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ABSTRACT 
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YAVUZ, Samet 
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Supervisor: Asst. Prof. Dr. Özgün SELVİ 

November 2017, 63 pages 

 

 

 

In this thesis, a novel over-constrained parallel manipulator for arm rehabilitation is 

introduced. This manipulator is a planar-spherical parallel manipulator with five 

degrees of freedom and four legs for rehabilitation of forearm (wrist, elbow and 

shoulder joints). First of all, the desired motions are specified. Then, manipulator 

geometry is proposed to ensure these motions. Inverse kinematic solutions are 

performed for describing the motion of actuators. Jacobian analysis is done to define 

singularity conditions and to obtain force-torque relation between user and the 

manipulator. The manipulator optimized dimensionally by using Firefly Algorithm to 

provide motions in workspace boundaries without any singularity condition. Obtained 

dimensional parameters are tested and whole workspace is scanned with several 

simulations to ensure whether the manipulator provide the given motions in specified 

workspace boundaries. 

 

Keywords: Rehabilitations robotics, over-constrained manipulators, kinematic 

analysis, dimensional optimization  
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ÖZ 

 

 

REHABİLİTASYON AMAÇLI PARALEL EYLEYİCİLERİN TASARIMI VE 

EN İYİLEMESİ 

 

 

 

YAVUZ, Samet 

Yüksek Lisans, Makine Mühendisliği Ana Bilim Dalı 

Tez Yöneticisi: Yrd. Doç. Dr. Özgün SELVİ 

Kasım 2017, 63 sayfa 

 

 

 

Bu tezde kol rehabilitasyonunda kullanmak amacıyla yeni bir aşırı-tanımlı paralel 

eyleyici tanıtılmıştır. Bu eyleyici beş serbestlik derecesine ve dört bacağa sahip 

düzlemsel-küresel bir parelel eyleyicidir. Öncelikle, eyleyicinin yapması istenen 

hareketler tanımlanmıştır. Daha sonra bu hareketleri sağlayacak eyleyici geometrisi 

belirlenmiştir. Ters kinematik çözümler eyleticilerin davranışlarını saptamak amacıyla 

gerçