase, they tried to reduce the dimension of the object and finally classify it. However, in this respect, they presented a study about a geometric also appearance feature ( $\in R\approx 25000$ ) especially for a system surveillance in outside scenes, also they focuses on elaborating

on the various features of the objects and uniting them. Therefore, this study's contribution in the literature, creating an object detection with high accuracy and comparing the different reduction systems for dimension of the objects and comparing the various classification algorithm to be used.

Till now, lots of researches on the object classification have been carried out. These researches have mostly focused on comparing the methods and algorithms used for the classification of objects. These works have improved some features of the detection systems such as solving intensity, repeatability, and colour problems. However, they have fallen short of solving the occlusions on the background and cluttered points in the video. And, as known, to fix these problems, highly advanced and descriptive classification process have to be developed, where they talked about object classification in images also in videos and the algorithms which are used for this such as "Maximally Stable Extremal Regions (MSER), The Difference of Gaussian (DoG), Support Vector Machine (SVM)".

The basic goal of the surveillance systems is to detect motion and activities. For this reason, in this respect, the most important thing is to separate the background images from the moving object. It can be classified, the algorithms of segmentation to four phases which are: background subtraction(which is considered the most important approach), segmentation the density of motion, also segmentation the video, finally specific object detector, In this system is build a background model by use non-parametric(KDE) ,by using this model each pixel it will classifies to background or foreground. As result for apply previous model get a set of foreground areas that connected together, and to this end, this algorithm carry out this process in an accurate way by color distribution in subareas (Blobs) and geometry for the first object extraction and track it.

In the next extraction phase, the process is carried out to measure the effectiveness of some of descriptors and to compare various algorithms extracting the objects accurately. In this phase, "*Histogram of Oriented Gradients (HOG)*" is used to detect and classify objects, this algorithm builds a histogram for values that are separate from gradient orientations to detect the objects, also they proposed "*Luminance Symmetry*" in this study where used this technique to measurement the brightness symmetry of the objects, they calculate "*Luminance Symmetry*" about axis by:

$$L_{sym} = \frac{1}{c} \frac{2}{w} \sqrt{\sum_{i=1}^{h} (\sum_{j=1}^{w} I(i,j) \cdot B(i,j) - \sum_{j=(w)/(2+1)}^{w} I(i,j) \cdot B(i,j))^{2}}$$
(2.9)

As for Central Moments also translation and finaly rotation they extracted 7 Hu moments this applies on image of object for ADI where this object is the absolute value of the differential in image and this before thresholding by other word after background subtraction oriented to a box about the object, they also discussed Angular radial transform (ART), this technique is useful in compacted and capturing all regions that related and non-related with each other

they extracted ART descriptors with the standard configuration

nAngle = 12, nRadius = 6 which gives in total 6\*12-1=72 features.

In the Cumulants phase, they used 3 textural characteristics which are: the density of mean value (E[X`])`, the density of histograms for Standard deviation (E[(X- $\mu$ )^2]`), the density of histogram for Skewness ( $\frac{E[(X-\mu)^3]}{E[(X-\mu)^2])^{^3/2}}$  as for Horizontal and Vertical Projection has been processed by:

$$HP_{I1+} = \sum_{i} B'(i,j), VP_{+,i} = \sum_{j} B'(i,j)$$
(2.10)

Where:

*HPi*, +: is Horizontal Projection, *V P*+, *and j*: is Vertical Projection (for every bin). *I*: is the rows, *j*: is the columns.

For *Morphological Features* they extract some features which were the *Anthropometry*   $A_{th} = \frac{H}{P}$  that is a static percentage to body of the human, *CompactnessCmpct*= $\frac{Ar}{P^{\wedge}2}$ for measuring the shape difficulty, p is the circumference for shape of the object, also *Aspect ratio*  $AR = \frac{W}{H}$ , w is width of the square of the object, h is high of square of the object, and *Solidity*  $SD = \frac{Ar}{ArcH}$  for measure the parts that curved inward from the shape, Ar is the circumference for area of the object, ArCH is that part from the cambered Hull which include the object.

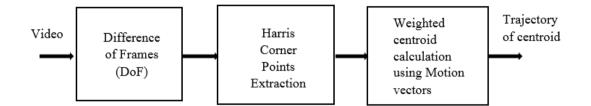
To reduce the dimension is another important step for this model. In this regard, two different reduction techniques are used for this step. Firstly, in feature transform phase, the dimensions of the new place(linearly - nonlinear) is the transformation of the original place. However, in the future selection phase, the low dimensional place's new dimensions is the sub-group of the high dimensional place of the original place.

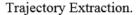
In this system they used PCA as a method for feature transform which is unsupervised and briefly, thanks to this feature selection phase, the high dimensional place can be turned into a low-dimensional place. Also they used a specific method for a feature selection which is *"Entropy Based Discretization* (EBD) " where they compared between three features which are the original features that extracted also feature selection and feature selection.

With the aim of *traning*, the model firstly extracted some various motion images from "*VIRAT dataset*" such as human, vehicle, car, bicycle and object to demonstrate the accuracy of recognition. Also, they imposed some constrains which were: Detection Percentage(Dp > 30%) where has been computed by:  $Dp_i = 100 * \frac{C_{arcai}}{BB_{arcai}}$ , Overlapping Percentage(OP < 10%) which computed by:  $Op_i = 100 * \frac{C_{arcai}}{BB_{arcai}}$ , overlapping Percentage(OP < 10%) which computed by:  $Op_i = 100 * \frac{\sum_{i \neq j} \cap (BB_i, BB_j)_{arca}}{BB_{iarca}}$ , motion and object instance constraints, where BB is bounding box area. During sample taking process, the *object classification* is carried out by the techniques that are SVM and AdaBoost by comparing the results of both. For classification the multi objects they used C-SVM, AdaBoost technique, in this context, is successful to combine inadequate results to achieve the strongest classifier.

As for the experimental results of this model, *apperance based classification* on the basis of HOG features they used VIRAT dataset, also they used C-SVM (80% - 20% training test) where they achieved 71.4%, PCA based SVM classification here they used a set of features with 30-D where divide to 2 parts(80% training, 20% testing) the results were really good with accuracy 89.9%, for *feature selection based SVM classification* where they used 142 features of the total 25,000 features, also here they have been applied C-SVM performance on (90% - 10%), the best result was (accuracy = 92.3%), Finally, in the *"feature selection based AdaBoost classification"*, the most crucial work is to detect weak classifiers and increase the number of them in order to create more solid and accurate results by combining them with the help of a proper formula. And as a result of four experiments on the 80% - 20% training-test, even though it is seen that appearance based features did not perform well, geometric features performs importantly better in video surveillance systems.

For low resolution problem with detecting objects in the Surveillance Systems ,use only HOG feature is inadequate to recognize the objects. However, they said if we combine it with geometric features we can achieve high accuracy for recognition in the surveillance systems. For this, this model has used geometrical features named luminance symmetry, central moments, ART moments as well as HOG features. And afterwards, with the help of feature selection, the combination of features is created for the object recognition. And lastly, SVM and AdaBoost classification techniques are applied for adequate and accurate recognition objects by combining the classifiers in an effective way.


this study is a comprehensive study where the researchers discussed a set of techniques and compared between the results where were excellent results, But the problem of classification of small objects still exist so they should intensification their work and focus on this point to get the most accurate results.


## 2.3.2 Motion-based classification:

The concept of this method is based on features of the motion objects that features must be unique to be able classify the different objects ,the classification-based motion [17,18,19] is usually used to distinguish between objects that are solid like vehicles and other non-solid objects such as human, some studies have relied on the temporal similarity of objects that moving.

- Methods of human action recognition are having many difficulties due to the complexity of the real-time applications because it contains numerous parameters. In this study[17], a different approach is explained which is based on the idea of using *"Difference of Frames (DoF)"* by extract Harris corner points from the motion vectors that used to identify the centroid locations that obtained in each frame and use all those corner points as weights. With the sequence formed by the motion, where used the sequence of quantitative orientations as *"temporal features"* and this is used to classification the different actions trajectory that movement of centroid creates which use the models of probabilities state to make the decision. Training and testing of state models are done with various benchmark datasets like *"* KTH dataset, Weizmann dataset and UIUC complex activity dataset". This approach worked well with identifying complex action classes like walking or running by being applied to wide range of intra-class variations.

Latest technological developments that enabled large video contents caused the problem of classification of the actions performed in them. A typical action recognition approach consists of two steps that are feature extraction and action classification. A typical action recognition approach consists of two steps: feature extraction and action classification that use a suitable machine learning tool. Challenges like motion performance variations, moving backgrounds, changing viewpoints or low resolution caused the automatic human motion recognition from videos to be very difficult. There are many studies that are based on "silhouettes extraction", also " robustness to change in color and contrast of the video" however recognition processes' complexity should be lowered by accurate person localization algorithms. Other methods which is based on optical flow that avoid use of a background segmentation process via encoding the information of motion between two consecutive frames in the video, but unfortunately these methods are extremely sensitive to the noise and occlusion and are computationally intensive. However, the usage of both representations was limited which are the representations that based on flow and the other representations which based on silhouette that try to encoding of huge amount of visual observation, local feature extraction methods are preferred over these two which are based on identification of areas that faces important variations in spatial and temporal directions. "Laptev and Linderberg" detected spatio-temporal interest points using 3D Harris corner detection algorithm and "Bregonzio" put Gabor filtering on DoF in the action sequece to detect the important points that base on the way of modeling the temporal content. Methods of action classification are split into two differente categories according to how temporal content is modeled. First is, direct classification where the features of temporal block is treats as one entity without an obvious temporal content modelling. Second is the temporal state models which are based on the temporal variations in action. (HMM) is a versatile probabilistic technique, HMMs fail to model parallel actions in the video due to their being sequential models of action. "Dynamic Bayesian Networks (DBN)" handle this restriction well. There are works where DBN is used to model interactions between two persons or person and objects. This paper aims to simplify present methods using trajectories. The more feature is effective between all other features Motion trajectories due to their compactness like silhouettes. The reason is that the motion is represented through a sequence of pixel locations for some distinction in next frames, the result of this work is production of a trajectory which clarifies the point of mass center for the motion between the next two frames, we can see the generating trajectories by the block diagram as below:





Where it is assumed that the background is static, the action is performed by a single person and no change occurs in camera position, also the change in the action in each frame is clarifies the action of recognition. The points that extracted by "fixed Harris corner technique" are provide the data to explain the shape of interest in an image, as well as a close concept of the region encoding process that obtained from the action change in DoFs.

For "Weighted Centroid Calculation": The corner points are clarified as a set of locations where find a big differences in all neighbourhood directions, in every image from DoF images the spatial distribution for the corner points are represent the action of transition information where the centre of this distribution is called centroid. Some parts have higher motion than others when an action is performed and these are preferred to track the key location due to their high accuracy and reduced false positives for this reason, centroids are calculated by use the motion vectors. They defined the motion vector as 2D vector which presents the offset between the (X, Y) axes of the block "coordinates" in reference frame and (X, Y) -axes for same block "coordinates" but in the following frame, the present frame divides to a matrix consisting of macro blocks which contain a set of corner points and these points are compares with "the corresponding blocks" also with other blocks In the area to be searched, the changes in the location of corner points give us the offset vector. This way, computational work is reduced by performing the estimation only in definite points in DoF. Then, every corner point is connected to magnitude of motion vector as following:

$$(x_c, y_c) = \left(\frac{\sum_{i=1}^n d_i x_i}{\sum_{i=1}^n d_i}, \frac{\sum_{i=1}^n d_i y_i}{\sum_{i=1}^n d_i}\right)$$
(2.11)

Where:

 $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$  are "key points".  $d_1, d_2, \dots, d_n$  are "corresponding magnitude of motion vector".

Where the threshold value is 0.001 that to measure the Harris corner and put the value (2 pixels) for parameter P which Indicates to search area value.

To differentiate between similar motions like walking and running, trajectory orientation at segment level is used as a feature in which tangent is calculated by displacement in vertical axis being divided by horizontal displacement. Also they Indicates to Segment Orientation by:

Segmentorientation=
$$\tan^{-1}\frac{x_2 - x_1}{y_2 - y_1}$$
 (2.12)

Where:  $(x_1, y_1), (x_2, y_2)$  are the centroid values for sequential frames.

As for "*Intra-class variations*", Bin assignment concept is employed to classify different styles of the same action together which quantizes trajectory segment orientations. This is done by division of range of orientation into eight equal bins that have a bin number. Then the trajectory of the motion is represented with bins to be processed later. Since the bin assignments are "time-series" also, we know that this is a random data in nature, as that "probabilistic state models" considered as better than the deterministic ones this is with regard to a model of a temporal variations. Where we can learn all of the "*state transition probabilities*" and "*state occurrence probabilities*" through a training stage by using a huge of samples specialized for training. They calculated the "state transitional probabilities" in "state transition matrix" by:

$$a_{ij} = port_{(t_i/t_j)} = \frac{count_{(t_i,t_j)}}{count_{(t_i)}}$$
(2.13)

They assumed that actions have an equal probable, so "maximum likelihood (ML) classification" is used with state models of twko action class to identify the action in test video. The "sequence of bin assignments", "corresponding probability conditioned" is computed by:

$$P_{(obin/action)} = \prod_{i=1}^{N-1} B(i) A(i+1)$$
(2.14)

Where:

A: state transition matrix for an action class.

B: corresponding state occurrence matrix.

N: length of bin sequence.

 $P_{\left(\frac{Walk}{Obin}\right)} =$ 

 $\frac{P_{(Obin/Walk)}P_{(Walk)}}{P_{(Obin/Walk)}P_{(Walk)}+P_{(Obin/Run)}P_{(Run)}}, P_{\left(\frac{Run}{Obin}\right)}\frac{P_{(Obin/Run)}P_{(Run)}}{P_{(Obin/Walk)}P_{(Walk)}+P_{(Obin/Run)}P_{(Run)}}$ (2.15)

The proposed approach is based on walking and running actions classification using "weizmann" and "UIUC complex activity"datasets. This approach's accuracy rate is high. Accuracy reported on "wiezmann dataset" for walking action is 100% whereas on "UIUC dataset" is 85%. For running action the classification accuracy on"Weizmann dataset" is 100% and that on "UIUC dataset" is 80%.

In this study discovers computationally simple action recognition that can generalize large set of intra-class and anthropogenic variations . It reduces the human involvement also. To extend this approach to detection of parallel actions or to definition of new variant, trajectories at limb level along with the trajectory extracted in this approach can be used as features. Also, multiple trajectories can be handled by designing a good framework.

This work was good because they worked to reduce the complex arithmetic operations for action recognition, also results are indicated to a high accuracy also they used a less involvement for human and this makes work much easier, but here the authors were rely entirely on just two data sets for the whole study and this does not made trust it high for the results that have been obtained.So for this reason we can use other data sets to be the results more comprehensive.

- In This approach [18] shows a perfect performance along with "KTH action dataset". Beside, some other researches use "Spatio-temporal techniques" to reach levels of abstraction that basis to "Scale Invariant Feature Transform trajectories

*descriptor (SIFT)*" In these studies, non-linear support vector machine is utilized to classify the actions especially for HOHA and LSCOM datasets or human movement in other words. Plus, human movement is showed by temporal templates with the help of Motion Energy Images (MEI) also the descriptors of Motion History Images (MHI). However, most of the previous works were restricted to determine the simplified human motions. In this respect, this study is eager to determine interest point based on "Spatio-Temporal Interest Point (STIP)". Afterwards, the research aims at "Extracting Histogram of Oriented Gradient (HOG)" and "Histogram Optical Flow (HOF)" descriptors to show both appearance and human motion. Consequently, the study uses the "Support Vector Machine (SVM) "along with "Bag of Word (BOW)" of the features that are the most interest points and apply the method on "Multimodal Human Action Dataset (UTD-MHAD) ".

The method that used in this paper is summed up as following: the recognition of human movement is process consisting of two steps named training and testing respectively. This proposed is using the "BOW" from "HOG" also "HOF" to presenting the actions, in the training part, we match SVM to the model of collect action with SVM parameters. Then utilize the outputs alongside with test video to obtain the exactness of recognition.

In order to show the human action, the study firstly extracts the STIP, HOG and HOF. As we know, HOG and HOF are two approaches that are most popular in this field. Then we begin to use the space-time interest point to identify the sequences of the video. Moreover, as we mentioned before HOG and HOF are extracted to show every interest point by using "Harris interest point detector". The spatial HOG descriptor shows the appearance and shape properties whereas HOF identifies the local motion. That is to say, HOG identifies the shape and appearance on the basis of distribution of the intensity gradient. They divide the image into cells in small sizes and calculate the histogram of gradient direction and gradient orientations by means of a computer. The calculation of the gradient (G) and orientation (O) as seen in the formula below:

$$G = \sqrt{G_x^2 + G_y^2}$$
,  $O = \arctan\left(\frac{G_x}{G_y}\right)$  (2.16)

In this formula  $G_x$  and  $G_y$  represent the horizontal derivatives and vertical derivatives of every interest point.

As for HOF descriptor, it shows the local motion of the interest point and it carries out the process based on the "luminosity conservation hypothesis" as seen in the equation below:

$$I_{(x,y,t)} = I_{(x+dx,y+dy,t+1)}$$
(2.17)

In this formula, "I" represents the "intensity luminous".

They calculated the motion of vector for every cell by means of a computer and build the orientation also "magnitude representation". Every flow vector is voting to bin and this based on the angle also on the magnitude with the weight. The sequential of all histograms of "*Optical Flow*" is display "*HOF descriptor*". Afterwards, they implement "*K-mean quantification algorithm*" to those merged extract descriptors with the aim of build the "*Bag of Word*". While BOW shows the properties by utilizing a visual vocabulary, the establishment of codebooks is carried out thanks to HOG and HOF features. Finally, within the "*Spatio-temporal bag of features*", the video series are shown by the histogram of visual word events over the volume of space-time.

This study uses the "*Support Vector Machine (SVM*)" with the extracted properties that analyze and identify the human movement. SVM is limited to one kind from classifications issues that is the binary classification issue; however, there is an extension that is carried out for multi-class classification later. In multi-class classification, two main approaches are offered to merge various binary classifiers and react all the classes in an immediate way. While merging some binary classifiers term, they see "one-against-one" and "one-against-all" techniques. As for first strategy, one builds one SVM for every pair classes and the other strategy produces one SVM for every class that is utilized to differentiate samples between one classes from all of the classes actually. From the max of SVMs outputs, they can classification data that are unknown. After comparing these two approaches, the writers see that one-against-one approach is much more proper for in training samples. For that, they prefer to use one-against-one approach in this study as well.

The multimodal dataset used in the process encloses "RGB video", "skeleton joint positions", "depth video" and "inertial signals data" besides that, a "Kinect camera" is carried out to gather the three data: "skeleton, color and deep images". As for the data, number four of acceleration, "magnetic strength and angular velocity" are provided by

the inertial sensor signals. The database are contains 27 actions and these actions are experienced by four men and four women. These actions are repeated for 4 times by every subject. All in all, total 861 data series emerge after we remove three sequences that has been corrupted. In order to prove our study's usefulness for identifying human action, they experience UTD-MHAD dataset "University of Texas at Dallas Multimodal Human Action Dataset".

Due to this algorithm, they use approximately 60% of the color succession video in the training part and the remaining 40% is used for the testing part. The rate of recognition changes from one action to another. The authors see that the overall recognition rate of their method obtained through UTD-MHAD is 70.37%. With the aim of developing this approach, they carried out a comparison process. As a result of the comparison "DMM-CRC" using depth data, also the approach of "STIP-BOW-SVM" using RGB data, they see that their approach is obtained a recognition rate of 67.37% while the first one obtains 66.1%. the main reason of the difference of 1.27% is that their approach uses color sequence video better than the first method using "Kinect camera "date of the "UTD-MHAD dataset". In this study, the authors proposed an approach to catch the human action recognition by using a color video sequence and presented the video action series by a "spatio-temporal bag of features" on the basis of STIP, "HOG and HOF descriptors and BOW". And the process was supported by "the support vector machine (SVM) classifier" to classify the human actions. As for the experimental results of the study, this study based on RGB data perform better than the UTD-MHAD using method. In this study, only the RGB video is used while UTD-MHAD is a multimodal database that contains depth, skeleton joint positions, inertial signal data and depth. Therefore, we can say that the other modalities data or carry out the mix method to develop the exactness that will be studied in the future researches.

We can note that this study used a new approach, where used many methods were mixed to reach the best results in the field of recognition of human actions as well as increase the accuracy of the results obtained previously, but there are some gaps in this study where the results show that the accuracy is not enough and up to 67.37 % This result is not considered convincing and therefore more training on the data should be done to improve this results.

- This current study [18] focuses on real-time human action classification by using original and depth map series and propose a reasonable time obtained by a computer system. In addition, it presents "a new Adaptive Temporal Sampling (ATS)" descriptor that uses the sampling process. Where that descriptor is showed us how it is efficient also saving the time. The researchers observe frames in time based on "the slop of corresponding motion energy curve graph". Afterwards, "the Depth Motion Maps (DMMs)" are calculated. These Depth Motion Maps ensures us to catch the basic and major features one action and provides it in a more discriminative way for the video. Alongside with Depth Static model that describe the features for specific action, this study proposes the new descriptor "ATS-DSM" instead of HOG, extracted the features are used to reach a high efficiency. After that, given that high dimensions and lots of data, "Principal Component Analysis (PCA)" is utilized to make the recognition process is faster. From the results they observe that "ATS-DSM descriptor" accomplishes calculation the real-time and outperform the other methods. According to the method of Adaptive Temporal Sampling, all of the depth sequences is calculated by a computer then three sub-actions are determined from these sequences. These three sub-actions are planned into "three orthogonal Cartesian planes". Afterwards they are merged to build the ATS descriptor. For "Temporal Sampling phase" they can find some algorithms that try to determine human movement based on" bag-of-words and histogram". Furthermore, these algorithms have a coarse temporal scheme that divides equally the deep image sequences into lower parts by a frame index. That methods constantly have a problems, and these problems include in confused between the actions which have same characteristics, for find a solutions for all those problems the writers suggested put "adaptive temporal sampling method" based on:

$$\mathcal{E}(\mathbf{i}) = \sum_{\nu=1}^{3} \sum_{j=1}^{i-1} sum(\left|I_{\nu}^{j+1} - I_{\nu}^{j}\right|) \quad , \quad g(\mathbf{i}) = \mathcal{E}(\mathbf{i}) - \mathcal{E}(\mathbf{i}-1).$$
(2.18)

Where:

 $\mathcal{E}(i)$  is motion energy,  $I_{\nu}^{j}$  is the projected maps.

g(i) is motion energy gradient of I frame.

Also there are some other methods based on pyramid technique are not adequate to handle temporal change as well. Therefore, they propose "an adaptive temporal sampling method" to deal with this problem. A frame's gradient can give information about its relative variation rate of moving energy. Moreover, this gradient shows the relative moving range between all of the action sequences. In this respect, this offered adaptive temporal sampling method chooses three of the largest gradients to divide the depth sequences. Beside, to balance calculating speed obtained by computer and the exactness of recognition and to form three sub-actions, this method chooses seven frames as well.

As for of phase "Depth Motion Maps (DMMs)" the researchers said calculated it via projecting "the depth map sequences" to 3 "orthogonal Cartesian planes" then computing the difference value for "sequential projected sequences", these maps which are renowned for calculating the exact difference among sequential projected sequences, can identify corresponding moving types in an efficient way. Without threshold, this method calculates the motion energy by computing. In particular, in these maps, every depth sequence frame constitutes three two-dimensional maps which are equal to side or top scenes. As for  $DMM_{\nu}$  is clarifies by:

$$DMM_{v} = \sum_{i=1}^{N-1} (|map_{i=1}^{i+1} - map_{v}^{i}|)$$
(2.19)

Moreover, through these motion maps, we find three sub-actions and three-depth motion maps of the actions are calculated by computer. These "*Depth Motion Maps* (*DMMs*)" can only catch the dynamic portion of all the actions. Therefore, in order to catch static properties they prefer to use the descriptor named ATS-DSM .They reach" *Depth Static Model(DSM)*" by carrying out two sequential projected sequences alongside with a threshold:

$$DSM = \sum_{M}^{i-1} (|I_{v}^{i+1} - I_{v}^{i}| \le \Phi)$$
(2.20)

Where:  $\phi$  indicate to the threshold, and  $I_v^i$  indicate to "the projected map".

Considering that DSM is reached via all of the depth sequences. This "*Depth Static Model descriptor*" concentrates on the static frames between all of the sequences so that it can obtain the static portion of the action in an efficient way. Moreover, beside this, the model does not utilize HOG descriptor to make the calculation process easier. Instead, the model uses vectorization operator for all the actions. Given that the achievement of real-time human recognition, they use  $l_2 - CRC$  classifier to sort the actions in this study. This  $l_2 - CRC$  classifier is arranged to reach real-time recognition on the basis of scattered representation method.

In order to test the exactness of this method, the experiments of study are applied on the public field "Microsoft Research (MSR)" that are reached through "RGB-Depth camera". Furthermore, the experiments of the current depth-based studies is compared with this method. "The MSR-Action3D dataset" consists of twenty actions and these actions are obtained by ten other subjects as well. The dataset merges the intra-class change since every subject conducts the same action in a different way. Therefore, in order to get accurate comparison, all these actions are divided into 3 sub-sets and then these 3 sub-sets are also divided 3 other parts to conduct the evaluation and comparison. Moreover, by means of 3 tests, the process is carried out. And, during these tests, the first and last 4 frames are removed before constituting DMMv. Also they remove these frames since the subjects are static and not adequate to catch features. Beside, these little body actions hinder us from obtaining the real-body images since those actions occupy large pixel values. Plus, "principal component analysis (PCA)" is carried out to develop the classification calculating. This method differentiates from those second depth-based studies, where the tests show that this exactness in the recognition are over 97% and compared to other studies, this method is superior to that of other studies as a result of many tests carried out. Plus, the tests indicate that ATS-DSM descriptor could make the recognition more accurate. And Cross Subject Test shows that a recognition rate of 93.4% is reached. Furthermore, our study that does not use HOG descriptor is much more efficient compared to other that use it.

They used the confusion matrix in this study especially to apply on "*Cross Subject Test*". This subset is more intriguing that of "*non-cross-subject*" tests. For that, we can see some reasons for miscalculations. First of all, the performance for same action may vary due to performance of different subjects. And this causes intra-class variation to be larger. Secondly, the classifier makes classification on the basis of re-building errors of various training series. Consequently, the sub-actions chosen from the action sequences may delete other main sub-actions when these actions are too complicated.

This study, the basic idea revolves around depth images, where presented a computed efficient descriptor and ATS-DSM carry out the process. By using both ATM and

DSM they could catch the dynamic and static properties. Afterwards they merge the information as a descriptor to constitute an effective demonstrator for actions of people. The average recognition rate of this method is 96.9% and this means that this method which allows to complete real time human action recognition is superior to other methods, taking into consideration this rate. In this system, we used the previous two types of classification, as we used the shape-based classification to determine the outer shape of the object (human), and we used the motion-based classification by calculated the speed of the moving object within the video.

## 2.4 Object Tracking

This phase tracking[4,5,6,7] is important for analysing the object motion in video where the object that exists in video is tracked through the sequence of video frames, the system must be able to track the objects as well as the prediction of positions in this system we used Blob analysis technique to analyse the motion of each path this technique is used to predict the different paths for objects which contains in video, also this technique is include high accuracy, good performance and facilitates the complexity in calculations.

Tracking is done by drawing a rectangle around the moving object within the frame based on blob analysis technique [21] as shown in figure (2, 3).

We have used the following code to perform the tracking phase in this system:

```
function pushbutton5 Callback(hObject, eventdata, handles)
% hObject
            handle to pushbutton5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
             structure with handles and user data (see GUIDATA)
% handles
foregroundDetector = vision.ForegroundDetector('NumGaussians', 3,
... 'NumTrainingFrames', 50);
videoReader = vision.VideoFileReader('rpn1.mov');
for i = 1:52
    frame = step(videoReader); % read the next video frame
    foreground = step(foregroundDetector, frame);
end
figure; imshow(frame); title('Video Frame');
figure; imshow(foreground); title('Foreground');
se = strel('disk', 13);
```

```
OpenB1 = imopen(foreground, se);
filteredForeground = imclose(OpenB1, se);
figure; imshow(filteredForeground); title('Clean Foreground');
blobAnalysis = vision.BlobAnalysis('BoundingBoxOutputPort', true,
    'AreaOutputPort', false, 'CentroidOutputPort', false, ...
    'MinimumBlobArea', 150);
bbox = step(blobAnalysis, filteredForeground);
result = insertShape(frame, 'Rectangle', bbox, 'Color', 'red');
num = size(bbox, 10);
result = insertText(result, [10 10], num, 'BoxOpacity', 1, ...
    'FontSize', 14);
figure; imshow(result); title('***WARNING***SUSPICIOUS
ACTIVITY (RUNNING) ');
videoPlayer = vision.VideoPlayer('Name', 'Detected Human');
videoPlayer.Position(3:4) = [700,500]; % window size: [width,
height]
se = strel('square', 5); % morphological filter for noise removal
while ~isDone(videoReader)
   frame = step(videoReader); % read the next video frame
    % Detect the foreground in the current video frame
    foreground = step(foregroundDetector, frame);
    % Use morphological opening to remove noise in the foreground
    filteredForeground = imopen(foreground, se);
    % Detect the connected components with the specified minimum
area, and
    % compute their bounding boxes
    bbox = step(blobAnalysis, filteredForeground);
    % Draw bounding boxes around the detected humans
    result = insertShape(frame, 'Rectangle', bbox, 'Color', 'red');
    % Display the number of humans found in the video frame
    num = size(bbox, 1);
    result = insertText(result, [10 10], num, 'BoxOpacity', 1, ...
```

```
40
```

```
'FontSize', 14);
```

step(videoPlayer, result); % display the results
end

release(videoReader); % close the video file



Figure 2: object tracking (normal activity).



Figure 3: object tracking (suspicious activity).

## **CHAPTER 3**

## **PROPOSED METHOD**

In this chapter we will discuss the approach of our system that is examines the possibility of detecting suspicious activities and differentiating between them and those activities not suspicious, in our system the suspicious activity will be running, where we tried as much as possible to study all characteristics that related to this activity (running).

## 3.1 INPUT VIDEO:

This phase is first step in processing where the video input format is MOV, where the video consists of 23 frames per second, initial frame is reference frame in system. The reference frame is used to obtain the objects in image in next steps. Here, we did not dealt with any external datasets, where we used a set of videos as our dataset that is a set of videos that were captured by a fixed camera indoor scene.

## **3.2 EXTRACTING FRAMES:**

As we know each video file consisted from a large number of frames N where the process of video processing and analysis is done on original raw frames, we also note that successive frames contain minor differences that are almost invisible only after the passage of a large number of frames. So video analysis is a complicated process that takes a very long time, especially if the video size is large as following in figure 4.



Figure 4: Extracting frames (convert video to frames).

## **3.3 BACKGROUND SUBTRCTION:**

We used background subtraction method [22] for detect and separate the object (foreground regions) which is moving from the background frame (first frame), where we compare and subtract the current frame from reference frame. When we choose the reference frame we must attention to overlapping the image and try to avoid it, also the possibility of losing information from sequence of video that may great importance, background subtraction is represented as below:

Where:

Frame N: the current frame.

Frame N-1: the reference frame.

Th: threshold value.

If the result of the subtraction is greater than Th value this means that the pixel is part of the foreground, otherwise it will be part of the background.

## 3.4 NOISE REMOVAL:

In last phase we applied the background subtraction method to get foreground objects but the results always contains a noise like shadows, reflections and lights....etc. So we must use a filter to reduce and eliminate this noise, for that we used Morphological operations in figure 5 where we apply opening (erosion followed by dilation) then closing(dilation followed by erosion) after that erosion(removes pixels on object boundaries) to get the better results.



Figure 5: Morphological operations.

#### 3.5 FORGROUND DETECTION:

In this point after we got foreground objects also applied the morphological operations and get a clear image without any noise. In this phase we must do some mathematical operations to detection of various activities and the distinction between suspicious and non-suspicious activities.

## **3.5.1** Parallel with the camera:

The parallel motion of the object with the camera, whether described by walking or running is calculated by the absolute value of the x coordinate of centroid, if the displacement in x direction is small that means this motion is walking ,vice versa if it is large, that means the motion is running as follows:

$$X1 - X2 < T (for walking/ Normal).$$
(3.2)

$$X1 - X2 > T$$
 (for running/ Suspicious). (3.3)

Where,

X1 is X- axis of previous frame.

X2 is X- axis of next frame.

T is threshold value.

## 3.5.2 To/away from the camera:

For this phase we must calculate change in the area of object between consecutive frames, based on change value we can know if the activity of this object is suspicious (big change/running) or normal activity (small change/walking), as below:

$$A = ((area1 - area2)/(area1 + area2)).$$
 (3.4)

## Where,

For (to the camera):

Area1 is size of the object in current frame.

Area2 is size of the object in previous frame.

As for (away from the camera):

Area1 is size of the object in current frame.

Area2 is size of the object in next frame.

We can see in figure 4 the results where first image is background image, second image is current frame that need to process, third, forth, and fifth images are results after applying the morphological operations and last image is the result of apply background subtraction method.

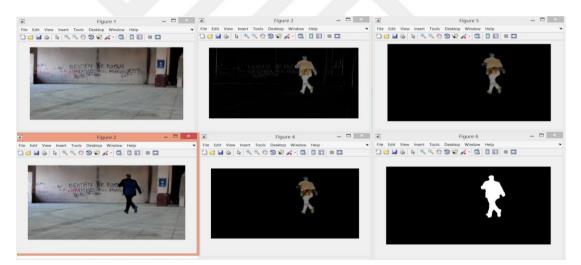



Figure 6: Background subtraction.

(figure1 (Background frame), figure2 (foreground frame), figure3, 4, 5(morphological operations), figure6 (the result "background subtraction")).

The following flowchart illustrates the structure of the proposed system.

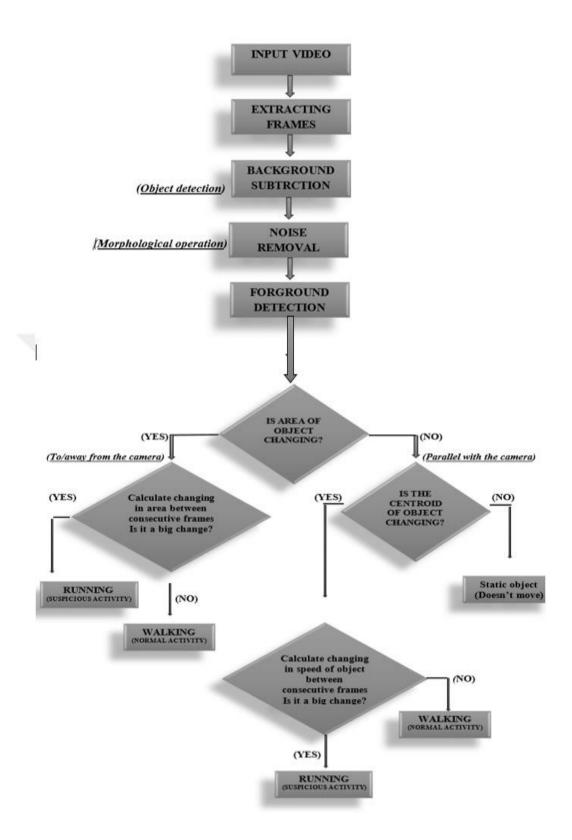



Figure 7: System Architecture.

## **CHAPTER 4**

## **EXPERIMENTAL RESULTS**

In this chapter we will discuss the experimental results obtained from the previous phases, which are walking and running.

In experimental set up we used a computer with core i7 processor, RAM with 2 GB and 64-bit operating system with windows 8.1. As for the programming environment was Matlab2016, we used our data set where we have captured some videos indoor, the videos that used were MOV format, the video consists of 23 frames per second.

#### 4.1 Walking:

## 4.1.1 Parallel with the camera:

We have to find value of centroid to know if this object (human) is moving parallel with camera also to detect if it is moving from right to left or from left to right, we do this by calculated the absolute value of the x coordinate of centroid for consecutive frames, and compare the displacement value in x with threshold value to know if this activity is normal (walking) or suspicious (running), as below:

X1 - X2 < T (for walking/ Normal).(4.1)

X1 - X2 > T (for running/ Suspicious). (4.2)

Where,

X1 is x-axis of previous frame.

X2 is x-axis of next frame.

T is threshold value.

## **Example:**

# X-axis of (Frame#66-Frame#67 = 991.9535 -981.5305 = 10.4230).

## 4.1.1.1 Walking parallel with the camera (One object/Right to left/ near):

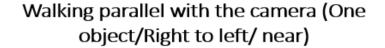
In table 1 we can observe the change in axis for successive frames, where the X-axis is decreases and Y-axes is almost fix, this indicates to that the object is moving from right to left, also the size of the object is big that's mean is the object is near from the camera, as well as we can conclude the motion of object in the frames and here the motion is walking because the change in the axis is considered a relative or simple change between successive frames.

| No of | Area  | Centre(x,y)       | Frame rate | Walking |
|-------|-------|-------------------|------------|---------|
| frame |       |                   |            |         |
| 66    | 61103 | 991.9535 365.5711 | 23 f/sec   | 10.4230 |
| 67    | 61239 | 981.5305 368.7759 | 23 f/sec   | 11.1177 |
| 68    | 61311 | 970.4128 382.6083 | 23 f/sec   | 13.7081 |
| 69    | 61597 | 957.7047 382.2494 | 23 f/sec   | 13.9633 |
| 70    | 61201 | 944.7414 381.9131 | 23 f/sec   | 12.3912 |
| 71    | 61364 | 932.3502 377.8981 | 23 f/sec   | 15.1293 |
| 72    | 61571 | 917.2209 378.3161 | 23 f/sec   | 13.4595 |
| 73    | 61120 | 901.7614 380.4759 | 23 f/sec   | 12.3555 |
| 74    | 61221 | 888.4059 380.0864 | 23 f/sec   | 16.7387 |
| 75    | 61311 | 876.6672 378.6266 | 23 f/sec   | 11.5511 |
| 76    | 61648 | 860.1161 378.5863 | 23 f/sec   | 11.4852 |
| 77    | 61451 | 849.6309 378.4627 | 23 f/sec   | 12.7100 |

**Table 1**: Results of walking one object (near) from right to left.

| 78 | 61164 | 838.9209 370.9226 | 23 f/sec | 10.9340 |
|----|-------|-------------------|----------|---------|
| 79 | 61215 | 826.9869 362.4377 | 23 f/sec | 12.6155 |
| 80 | 61346 | 814.3714 384.6506 | 23 f/sec | #       |




(a)

**(b)** 

(c)

Figure 8: Successive of frames

((a) Frame#66,(b)Frame#67, (c)Frame#68)).



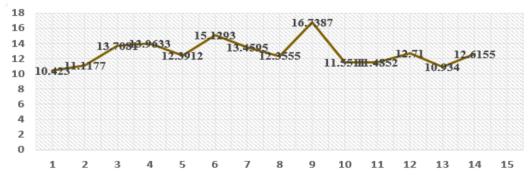



Figure 9: Curve of walking parallel with the camera (One object/Right to Left/ near).

## 4.1.1.2 Walking parallel with the camera (One object/Right to left/ far):

In table 2 we can observe the change in axes for successive frames, where the X-axis is decreases and Y-axis is almost fix, also the size of the object is small that's mean is the object is far from the camera, this indicates to that the object is moving from right to left, as well as we can conclude the motion of object in the frames and here the

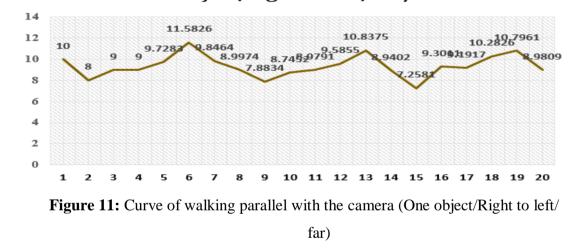
motion is walking because the change in the axis is considered a relative or simple change between successive frames.

| No of frame | Area  | Centre(x,y)       | Frame rate | Walking |
|-------------|-------|-------------------|------------|---------|
| 80          | 11694 | 1.0e+03 *         | 23 f/sec   | 10      |
|             |       | 1.0363 0.3709     |            |         |
| 81          | 11535 | 1.0e+03 *         | 23 f/sec   | 8       |
|             |       | 1.0268 0.3697     |            |         |
| 82          | 11680 | 1.0e+03 *         | 23 f/sec   | 9       |
|             |       | 1.0188 0.3678     |            |         |
| 83          | 11720 | 1.0e+03 *         | 23 f/sec   | 9       |
|             |       | 1.0098 0.3680     |            |         |
| 84          | 11876 | 1.0e+03 *         | 23 f/sec   | 9.7283  |
|             |       | 1.0009 0.3642     |            |         |
| 85          | 11670 | 990.2717 370.4688 | 23 f/sec   | 11.5826 |
| 86          | 11300 | 978.6891 375.4471 | 23 f/sec   | 9.8464  |
| 87          | 11383 | 968.8427 371.4718 | 23 f/sec   | 8.9974  |
| 88          | 11339 | 959.8453 372.1242 | 23 f/sec   | 7.8834  |
| 89          | 11514 | 951.9619 374.1164 | 23 f/sec   | 8.7452  |
| 90          | 11871 | 943.2167 371.2603 | 23 f/sec   | 8.9791  |
| 91          | 11654 | 934.2376 371.2694 | 23 f/sec   | 9.5855  |
| 92          | 11574 | 924.6521 370.9405 | 23 f/sec   | 10.8375 |
| 93          | 11344 | 913.8146 372.0364 | 23 f/sec   | 8.9402  |
| 94          | 11534 | 904.8744 371.2811 | 23 f/sec   | 7.2581  |
| 95          | 11461 | 897.6163 368.1307 | 23 f/sec   | 9.3011  |
| 96          | 11212 | 888.3152 364.9655 | 23 f/sec   | 9.1917  |
| 97          | 11562 | 879.1235 363.5669 | 23 f/sec   | 10.2826 |
| 98          | 11436 | 868.8409 372.6818 | 23 f/sec   | 10.7961 |
| 99          | 11337 | 858.0448 371.8266 | 23 f/sec   | 8.9809  |
| 100         | 11443 | 849.6390 370.5220 | 23 f/sec   | #       |

**Table 2:** Results of walking one object (far) from right to left.



**(a)** 


**(b)** 

(c)

Figure 10: Successive of frames

((a) Frame#85, (b) Frame#86, (c) Frame#87).

Walking parallel with the camera (One object/Right to left/ far)



#### 4.1.1.3 Walking parallel with the camera (One object/Left to right/ near):

In table 3 we can observe the change in axis for successive frames, where the X-axis is increases and Y-axis is almost fix, this indicates to that the object is moving from left to right, also the size of the object is big that's mean is the object is near from the camera, as well as we can conclude the motion of object in the frames and here the motion is walking because the change in the axis is considered a relative or simple change between successive frames.

| No of frame | Area  | Centre(x,y)       | Frame rate | Walking |
|-------------|-------|-------------------|------------|---------|
| 60          | 49726 | 223.2268 358.9311 | 23 f/sec   | 12.3995 |
| 61          | 49766 | 235.6233 356.6242 | 23 f/sec   | 11.3796 |
| 62          | 49676 | 246.0029 344.5216 | 23 f/sec   | 9.3071  |
| 63          | 49871 | 255.3100 352.7643 | 23 f/sec   | 12.8041 |
| 64          | 49699 | 267.1141 367.5435 | 23 f/sec   | 10.3916 |
| 65          | 49599 | 277.5057 363.7224 | 23 f/sec   | 9.7370  |
| 66          | 49425 | 286.2427 358.4278 | 23 f/sec   | 9.6818  |
| 67          | 49319 | 298.9245 352.1804 | 23 f/sec   | 11.2898 |
| 68          | 49496 | 307.2141 359.6451 | 23 f/sec   | 8.4173  |
| 69          | 49730 | 318.6314 351.4872 | 23 f/sec   | 12.7276 |
| 70          | 49381 | 326.3590 350.7493 | 23 f/sec   | 11.7125 |
| 71          | 49876 | 338.0715 352.0631 | 23 f/sec   | 12.6402 |
| 72          | 49653 | 350.7117 359.8894 | 23 f/sec   | 10.5492 |
| 73          | 49539 | 360.2609 358.9441 | 23 f/sec   | 11.5346 |
| 74          | 49727 | 371.7955 344.9700 | 23 f/sec   | 9.3185  |
| 75          | 49617 | 380.1140 369.2917 | 23 f/sec   | 11.7341 |
| 76          | 49397 | 391.8481 370.6394 | 23 f/sec   | 12.7292 |
| 77          | 49463 | 403.5773 373.0578 | 23 f/sec   | 9.2375  |
| 78          | 49315 | 412.8148 361.2782 | 23 f/sec   | 11.2784 |
| 79          | 49560 | 423.0932 363.6906 | 23 f/sec   | #       |

**Table 3:** Results of walking one object (near) from left to right.



**(a)** 

**(b)** 

(c)

Figure 12: Successive of frames

((a) Frame#60,(b) Frame#61, (c) Frame#62).

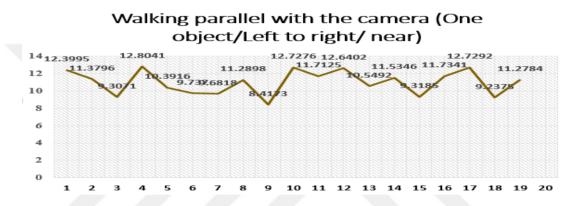



Figure 13: Curve of walking parallel with the camera (One object/Left to right/ near)

## 4.1.1.4 Walking parallel with the camera (One object/Left to right/ far):

In table 4 we can observe the change in axis for successive frames, where the X-axis is increases and Y-axis is almost fix, this indicates to that the object is moving from left to right, also the size of the object is small that's mean is the object is far from the camera, as well as we can conclude the motion of object in the frames and here the motion is walking because the change in the axis is considered a relative or simple change between successive frames.

| No of frame | Area  | Centre(x,y)       | Frame rate | Walking |
|-------------|-------|-------------------|------------|---------|
| 45          | 23519 | 308.0265 363.4088 | 23 f/sec   | 9.703   |
| 46          | 22450 | 317.7295 361.0476 | 23 f/sec   | 11.6458 |

Table 4: Results of walking one object (far) from left to right.

| 47 | 21256 | 329.3753 355.1640 | 23 f/sec | 14.8052 |
|----|-------|-------------------|----------|---------|
| 48 | 22876 | 344.1805 355.9932 | 23 f/sec | 12.833  |
| 49 | 25844 | 357.0135 365.6502 | 23 f/sec | 12.8616 |
| 50 | 26062 | 369.8751 365.2297 | 23 f/sec | 10.9994 |
| 51 | 26391 | 380.8745 364.4834 | 23 f/sec | 9.7006  |
| 52 | 26677 | 390.5751 363.2271 | 23 f/sec | 9.3792  |
| 53 | 27049 | 399.9543 362.5039 | 23 f/sec | 10.8929 |
| 54 | 27612 | 410.8472 363.3547 | 23 f/sec | 10.8228 |
| 55 | 27735 | 421.6700 363.7467 | 23 f/sec | 11.451  |
| 56 | 27331 | 433.1210 363.6736 | 23 f/sec | 12.0767 |
| 57 | 26131 | 445.1977 363.7301 | 23 f/sec | 12.1450 |
| 58 | 24703 | 457.3427 362.2017 | 23 f/sec | 11.1414 |
| 59 | 23776 | 468.4841 360.3218 | 23 f/sec | 10.4998 |
| 60 | 22791 | 478.9839 357.1411 | 23 f/sec | 11.2547 |
| 61 | 22696 | 490.2386 356.1349 | 23 f/sec | 13.2996 |
| 62 | 25689 | 503.5382 368.7119 | 23 f/sec | 13.8215 |
| 63 | 26168 | 517.3597 368.9369 | 23 f/sec | 12.3748 |
| 64 | 25967 | 529.7345 367.4263 | 23 f/sec | 11.0026 |
| 65 | 25477 | 540.7371 366.5493 | 23 f/sec | #       |
|    | I     |                   |          |         |



**(b**)

(c)

Figure 14: Successive of frames

((a) Frame#45,(b) Frame#46, (c) Frame#47).




Figure 15: Curve of walking parallel with the camera (One object/Left to right/ far).

#### 4.1.1.5 Walking parallel with the camera (Two objects/near):

In table 5 we can observe the change in axis for successive frames, where the X-axis of object(1) is increases and Y-axis of object(1) is almost fix, while the X-axis of object(2) is decreases and Y-axis of object(2) is also almost fix, this indicates to that object(1) is moving from left to right as for object(2) is moving from right to left, also the size of the objects are big that's mean is the objects are near from the camera, as well as we can conclude the motion of objects in the frames and here the motion is walking because the change in the axis is considered a relative or simple change between successive frames.

| No  | Area   | Area   | Cent    | re of   | Cent   | tre of  | Frame   | Wal     | king |
|-----|--------|--------|---------|---------|--------|---------|---------|---------|------|
| fra | Object | Object | object  | t1(x,y) | object | t2(x,y) | rate    | Obj1    | Obj2 |
| me  | (1)    | (2)    |         |         |        |         |         |         |      |
| 59  | 65609  | 63120  | 226.742 | 339.819 | 1.0e-  | +03 *   | 23f/sec | 14.1218 | 20   |
|     |        |        |         |         | 1.1653 | 0.3708  |         |         |      |
| 60  | 66655  | 65155  | 240.864 | 347.207 | 1.0e-  | +03 *   | 23f/sec | 16.1778 | 16   |
|     |        |        |         |         | 1.1451 | 0.3715  |         |         |      |
| 61  | 67514  | 65398  | 257.042 | 354.102 | 1.0e-  | +03 *   | 23f/sec | 16.8272 | 22   |
|     |        |        |         |         | 1.1298 | 0.3755  |         |         |      |
| 62  | 62956  | 63456  | 273.869 | 347.160 | 1.0e-  | +03 *   | 23f/sec | 22.0095 | 17   |
|     |        |        |         |         | 1.1079 | 0.3704  |         |         |      |
| 63  | 60773  | 62895  | 295.878 | 346.394 | 1.0e-  | +03 *   | 23f/sec | 23.3321 | 18   |
|     |        |        |         |         | 1.0904 | 0.3690  |         |         |      |

Table 5: Results of walking two objects (near).

|   | 64 | 57109 | 61238 | 319.210 | 324.827 | 1.0e+03    | 3 *    | 23f/sec | 23.0884 | 20      |
|---|----|-------|-------|---------|---------|------------|--------|---------|---------|---------|
|   |    |       |       |         |         | 1.0720 (   | 0.3676 |         |         |         |
|   | 65 | 65145 | 58509 | 342.299 | 344.276 | 1.0e+03    | 3 *    | 23f/sec | 23.1489 | 18      |
|   |    |       |       |         |         | 1.0526 (   | 0.3636 |         |         |         |
|   | 66 | 70557 | 56378 | 365.448 | 357.513 | 1.0e+03    | 3 *    | 23f/sec | 17.0084 | 20      |
|   |    |       |       |         |         | 1.0341 (   | 0.3619 |         |         |         |
|   | 67 | 71457 | 54271 | 382.456 | 353.609 | 1.0e+03    | 3 *    | 23f/sec | 16.4365 | 20.4959 |
|   |    |       |       |         |         | 1.0143 (   | 0.3541 |         |         |         |
|   | 68 | 71917 | 51759 | 398.893 | 349.628 | 993.504 34 | 42.401 | 23f/sec | 16.7736 | 22.6995 |
|   | 69 | 72034 | 55319 | 415.666 | 351.818 | 970.804 34 | 46.382 | 23f/sec | 18.6593 | 22.6995 |
|   | 70 | 73369 | 63466 | 434.326 | 353.746 | 950.763 36 | 69.789 | 23f/sec | 22.0975 | 20.0415 |
|   | 71 | 73607 | 64351 | 456.423 | 360.256 | 928.746 37 | 72.416 | 23f/sec | 19.1922 | 22.0168 |
| - | 72 | 71154 | 64523 | 475.615 | 357.037 | 908.778 37 | 73.828 | 23f/sec | 19.5896 | 19.9675 |
|   | 73 | 66940 | 64362 | 495.205 | 356.467 | 891.726 37 | 74.645 | 23f/sec | 19.5653 | 17.0519 |
|   | 74 | 62901 | 64117 | 514.770 | 353.800 | 873.364 37 | 74.669 | 23f/sec | 17.3279 | 18.3624 |
| - | 75 | 61559 | 62881 | 532.098 | 352.138 | 854.528 37 | 71.396 | 23f/sec | 22.0949 | 18.8365 |
| - | 76 | 61609 | 61526 | 554.193 | 343.153 | 836.398 36 | 68.819 | 23f/sec | 21.2883 | 18.1298 |
| - | 77 | 66244 | 57963 | 575.481 | 353.292 | 815.208 36 | 61.995 | 23f/sec | 19.2061 | 21.1900 |
| - | 78 | 70834 | 55718 | 594.687 | 364.197 | 796.398 35 | 56.660 | 23f/sec | #       | #       |



**(b)** 

(c)

Figure 16: Successive of frames

((a) Frame#59,(b) Frame#60, (c) Frame#61).

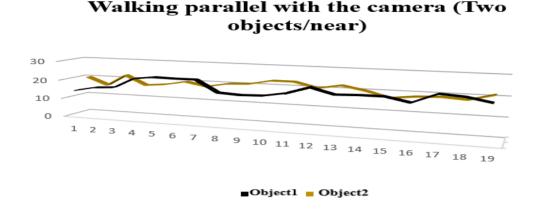



Figure 17: Curve of walking parallel with the camera (Two objects/near).

#### 4.1.1.6 Walking parallel with the camera (Two objects/ middle):

In table 6 we can observe the change in axis for successive frames, where the X-axis of object(1) is increases and Y-axis of object(1) is almost fix ,while the X-axis of object(2) is decreases and Y-axis of object(2) is also almost fix ,this indicates to that object(1) is moving from left to right as for object(2) is moving from right to left, also the size of the objects are not big and not small that's mean is the objects are in the middle from the camera, as well as we can conclude the motion of objects in the frames and here the motion is walking because the change in the axis is considered a relative or simple change between successive frames.

| No. | Area      | Area      | Centre of       | Centre of        | Fra   | Walk    | ing  |
|-----|-----------|-----------|-----------------|------------------|-------|---------|------|
| fra | object(1) | object(2) | object1(x,y)    | object2(x,y)     | me    | Obj1    | Obj2 |
| me  |           |           |                 |                  | rate  |         |      |
| 55  | 28053     | 27800     | 421.519 347.239 | 1.0e+03 * 1.2465 | 23    | 12.6126 | 14   |
|     |           |           |                 | 0.3530           | f/sec |         |      |
| 56  | 28106     | 26279     | 434.132 345.891 | 1.0e+03 *        | 23    | 11.9407 | 14   |
|     |           |           |                 | 1.2326 0.3505    | f/sec |         |      |
| 57  | 28272     | 24315     | 446.072 343.702 | 1.0e+03 *        | 23    | 12.4649 | 16   |
|     |           |           |                 | 1.2180 0.3409    | f/sec |         |      |
| 58  | 28128     | 26542     | 458.537 340.128 | 1.0e+03 *        | 23    | 13.1942 | 18   |
|     |           |           |                 | 1.2021 0.3608    | f/sec |         |      |
| 59  | 282099    | 28433     | 471.732 337.193 | 1.0e+03 *        | 23    | 16.5000 | 16   |
|     |           |           |                 | 1.1848 0.3701    | f/sec |         |      |

**Table 6:** Results of walking two objects (middle).

| 60 | 28220 | 28230 | 488.232 326.703 | 1.0e+03 *       | 23    | 14.3727   | 14    |
|----|-------|-------|-----------------|-----------------|-------|-----------|-------|
|    |       |       |                 | 1.1686 0.3744   | f/sec |           |       |
| 61 | 28335 | 29486 | 502.604 336.360 | 1.0e+03 *       | 23    | 13.7151   | 11    |
|    |       |       |                 | 1.1549 0.3631   | f/sec |           |       |
| 62 | 28516 | 29501 | 516.319 344.666 | 1.0e+03 *       | 23    | 13.0700   | 14    |
|    |       |       |                 | 1.1431 0.3594   | f/sec |           |       |
| 63 | 28659 | 29135 | 529.389 344.776 | 1.0e+03 *       | 23    | 10.9050   | 12    |
|    |       |       |                 | 1.1293 0.3612   | f/sec |           |       |
| 64 | 28798 | 30560 | 540.294 344.403 | 1.0e+03 *       | 23    | 11.2569   | 13    |
|    |       |       |                 | 1.1173 0.3610   | f/sec |           |       |
| 65 | 28687 | 30649 | 551.551 345.572 | 1.0e+03 *       | 23    | 13.1054   | 12    |
|    |       |       |                 | 1.1048 0.3591   | f/sec |           |       |
| 66 | 28463 | 30255 | 564.657 345.539 | 1.0e+03 *       | 23    | 13.4011   | 13    |
|    |       |       |                 | 1.0925 0.3583   | f/sec | · · · · · |       |
| 67 | 27533 | 28990 | 578.058 344.832 | 1.0e+03 *       | 23    | 11.5991   | 14    |
|    |       |       |                 | 1.0793 0.3549   | f/sec |           |       |
| 68 | 28641 | 27994 | 589.657 343.120 | 1.0e+03 *       | 23    | 11.7921   | 16    |
|    |       |       |                 | 1.0655 0.3530   | f/sec |           |       |
| 69 | 28515 | 26696 | 601.449 341.640 | 1.0e+03 *       | 23    | 12.1565   | 18    |
|    |       |       |                 | 1.0490 0.3430   | f/sec |           |       |
| 70 | 28730 | 29069 | 613.605 340.564 | 1.0e+03 *       | 23    | 14.1276   | 15    |
|    |       |       |                 | 1.0316 0.3445   | f/sec |           |       |
| 71 | 28476 | 32310 | 627.733 336.548 | 1.0e+03 *       | 23    | 14.7073   | 15    |
|    |       |       |                 | 1.0167 0.3573   | f/sec |           |       |
| 72 | 28713 | 33055 | 642.440 336.186 | 1.0e+03 *       | 23    | 13.3068   | 13.59 |
|    |       |       |                 | 1.0014 0.3592   | f/sec |           |       |
| 73 | 28829 | 32705 | 655.747 348.221 | 987.408 357.279 | 23    | 14.6309   | 12.11 |
|    |       |       |                 |                 | f/sec |           |       |
| 74 | 28942 | 32724 | 670.378 349.148 | 975.298 355.346 | 23    | 11.8866   | 9.693 |
|    |       |       |                 |                 | f/sec |           |       |
| 75 | 27132 | 32391 | 682.265 347.110 | 965.604 356.957 | 23    | #         | #     |
|    |       |       |                 |                 | f/sec |           |       |



**(b)** 

(c)

Figure 18: Successive of frames

((a) Frame#55,(b) Frame#56, (c) Frame#57).

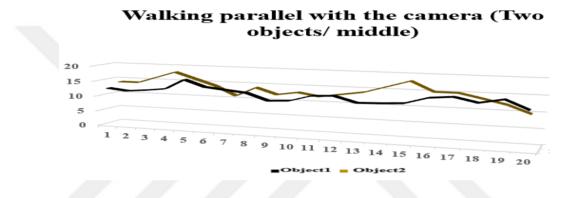



Figure 19: Curve of walking parallel with the camera (Two objects/ middle).

#### 4.1.1.7 Walking parallel with the camera (Two objects/ far):

In table 7 we can observe the change in axis for successive frames, where the X-axis of object(1) is increases and Y-axis of object(1) is decreases, while the X-axis of object(2) is decreases and Y-axis of object(2) is increases ,this indicates to that object(1) is moving from left to right as for object(2) is moving from right to left, also the size of the objects is too small that's mean is the objects are in the far from the camera, as well as we can conclude the motion of objects in the frames and here the motion is walking because the change in the axis is considered a relative or simple change between successive frames.

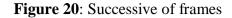

| No. | Area of | Area of | Centre of       | Centre of       | Frame   | Wal     | king   |
|-----|---------|---------|-----------------|-----------------|---------|---------|--------|
| fra | object  | object  | object1(x,y)    | object2(x,y)    | rate    | Obj1    | Obj2   |
| me  | (1)     | (2)     |                 |                 |         |         |        |
| 45  | 14942   | 13959   | 384.187 352.388 | 1.0e+03 *       | 23f/sec | 9.8111  | 9      |
|     |         |         |                 | 1.0287 0.3611   |         |         |        |
| 46  | 14908   | 13884   | 393.998 351.766 | 1.0e+03 *       | 23f/sec | 8.6894  | 11     |
|     |         |         |                 | 1.0194 0.3594   |         |         |        |
| 47  | 14789   | 13768   | 402.687 352.729 | 1.0e+03 *       | 23f/sec | 9.2097  | 9.6502 |
|     |         |         |                 | 1.0083 0.3527   |         |         |        |
| 48  | 14748   | 13890   | 411.897 353.553 | 998.349 358.795 | 23f/sec | 9.7194  | 9.2540 |
| 49  | 14904   | 13796   | 421.617 352.776 | 989.095 366.478 | 23f/sec | 8.8564  | 9.4295 |
| 50  | 14752   | 13608   | 430.473 353.244 | 979.666 365.292 | 23f/sec | 9.9014  | 7.373  |
| 51  | 14841   | 13776   | 440.374 351.128 | 972.293 364.360 | 23f/sec | 8.3863  | 6.9687 |
| 52  | 14750   | 13896   | 448.761 350.131 | 965.324 362.615 | 23f/sec | 10.0429 | 6.2372 |
| 53  | 14939   | 13747   | 458.804 347.376 | 959.087 362.977 | 23f/sec | 10.9311 | 7.5696 |
| 54  | 14791   | 13675   | 469.735 344.109 | 951.517 362.964 | 23f/sec | 10.6626 | 8.5541 |
| 55  | 14888   | 13528   | 480.397 347.725 | 942.963 363.708 | 23f/sec | 10.6067 | 8.8488 |
| 56  | 14737   | 13784   | 491.004 358.671 | 934.114 363.433 | 23f/sec | 10.4471 | 8.2169 |
| 57  | 14611   | 13895   | 501.451 356.202 | 925.898 363.252 | 23f/sec | 9.663   | 8.1425 |
| 58  | 14425   | 13785   | 511.114 355.937 | 917.755 360.938 | 23f/sec | 9.737   | 7.4882 |
| 59  | 14584   | 13955   | 520.851 357.054 | 910.267 360.817 | 23f/sec | 9.0623  | 10.941 |
| 60  | 14798   | 13775   | 529.913 357.508 | 899.326 353.267 | 23f/sec | 8.9294  | 10.572 |
| 61  | 14562   | 13816   | 538.843 358.086 | 888.754 354.934 | 23f/sec | 9.0995  | 9.8998 |
| 62  | 14340   | 13929   | 547.942 358.233 | 878.854 365.714 | 23f/sec | 9.0569  | 9.5187 |
| 63  | 13493   | 14042   | 556.999 357.050 | 869.335 363.739 | 23f/sec | 9.9654  | 7.7915 |
| 64  | 13360   | 14137   | 566.965 353.479 | 861.544 363.794 | 23f/sec | #       | #      |

 Table 7: Results of walking two objects (far).



**(b)** 

(c)



((a) Frame#45,(b) Frame#46, (c) Frame#47).

Walking parallel with the camera (Two objects/ far)

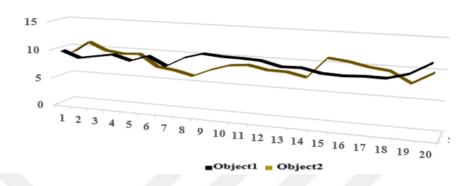



Figure 21: Curve of walking parallel with the camera (Two objects/ far).

## 4.1.2 To/ Away from the camera:

In phase of (To/away) from the camera, we computed the change area for object size between consecutive frames by use:

$$A = (| (area1 - area2) |/ (area1 + area2)).$$
(4.3)

Where,

A <T (for walking/ Normal).

A >T (for running/ Suspicious).

T is threshold value.

## **Example:**

T= Default value.

Size of ((Frame#22-Frame#21)/ (Frame#22+Frame#21))

# ((20522-20470)/(20522+20470)) = 0.0013.

If A < T that mean the activity is normal (walking).

A > T that mean the activity is suspicious (running).

## 4.1.2.1 Walking to the camera (One object):

In table 8 we can observe the change in size between successive frames, where the size of object increases when it approaches the camera and this indicates to that the object is moving towards the camera, as well as we can conclude the motion in the frames and here the motion is walking because the increase in size of object is considered a relative or simple increase between successive frames.

| No of frame | Area  | Centre(x,y)       | Frame    | Walking |
|-------------|-------|-------------------|----------|---------|
|             |       |                   | rate     |         |
| 21          | 20470 | 683.1158 363.0640 | 23 f/sec | 0.0013  |
| 22          | 20522 | 683.8530 362.3088 | 23 f/sec | 0.0035  |
| 23          | 20668 | 684.3574 361.1804 | 23 f/sec | 0.0031  |
| 24          | 20798 | 684.2397 359.5966 | 23 f/sec | 0.0034  |
| 25          | 20941 | 684.4482 359.1196 | 23 f/sec | 0.0033  |
| 26          | 21080 | 683.2540 358.5813 | 23 f/sec | 0.0048  |
| 27          | 21283 | 683.0613 358.3855 | 23 f/sec | 0.0028  |
| 28          | 21401 | 682.0192 359.4144 | 23 f/sec | 0.0032  |
| 29          | 21539 | 680.7539 360.9978 | 23 f/sec | 0.0040  |
| 30          | 21713 | 680.4723 363.9863 | 23 f/sec | 0.0038  |
| 31          | 21879 | 679.5840 366.1875 | 23 f/sec | 0.0007  |
| 32          | 21911 | 678.2155 364.3147 | 23 f/sec | 0.0041  |
| 33          | 22092 | 677.5545 365.1696 | 23 f/sec | 0.0030  |
| 34          | 22224 | 676.2554 366.9817 | 23 f/sec | 0.0031  |
| 35          | 22364 | 675.2836 367.8302 | 23 f/sec | 0.0044  |

Table 8: Results of walking one object to the camera.

| 36 | 22562 | 673.5037 366.1471 | 23 f/sec | 0.0009 |
|----|-------|-------------------|----------|--------|
| 37 | 22606 | 672.9512 362.6579 | 23 f/sec | 0.0049 |
| 38 | 22828 | 671.6052 359.7243 | 23 f/sec | 0.0019 |
| 39 | 22914 | 670.4744 358.8047 | 23 f/sec | 0.0057 |
| 40 | 23179 | 670.8444 358.8000 | 23 f/sec | #      |



**Figure 22:** Example of successive frames ((a)Frame#21, (b) Frame#22, (c) Frame#23).

**(b)** 

(c)

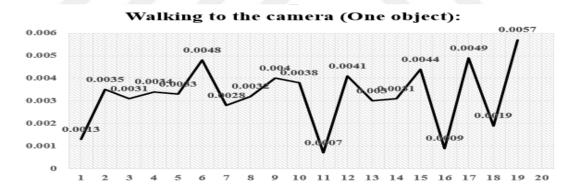



Figure 23: Curve of walking to the camera (One object).

## 4.1.2.2 Walking to the camera (Two objects):

In table 9 we can observe the change in size between successive frames, where the size of objects are increases when they approaches the camera and this indicates to that the objects are moving towards the camera, as well as we can conclude the motion in the frames and here the motion is walking because the increase in size of objects is considered a relative or simple increase between successive frames.

| No.   | Area of   | Area of   | Centre of       | Centre of     | Frame   | Wal    | king   |
|-------|-----------|-----------|-----------------|---------------|---------|--------|--------|
| frame | object(1) | object(2) | object1(x,y)    | object2(x,y)  | rate    | Obj1   | Obj2   |
| 120   | 26785     | 29135     | 656.855 307.177 | 1.0e+03 *     | 23f/sec | 0.0013 | 0.0040 |
|       |           |           |                 | 1.0233 0.3327 |         |        |        |
| 121   | 26856     | 29370     | 655.218 307.008 | 1.0e+03 *     | 23f/sec | 0.0059 | 0.0024 |
|       |           |           |                 | 1.0232 0.3339 |         |        |        |
| 122   | 27172     | 29512     | 653.763 306.457 | 1.0e+03 *     | 23f/sec | 0.0023 | 0.0033 |
|       |           |           |                 | 1.0232 0.3338 |         |        |        |
| 123   | 27297     | 29707     | 651.794 308.213 | 1.0e+03 *     | 23f/sec | 0.0018 | 0.0075 |
|       |           |           |                 | 1.0232 0.3350 |         |        |        |
| 124   | 27393     | 30153     | 650.494 308.118 | 1.0e+03 *     | 23f/sec | 0.0031 | 0.0012 |
|       |           |           |                 | 1.0229 0.3375 |         |        |        |
| 125   | 27566     | 30224     | 649.052 307.263 | 1.0e+03 *     | 23f/sec | 0.0014 | 0.0010 |
|       |           |           |                 | 1.0210 0.3360 |         |        |        |
| 126   | 27643     | 30286     | 647.434 306.612 | 1.0e+03 *     | 23f/sec | 0.0021 | 0.0004 |
|       |           |           |                 | 1.0209 0.3391 |         |        |        |
| 127   | 27762     | 30311     | 645.641 305.319 | 1.0e+03 *     | 23f/sec | 0.0008 | 0.0023 |
|       |           |           |                 | 1.0217 0.3380 |         |        |        |
| 128   | 27807     | 30453     | 644.530 308.874 | 1.0e+03 *     | 23f/sec | 0.0149 | 0.0019 |
|       |           |           |                 | 1.0226 0.3384 |         |        |        |
| 129   | 28648     | 30568     | 643.708 310.097 | 1.0e+03 *     | 23f/sec | 0.0028 | 0.0010 |
|       |           |           |                 | 1.0213 0.3373 |         |        |        |
| 130   | 28809     | 30631     | 639.051 310.990 | 1.0e+03 *     | 23f/sec | 0.0029 | 0.0023 |
|       |           |           |                 | 1.0239 0.3322 |         |        |        |
| 131   | 28978     | 30772     | 637.960 312.582 | 1.0e+03 *     | 23f/sec | 0.0025 | 0.0008 |
|       |           |           |                 | 1.0249 0.3312 |         |        |        |
| 132   | 29126     | 30823     | 636.066 315.701 | 1.0e+03 *     | 23f/sec | 0.0022 | 0.0019 |
|       |           |           |                 | 1.0246 0.3320 |         |        |        |
| 133   | 29254     | 30938     | 636.119 310.740 | 1.0e+03 *     | 23f/sec | 0.0029 | 0.0022 |
|       |           |           |                 | 1.0248 0.3298 |         |        |        |
| 134   | 29426     | 31072     | 633.405 313.123 | 1.0e+03 *     | 23f/sec | 0.0024 | 0.0018 |
|       |           |           |                 | 1.0256 0.3336 |         |        |        |
| 135   | 29569     | 31181     | 629.446 316.547 | 1.0e+03 *     | 23f/sec | 0.0021 | 0.0009 |
|       |           |           |                 | 1.0260 0.3310 |         |        |        |
| 136   | 29692     | 31242     | 628.415 316.080 | 1.0e+03 *     | 23f/sec | 0.0023 | 0.0022 |
|       |           |           |                 | 1.0271 0.3328 |         |        |        |
| 137   | 29828     | 31378     | 623.005 316.247 | 1.0e+03 *     | 23f/sec | 0.0022 | 0.0005 |

**Table 9:** Results of walking two objects to the camera.

|     |       |       |                 | 1.0284 0.3344 |         |        |        |
|-----|-------|-------|-----------------|---------------|---------|--------|--------|
| 138 | 29959 | 31412 | 621.745 309.738 | 1.0e+03 *     | 23f/sec | 0.0033 | 0.0023 |
|     |       |       |                 | 1.0280 0.3353 |         |        |        |
| 139 | 30159 | 31559 | 617.018 308.339 | 1.0e+03 *     | 23f/sec | 0.0020 | 0.0012 |
|     |       |       |                 | 1.0287 0.3370 |         |        |        |



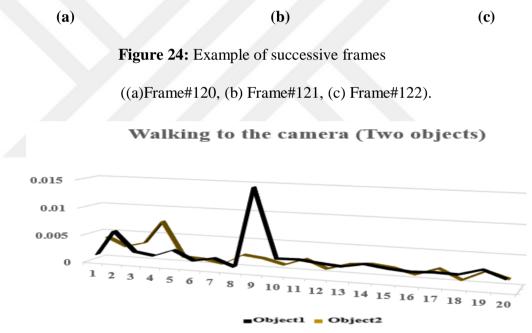



Figure 25: Curve of walking to the camera (Two objects).

## 4.1.2.3 Walking away from the camera (Two objects) :

In table 10 we can observe the change in size between successive frames, where the size of objects are decreases, this indicates to that the objects are moving away from the camera, as well as we can conclude the motion in the frames and here the motion

is walking because the increase in size of objects are considered a relative or simple increase between successive frames.

| No.   | Area of | Area of | Centre of       | Centre of     | Fram   | Walking | 5      |
|-------|---------|---------|-----------------|---------------|--------|---------|--------|
| frame | obj(1)  | obj(2)  | object1(x,y)    | object2(x,y)  | e rate | Obj1    | Obj2   |
| 101   | 74582   | 66770   | 298.727 310.054 | 1.0e+03 *     | 23     | 0.0006  | 0.0012 |
|       | _       |         |                 | 1.0443 0.3549 | f/sec  |         |        |
| 102   | 74486   | 66607   | 308.392 318.180 | 1.0e+03 *     | 23     | 0.0011  | 0.0001 |
|       |         |         |                 | 1.0434 0.3641 | f/sec  |         |        |
| 103   | 74324   | 66586   | 317.891 322.187 | 1.0e+03 *     | 23     | 0.0007  | 0.0013 |
|       |         |         |                 | 1.0419 0.3705 | f/sec  |         |        |
| 104   | 74220   | 66410   | 329.525 327.386 | 1.0e+03 *     | 23     | 0.0010  | 0.0009 |
|       |         |         |                 | 1.0356 0.3746 | f/sec  |         |        |
| 105   | 74070   | 66287   | 339.678 328.299 | 1.0e+03 *     | 23     | 0.0011  | 0.0008 |
|       |         |         |                 | 1.0305 0.3748 | f/sec  |         |        |
| 106   | 73909   | 66180   | 350.160 326.283 | 1.0e+03 *     | 23     | 0.0008  | 0.0012 |
|       |         |         |                 | 1.0234 0.3725 | f/sec  |         |        |
| 107   | 73777   | 66019   | 361.253 324.475 | 1.0e+03 *     | 23     | 0.0006  | 0.0002 |
|       |         |         |                 | 1.0181 0.3677 | f/sec  |         |        |
| 108   | 73633   | 65986   | 372.637 322.094 | 1.0e+03 *     | 23     | 0.0009  | 0.0002 |
|       |         |         |                 | 1.0131 0.3609 | f/sec  |         |        |
| 109   | 73537   | 65848   | 385.406 319.085 | 1.0e+03 *     | 23     | 0.0006  | 0.0010 |
|       |         |         |                 | 1.0107 0.3558 | f/sec  |         |        |
| 110   | 73426   | 65751   | 393.382 327.553 | 1.0e+03 *     | 23     | 0.0007  | 0.0007 |
|       |         |         |                 | 1.0076 0.3509 | f/sec  |         |        |
| 111   | 73330   | 65610   | 413.751 338.969 | 1.0e+03 *     | 23     | 0.0006  | 0.0011 |
|       |         |         |                 | 1.0030 0.3542 | f/sec  |         |        |
| 112   | 73124   | 65500   | 420.459 340.395 | 1.0e+03 *     | 23     | 0.0014  | 0.0008 |
|       |         |         |                 | 1.0053 0.3635 | f/sec  |         |        |
| 113   | 73008   | 65435   | 427.502 347.349 | 1.0e+03 *     | 23     | 0.0007  | 0.0004 |
|       |         |         |                 | 1.0004 0.3634 | f/sec  |         |        |

**Table 10:** Results of walking two objects away from the camera.

| 114 | 72919 | 65357 | 437.379 337.439 | 999.843 367.900 | 23    | 0.0006 | 0.0005 |
|-----|-------|-------|-----------------|-----------------|-------|--------|--------|
|     |       |       |                 |                 | f/sec |        |        |
| 115 | 72796 | 65199 | 443.572 344.170 | 990.732 364.237 | 23    | 0.0008 | 0.0012 |
|     |       |       |                 |                 | f/sec |        |        |
| 116 | 72644 | 65026 | 453.366 346.540 | 987.514 371.925 | 23    | 0.0010 | 0.0013 |
|     |       |       |                 |                 | f/sec |        |        |
| 117 | 72488 | 64931 | 465.797 357.482 | 983.471 368.133 | 23    | 0.0011 | 0.0007 |
|     |       |       |                 |                 | f/sec |        |        |
| 118 | 72320 | 64801 | 467.308 353.457 | 985.738 371.048 | 23    | 0.0012 | 0.0010 |
|     |       |       |                 |                 | f/sec |        |        |
| 119 | 72264 | 64658 | 477.666 355.093 | 986.221 365.128 | 23    | 0.0003 | 0.0011 |
|     |       |       |                 |                 | f/sec |        |        |
| 120 | 72127 | 64457 | 486.694 349.292 | 988.351 370.983 | 23    | #      | #      |
|     |       |       |                 |                 | f/sec |        |        |



**(b)** 

(c)

Figure 26: Example of successive frames.

((a)Frame#101, (b) Frame#102, (c) Frame#103).

Walking away from the camera (Two objects)

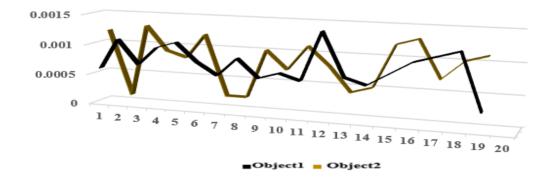



Figure 27: Curve of walking away from the camera (Two objects).

#### 4.2 Running:

In running case we can note the big change in x-axes between successive frames, that big change indicate to the object (human) in running case, the value of x-axis for (frame#47) was 720.0596 for first object and 682.7851 for (frame#48), this huge change in the X-axis proves that activity is a suspicious activity (running).

We also use the same Mathematical Equation that is:

- For (parallel cases):

$$X1 - X2 < T$$
 (for walking/ Normal). (4.5)

X1 - X2 > T (for running/ Suspicious). (4.6)

(Where "T" is a default value).

4.2.1 Parallel with the camera:

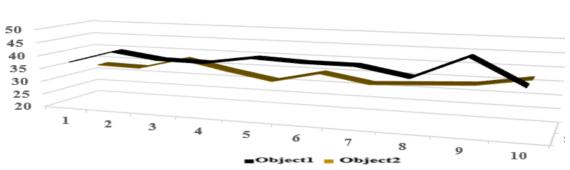
#### 4.2.1.1 Running parallel with the camera (Two objects /near) :

In table 11 we can observe the change in axis for successive frames, where the X-axis of object(1) is increases and Y-axis of object(1) is almost fix, while the X-axis of object(2) is decreases and Y-axis of object(2) is also almost fix ,this indicates to that object(1) is moving from left to right as for object(2) is moving from right to left, also the size of the objects are too big that's mean is the objects are near from the camera, as well as we can conclude the motion in the frames and here the motion is running because the change in the axis is a big change between successive frames.

 Table 11: Results of running two near objects parallel with the camera.

| No.   | Area of | Area of | Centre of       | Centre of       | Fram   | Run     | ning    |
|-------|---------|---------|-----------------|-----------------|--------|---------|---------|
| frame | obj(1)  | obj(2)  | object1(x,y)    | object2(x,y)    | e rate | Obj1    | Obj2    |
| 47    | 67515   | 53735   | 720.059 336.986 | 923.759 374.686 | 23     | 37.2745 | 33.5484 |
|       |         |         |                 |                 | f/sec  |         |         |

| 48 | 67796 | 53865 | 682.785 348.642 | 957.307 368.099 | 23     | 42.0888 | 33.175  |
|----|-------|-------|-----------------|-----------------|--------|---------|---------|
|    |       |       |                 |                 | f/sec  |         |         |
| 49 | 67774 | 54077 | 640.696 337.660 | 990.482 377.452 | 23     | 39.8001 | 37.5175 |
|    |       |       |                 |                 | f/sec  |         |         |
| 50 | 67857 | 53915 | 600.896 326.709 | 1.0e+03 *       | 23     | 39.5764 | 34      |
|    |       |       |                 | 1.0281 0.3715   | f/sec  |         |         |
| 51 | 67757 | 53761 | 561.319 322.027 | 1.0e+03 *       | 23     | 42.2485 | 31      |
|    |       |       |                 | 1.0623 0.3689   | f/sec  |         |         |
| 52 | 67677 | 53886 | 519.071 327.609 | 1.0e+03 *       | 23     | 41.4866 | 35      |
|    |       |       |                 | 1.0935 0.3665   | f/sec  |         |         |
| 53 | 67549 | 54200 | 477.584 336.174 | 1.0e+03 *       | 23     | 41.4117 | 32      |
|    |       |       |                 | 1.1284 0.3710   | f/sec  |         |         |
| 54 | 67199 | 54164 | 436.167 338.872 | 1.0e+03 *       | 23f/se | 38.2619 | 33      |
|    |       |       |                 | 1.1619 0.3767   | с      |         |         |
| 55 | 67397 | 54321 | 397.905 341.804 | 1.0e+03 *       | 23     | 46.3397 | 34      |
|    |       |       |                 | 1.1947 0.3825   | f/sec  |         |         |
| 56 | 67599 | 54636 | 351.566 336.686 | 1.0e+03 *       | 23     | 37.3762 | 37      |
|    |       |       |                 | 1.2280 0.3867   | f/sec  |         |         |
| 57 | 67668 | 54342 | 314.189 349.808 | 1.0e+03 *       | 23     | #       | #       |
|    |       |       |                 | 1.2654 0.3835   | f/sec  |         |         |




**(b)** 

(c)

Figure 28: Example of successive frames

((a)Frame#46, (b) Frame#47, (c) Frame#48).



Running parallel witht the camera(Two objects/near)

Figure 29: Curve of running parallel with the camera (Two objects /near).

## 4.2.1.2 Running parallel with the camera (Two objects /Middle) :

In table 12 we can observe the change in axis for successive frames, where the X-axis of object(1) is increases and Y-axis of object(1) is almost fix, while the X-axis of object(2) is decreases and Y-axis of object(2) is also almost fix ,this indicates to that object(1) is moving from left to right as for object(2) is moving from right to left, also the size of the objects are not big and not small that's mean is the objects are in the middle from the camera, as well as we can conclude the motion in the frames and here the motion is running because the change in the axis is a big change between successive frames.

| No.   | Area of | Area of | Centre of       | Centre of     | Fram   | Rur    | nning |
|-------|---------|---------|-----------------|---------------|--------|--------|-------|
| frame | obj(1)  | obj(2)  | object1(x,y)    | object2(x,y)  | e rate | Obj1   | Obj2  |
| 60    | 28147   | 25415   | 306.648 367.027 | 1.0e+03 *     | 23     | 42.718 | 39    |
|       |         |         |                 | 1.2787 0.3432 | f/sec  |        |       |
| 61    | 28337   | 25516   | 349.366 367.258 | 1.0e+03 *     | 23     | 42.656 | 41    |
|       |         |         |                 | 1.2397 0.3493 | f/sec  |        |       |
| 62    | 28442   | 25600   | 392.023 363.510 | 1.0e+03 *     | 23     | 41.116 | 46    |
|       |         |         |                 | 1.1985 0.3567 | f/sec  |        |       |
| 63    | 28155   | 25486   | 433.139 364.579 | 1.0e+03 *     | 23     | 43.043 | 24    |
|       |         |         |                 | 1.1528 0.3564 | f/sec  |        |       |

**Table 12:** Results of running two objects (middle) parallel with the camera.

| 64 | 28479 | 25219 | 476.183 372.759 | 1.0e+03 *       | 23    | 41.823 | 63      |
|----|-------|-------|-----------------|-----------------|-------|--------|---------|
|    |       |       |                 | 1.1284 0.3488   | f/sec |        |         |
| 65 | 28620 | 25599 | 518.006 374.739 | 1.0e+03 *       | 23    | 28.519 | 34      |
|    |       |       |                 | 1.0653 0.3469   | f/sec |        |         |
| 66 | 28586 | 25400 | 546.526 370.752 | 1.0e+03 *       | 23    | 44.322 | 31      |
|    |       |       |                 | 1.0312 0.3516   | f/sec |        |         |
| 67 | 28548 | 25309 | 590.848 370.284 | 1.0e+03 *       | 23    | 42.941 | 47.7496 |
|    |       |       |                 | 1.0001 0.3571   | f/sec |        |         |
| 68 | 28763 | 25517 | 633.790 367.415 | 952.250 335.380 | 23    | 36.031 | 32.8416 |
|    |       |       |                 |                 | f/sec |        |         |
| 69 | 28673 | 25318 | 669.821 368.071 | 919.408 348.392 | 23    | 38.184 | 38.3836 |
|    |       |       |                 |                 | f/sec |        |         |
| 70 | 28764 | 25556 | 708.006 374.739 | 881.025 356.352 | 23    | 39.519 | 34.9599 |
|    |       |       |                 |                 | f/sec |        |         |
| 71 | 28893 | 25499 | 747.526 370.752 | 846.065 349.346 | 23    | 36.319 | 38.6985 |
|    |       |       |                 |                 | f/sec |        |         |
| 72 | 28955 | 25228 | 783.845 375.517 | 807.366 351.517 | 23    | 39.003 | 41.6059 |
|    |       |       |                 |                 | f/sec |        |         |
| 73 | 29023 | 25403 | 822.848 370.284 | 765.760 357.252 | 23    | 32.973 | 37.3935 |
|    |       |       |                 |                 | f/sec |        |         |
| 74 | 28971 | 25584 | 855.821 368.071 | 728.367 349.253 | 23    | 37.968 | 36.0202 |
|    |       |       |                 |                 | f/sec |        |         |
| 75 | 28794 | 25775 | 893.790 367.415 | 692.347 350.543 | 23    | #      | #       |
|    |       |       |                 |                 | f/sec |        |         |



**(b**)

(c)

Figure 30: Example of successive frames

((a)Frame#60, (b) Frame#61, (c) Frame#62).

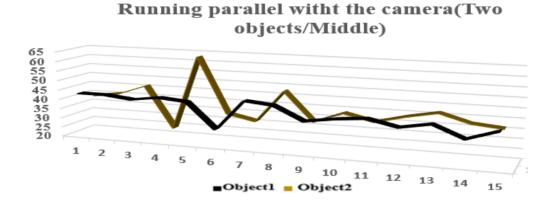



Figure 31: Curve of running parallel with the camera (Two objects /Middle).

#### 4.2.1.3 Running parallel with the camera (Two objects /Far) :

In table 13 we can observe the change in axis for successive frames, where the X-axis of object(1) is increases and Y-axis of object(1) is almost fix, while the X-axis of object(2) is decreases and Y-axis of object(2) is also almost fix ,this indicates to that object(1) is moving from left to right as for object(2) is moving from right to left, also the size of the objects are small that's mean is the objects are far from the camera, as well as we can conclude the motion in the frames and here the motion is running because the change in the axis is a big change between successive frames.

| No.   | Area of | Area of | Centre of       | Centre of       | Fram   | Run     | ning   |
|-------|---------|---------|-----------------|-----------------|--------|---------|--------|
| frame | obj(1)  | obj(2)  | object1(x,y)    | object2(x,y)    | e rate | Obj1    | Obj2   |
| 70    | 12267   | 11341   | 604.002 370.767 | 1.0e+03 *       | 23     | 43.9497 | 45     |
|       |         |         |                 | 1.1462 0.3601   | f/sec  |         |        |
| 71    | 12393   | 11267   | 647.951 364.657 | 1.0e+03 *       | 23     | 42.8897 | 44     |
|       |         |         |                 | 1.1011 0.3613   | f/sec  |         |        |
| 72    | 12359   | 11343   | 690.841 367.087 | 1.0e+03 *       | 23     | 38.2522 | 36     |
|       |         |         |                 | 1.0576 0.3565   | f/sec  |         |        |
| 73    | 12428   | 11441   | 729.093 368.964 | 1.0e+03 *       | 23     | 39.3690 | 36.143 |
|       |         |         |                 | 1.0218 0.3590   | f/sec  |         |        |
| 74    | 12294   | 11530   | 768.462 371.538 | 984.856 354.951 | 23     | 43.3567 | 34.858 |
|       |         |         |                 |                 | f/sec  |         |        |

**Table 13**: Results of running two objects (far) parallel with the camera.

| 75 | 12316 | 11375 | 811.819 368.280 | 949.998 358.322 | 23    | 35.1996 | 35.051 |
|----|-------|-------|-----------------|-----------------|-------|---------|--------|
|    |       |       |                 |                 | f/sec |         |        |
| 76 | 12376 | 11161 | 847.019 365.122 | 914.947 353.453 | 23    | 39.1066 | 36.663 |
|    |       |       |                 |                 | f/sec |         |        |
| 77 | 12337 | 11347 | 886.125 363.245 | 878.283 355.477 | 23    | 40.2797 | 38.724 |
|    |       |       |                 |                 | f/sec |         |        |
| 78 | 12277 | 11259 | 926.405 365.359 | 839.559 358.841 | 23    | 37.0024 | 39.971 |
|    |       |       |                 |                 | f/sec |         |        |
| 79 | 12462 | 11430 | 963.407 368.945 | 799.587 357.686 | 23    | 37.5922 | 41.069 |
|    |       |       |                 |                 | f/sec |         |        |
| 80 | 12259 | 11398 | 1.0e+03 *       | 758.518 358.102 | 23    | 39      | 35.618 |
|    |       |       | 1.0019 0.3677   |                 | f/sec |         |        |
| 81 | 12383 | 11192 | 1.0e+03 *       | 722.899 358.467 | 23    | 35      | 40.432 |
|    |       |       | 1.040 366.914   |                 | f/sec |         |        |
| 82 | 12495 | 11233 | 1.0e+03 *       | 682.467 355.582 | 23    | 38      | 41.414 |
|    |       |       | 1.075 367.433   |                 | f/sec |         |        |
| 83 | 12239 | 11501 | 1.0e+03 *       | 641.052 356.447 | 23    | 41      | 38.585 |
|    |       |       | 1.113 370.293   |                 | f/sec |         |        |
| 84 | 12376 | 11476 | 1.0e+03 *       | 602.467 354.582 | 23    | #       | #      |
|    |       |       | 1.154 370.143   |                 | f/sec |         |        |



**(b)** 

(c)

Figure 32: Example of successive frames

((a)Frame#70, (b) Frame#71, (c) Frame#72).



Figure 33: Curve of running parallel with the camera (Two objects /Far).

# 4.2.2 To/ Away from the camera:

#### 4.2.2.1 Running away from the camera (Two objects):

In table 14 we can observe the change in size between successive frames, where the size of object is decreases, this indicates to that the object is a moving away from the camera, as well as we can conclude the motion of objects in the frames and here the motion is running because the change in the size of objects is a big change between successive frames.

| No.   | Area of   | Area of   | Centre of       | Centre of     | Frame | Wa     | lking  |
|-------|-----------|-----------|-----------------|---------------|-------|--------|--------|
| frame | object(1) | object(2) | object1(x,y)    | object2(x,y)  | rate  | Obj1   | Obj2   |
| 46    | 55456     | 54818     | 283.633 361.536 | 1.0e+03 *     | 23    | 0.0121 | 0.0145 |
|       |           |           |                 | 1.1773 0.3790 | f/sec |        |        |
| 47    | 54127     | 53247     | 311.887 362.968 | 1.0e+03 *     | 23    | 0.0051 | 0.0090 |
|       |           |           |                 | 1.1628 0.3734 | f/sec |        |        |
| 48    | 53576     | 52294     | 335.118 355.330 | 1.0e+03 *     | 23    | 0.0099 | 0.0102 |
|       |           |           |                 | 1.1500 0.3743 | f/sec |        |        |

Table 14: Results of running two objects away from the camera.

| 49 | 52526 | 51241 | 362.345 350.386 | 1.0e+03 *     | 23    | 0.0104 | 0.0106 |
|----|-------|-------|-----------------|---------------|-------|--------|--------|
|    |       |       |                 | 1.1421 0.3757 | f/sec |        |        |
| 50 | 51448 | 50170 | 386.471 353.493 | 1.0e+03 *     | 23    | 0.0104 | 0.0112 |
|    |       |       |                 | 1.1302 0.3655 | f/sec |        |        |
| 51 | 50390 | 49062 | 409.684 358.096 | 1.0e+03 *     | 23    | 0.0107 | 0.0111 |
|    |       |       |                 | 1.1236 0.3612 | f/sec |        |        |
| 52 | 49319 | 47981 | 433.518 354.992 | 1.0e+03 *     | 23    | 0.0109 | 0.0107 |
|    |       |       |                 | 1.1131 0.3520 | f/sec |        |        |
| 53 | 48255 | 46965 | 455.300 355.267 | 1.0e+03 *     | 23    | 0.0109 | 0.0113 |
|    |       |       |                 | 1.1033 0.3482 | f/sec |        |        |
| 54 | 47211 | 45914 | 478.284 356.990 | 1.0e+03 *     | 23    | 0.0117 | 0.0112 |
|    |       |       |                 | 1.0943 0.3431 | f/sec |        |        |
| 55 | 46119 | 44895 | 491.684 357.575 | 1.0e+03 *     | 23    | 0.0116 | 0.0122 |
|    |       |       |                 | 1.0858 0.3431 | f/sec |        |        |
| 56 | 45061 | 43815 | 503.459 351.475 | 1.0e+03 *     | 23    | 0.0119 | 0.0124 |
|    |       |       |                 | 1.0763 0.3422 | f/sec |        |        |
| 57 | 43999 | 42741 | 518.398 326.571 | 1.0e+03 *     | 23    | 0.0124 | 0.0120 |
|    |       |       |                 | 1.0638 0.3556 | f/sec |        |        |
| 58 | 42921 | 41731 | 538.000 338.575 | 1.0e+03 *     | 23    | 0.0131 | 0.0128 |
|    |       |       |                 | 1.0584 0.3673 | f/sec |        |        |
| 59 | 41811 | 40678 | 553.706 336.871 | 1.0e+03 *     | 23    | 0.0132 | 0.0128 |
|    |       |       |                 | 1.0490 0.3634 | f/sec |        |        |
| 60 | 40723 | 39646 | 567.087 332.748 | 1.0e+03 *     | 23    | #      | #      |
|    |       |       |                 | 1.0442 0.3635 | f/sec |        |        |



**(b)** 

(c)

Figure 34: Example of successive frames

((a)Frame#46, (b) Frame#47, (c) Frame#48).

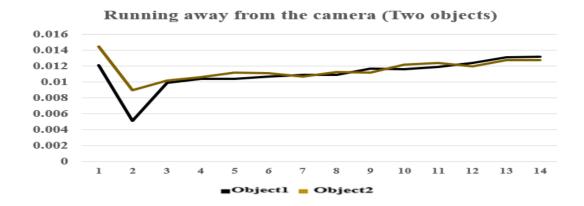


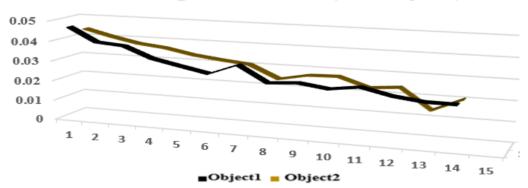

Figure 35: Curve of running away from the camera (Two objects).

## **4.2.2.2 Running to the camera(Two objects):**

In table 15 we can observe the change in size between successive frames, where the size of objects are increases when they approaches the camera and this indicates to that the objects are moving towards the camera, as well as we can conclude the motion in the frames and here the motion is running because the increase in size of objects is a big increase between successive frames.

|       |           |           |                 | ~ ~ ~           | -     | -      |        |
|-------|-----------|-----------|-----------------|-----------------|-------|--------|--------|
| No.   | Area of   | Area of   | Centre of       | Centre of       | Frame | Run    | ning   |
| frame | object(1) | object(2) | object1(x,y)    | object2(x,y)    | rate  | Obj1   | Obj2   |
| 40    | 11048     | 11003     | 786.471 334.169 | 967.695 343.485 | 23    | 0.0468 | 0.0440 |
|       |           |           |                 |                 | f/sec |        |        |
| 41    | 12134     | 12016     | 788.700 338.679 | 967.253 343.936 | 23    | 0.0398 | 0.0406 |
|       |           |           |                 |                 | f/sec |        |        |
| 42    | 13140     | 13032     | 788.167 338.769 | 966.663 341.310 | 23    | 0.0387 | 0.0378 |
|       |           |           |                 |                 | f/sec |        |        |
| 43    | 14198     | 14057     | 789.411 338.461 | 960.915 349.696 | 23    | 0.0333 | 0.0363 |
|       |           |           |                 |                 | f/sec |        |        |
| 44    | 15176     | 15115     | 782.810 334.055 | 966.439 353.014 | 23    | 0.0304 | 0.0336 |
|       |           |           |                 |                 | f/sec |        |        |
| 45    | 16128     | 16167     | 786.310 338.588 | 968.438 360.993 | 23    | 0.0276 | 0.0319 |
|       |           |           |                 |                 | f/sec |        |        |
| 46    | 17043     | 17232     | 783.836 347.800 | 965.871 367.231 | 23    | 0.0328 | 0.0305 |
|       |           |           |                 |                 | f/sec |        |        |
| 47    | 18198     | 18316     | 783.477 354.018 | 964.288 365.318 | 23    | 0.0250 | 0.0243 |
|       |           |           |                 |                 | f/sec |        |        |

Table 15: Results of running of two objects to the camera.


| 48 | 19133 | 19229 | 783.165 354.903 | 968.916 368.567 | 23    | 0.0260 | 0.0270 |
|----|-------|-------|-----------------|-----------------|-------|--------|--------|
|    |       |       |                 |                 | f/sec |        |        |
| 49 | 20154 | 20295 | 780.456 360.250 | 967.772 369.877 | 23    | 0.0241 | 0.0274 |
|    |       |       |                 |                 | f/sec |        |        |
| 50 | 21148 | 21440 | 779.633 373.962 | 964.286 377.150 | 23    | 0.0260 | 0.0229 |
|    |       |       |                 |                 | f/sec |        |        |
| 51 | 22276 | 22446 | 781.869 360.033 | 959.746 378.581 | 23    | 0.0228 | 0.0241 |
|    |       |       |                 |                 | f/sec |        |        |
| 52 | 23316 | 23554 | 769.118 369.283 | 975.850 366.906 | 23    | 0.0211 | 0.0142 |
|    |       |       |                 |                 | f/sec |        |        |
| 53 | 24319 | 24232 | 770.787 359.289 | 963.578 368.217 | 23    | 0.0210 | 0.0206 |
|    |       |       |                 |                 | f/sec |        |        |
| 54 | 25361 | 25252 | 774.374 354.294 | 967.938 369.300 | 23    | #      | #      |
|    |       |       |                 |                 | f/sec |        |        |



(a) (b) (c)

Figure 36: Example of successive frames

((a)Frame#40, (b) Frame#41, (c) Frame#42).



Running to the camera(Two objects)

Figure 37: Curve of running to the camera (Two objects).

In next figure (38) reflected to us the GUI window for this system:

| <pre>image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: image: imag</pre> | Compared and a set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the se | And And And And And And And And And                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.8<br>0.0<br>0.4<br>0.2<br>0<br>0<br>0.1<br>0.2 |             |             |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------|-------------|--------------|
| <pre>Interpret = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = transmit = trans</pre> | Classifier Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Contrast of Co | Marken Bages<br>Teal more to get<br>TADAUART (decor/inal projectypy)<br>Skin 2 (godenom 2 (surger<br>decor/inal projectypy)<br>skin 3 (godenom 2 (surger)<br>decor/inal sectors<br>(surger)<br>skin 3 (godenom 2 (surger)<br>skin 3 (godenom 2 (surg | 0.6 -<br>0.4 -<br>0.2 -<br>0 0 0.1 0.2           | 0.3 0.4 0.5 | 0.0 0.7 0.0 | 3 0.0 1      |
| Waithama<br>Saithama<br>00.174mg     160     blos = step (blokhalysis, filerendivorground);<br>00.174mg     161       00.174mg     162     max = size (block, 10);<br>160.174mg     "Command Window       00.74mg     164     "Command Window       00.74mg     164     "Command Window       00.74mg     K     *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ngBoxOutputFort', true,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Push                                             | Ese         | e Cia       | assification |
| running / put/button5. Callback In 194 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | wtd01.780ng         160           bb0x = step(blokhanlysin, filerendrorgroup           wtd01.770ng         161           wtd01.770ng         161           wtd01.770ng         161           wtd01.770ng         163           wtd01.770ng         164           wtd01.770ng         170           wtd01.770ng         170           wtd01.770ng<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | box, 'Color', 'red');                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |             |             | ۲            |

Figure 38: GUI window.

After applied this system the GUI window will be as shown in figure(39).

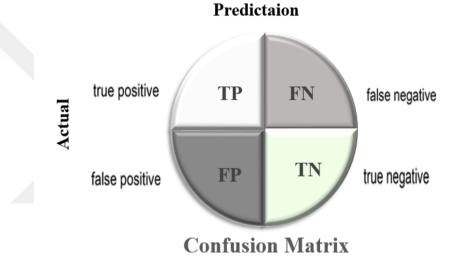

|        | running                                                                                    | <br> | × |
|--------|--------------------------------------------------------------------------------------------|------|---|
|        | DEN. T. COZ                                                                                |      |   |
| Browse | C:\Program Files\MATLAB\R2016b\bin\win64\MATLAB\last_videos2\final<br>project\rpn\rpn1.MOV |      |   |
| Play   | Exit Classification                                                                        |      |   |

Figure 39: GUI after apply our system.

# 4.3 Confusion Matrix:

The matrix of confusion clarify the results that obtained and put in a matrix with the experiments that were performed to calculate the accuracy ratio and evaluation the performance, where the columns in matrix represent the expected cases for a particular category, either columns represent the actual cases corresponding for that expected cases[20] see figure (40). Where this matrix has 4 results which are:

- True Positive "TP": refers to positive statuses that identified by the system correctly.
- False Positive "FP": Refers to negative statuses that identified by the system incorrectly as positive.
- False Negative "FN": Refers to positive statuses that identified by the system incorrectly as negative.
- True Negative "TN": Refers to negative statuses that identified by the system correctly.



**Figure 40: Confusion Matrix.** 

## **CHAPTER 5**

#### **CONCLUSION AND FUTURE WORK**

This proposed system addressed the suspicious activities indoor by fixed camera all movies were in MOV format all videos consists of 23 frames per second., where we discussed most cases of running and walking (parallel with the camera" right to left/ left to right", To/away from the camera), we applied all previous cases on one and two objects that was by using background subtraction algorithm, thresholding and used blob analyse for track the object, we have faced many challenges such as reflection, shadows and lighting, these problems have been eliminated by using morphological operations like dilation and erosion. The experimental results show us that our system gives good results in detecting suspicious activities (running) and distinguish them from suspicious activities (walking). Where the results gave us a huge difference between the different cases, for parallel cases with the camera or in cases of (to or away from the camera), we note that the X-axis relative to the cases of the parallel with camera increases or decreases depending on the direction of the object also note that the size of the object varies depending on the location of the object of the camera. So by all these differences we can know if this activity is suspicious or non-suspicious.

## **FUTURE WORK**

In video surveillance field there are open area for researchers, we tried to cover all cases of running and walking activities and computed speed and size of all objects in the movies to detect the suspicious/non-suspicious activities. The following points can be considered as supplementary research for this research:

1. Cover more suspicious activities such as fighting, jumping...etc.

- 2. Capture the movies by using moving cameras instead of fixed cameras, also from different sides, furthermore can be use more than one camera to capture the movie at same time.
- 3. The possibility of connecting the movies with a mobile phone application and trigger alarm or send warning messages to security agencies in case of detected suspicious activities.
- 4. It can be extended the tracking part by using "Kalman filter" to provide track of each object in frame.



#### **REFERENCES:**

- N. Ihaddadene and C. Djeraba., (2008), "Real-time crowd motion analysis", IEEE, pp 1-4.
- 2. K. Yokoi, T. Watanabe, and S. Ito (2009), "Surveillance *Event Detection Task*", pp 1-10.
- W. Hu, T. Tan, L. Wang, and S. Maybank (2004), "A Survey on Visual Surveillance of Object Motion and Behaviours". IEEE, Vol: 34, Issue 3, pp 334 – 352.
- Divya J, M.E, G. H, Pune, Prof. Dr. R.S.Bichkar (2015)," Automatic Video Based Surveillance System for Abnormal Behaviour Detection". IJSR, Vol: 4 Issue: 7, pp 1743- 1747.
- Kaushik Deb, Sayem Imtiaz, and Priyam Biswas (2014)," A Motion Region Detection and Tracking Method", vol. 4, no. 1, pp79-90.
- Prof. D. D. Dighe, Ms. K. V. Patil (2014), "Background Subtraction Algorithm Based Human Behaviour Detection ", Vol. 4, Issue 7( Version 3), pp.60-64, ijera.
- Srinivasa Rao Chalamala, Nisha Pal, Suneeta Agarwal (2015), "Detection and Tracking of Moving Objects in Surveillance System". Volume.14, pp 2321-1814, ISBN (Print): 978-1-62951-946-3.

- R.Naveen Kumar and Dr.S.Chandrakala (2016), "DETECTING AGGRESSIVE HUMAN BEHAVIOR IN PUBLIC ENVIRONMENTS "Department of computer science and engineer, Rajalakshmi Engineering College Chennai, Tamil nadu. ISSN: 0976-1353 Volume 22 Issue 2.
- **9.** Pooja N S., (2015), "Suspicious Group Event Detection for Outdoor Environment", (IJMTER), Volume 0X, Issue 0Y, pp 611-618.
- 10. C.Srinivas Rao, P.Darwin (2012), "Frame Difference and Kalman Filter Techniques for Detection of Moving Vehicles in Video Surveillance", Vol. 2, Issue 6, pp.1168-1170, (IJERA).
- **11. D STALIN ALEX, Dr. AMITABH WAHI, (2014),** "BSFD: BACKGROUND SUBTRACTION FRAME DIFFERENCE ALGORITHM FOR MOVING OBJECT DETECTION AND EXTRACTION", Vol. 60 No.3, JATIT & LLS.
- **12. Christopher M. Bishop, M. Jordan, J.Kleinberg, B. Schölkopf (2006)**, *"Pattern Recognition and Machine Learning"* Springer.
- 13. Yung-Tai Hsu, Hong-Yuan Mark Liao, Jun-Wei Hsieh, Chih-Chiang Chen. (2008), "Video-Based Human Movement Analysis and Its Application to Surveillance Systems", IEEE, VOL. 10, Issue: 3, pp.372-384.
- 14. Chitra Hegde, Shakti Singh Chundawat, Divya S N (2016), "Unusual Event Detection Using Mean Feature Point Matching Algorithm". Vol.6, pp.1595-1601,ISSN: 2088-8708, DOI: 10.11591/ijece.v6i4.10179.
- **15. R.T. Collins and et al** (2000), "A system for video surveillance and monitoring". Technical Report CMU-RI-TR-00-12, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.

- **16. Mohamed Elhoseiny, Amr Bakry, Ahmed Elgammal (2013),** "Multiclass Object Classification in Video Surveillance Systems Experimental Study", IEEE, USA. Vol 2, pp. 61–66.
- **17. Srinivasa Rao Chalamala and Prasanna Kumar (2016),** "A Probabilistic Approach for Human Action Recognition using Motion Trajectories", IEEE, India, pp 185-190.
- **18. Amel Ben Mahjoub and Mohamed Atri (2016),** *"Human action recognition using RGB data"* Tunisia, Monastir University, IEEE, Tunisia, pp 83-87.
- 19. Yang Li, Qin Lu, Wusheng Luo (2016), "Adaptive temporal sampling for real-time human action recognition", College of Mechatronics Engineering and Automation National University of Defense Technology Changsha, China, IEEE, pp 1306-1310.
- 20. <u>https://www.scribd.com/document/317546158/Confusion-Matrix-based-</u> <u>Feature-Selection</u>.
- 21. <u>https://www.mathworks.com/help/vision/examples/detecting-cars-using-gaussian-mixture-models.html</u>.
- 22. S. Y. Elhabian, K. M. E1-Sayed, S. H. Ahmed (2008), "Moving object detection in spatial domain using background removal techniques- State-of-Art", Recent Patents on Computer Science, vol. 1, no.1.
- 23. Naveen Javed, O. & Shah, M. (2002), "Tracking and Object Classification for Automate Surveillance," Proceedings of the 7th European Conference on Computer Vision, Part-IV, pp. 343-357.
- 24. Komal Rahangdale, Mahadev Kokate (2016), "EVENT DETECTION USING BACKGROUND SUBTRACTION FOR SURVEILLANCE SYSTEMS", Vol. 1, Issue 4, ISSN No. 2455-2143, Pages 25-28.

# **CURRICULUM VITAE**

Surname, Name: Salem, Fathia. Date and Place of Birth: 12 July 1983, Libya. Marital Status: Married. Phone: 545 834 3701. Email: <u>almnfy\_fat@yahoo.com</u>.

# **EDUCATION**

| Degree | Institution            | Year of Graduation |
|--------|------------------------|--------------------|
| M.Sc.  | Çankaya Unıv.,Computer | 2017               |
|        | Engneering.            |                    |
| B.Sc.  | Omar Al-Mukhtar Univ., | 2005               |
|        | Computer Science       |                    |

## WORK EXPERINCE.

| Year | Place                        | Enrollment   |
|------|------------------------------|--------------|
| 2010 | Omar Al-Mukhtar              | Demonstrator |
|      | Univ.,Department of Computer |              |
|      | Science                      |              |
| 2007 | El-Galaa Secondary School    | Teacher      |

# FORGEIN LANGUAGES

English.

# HOBBIES

Reading, Travel.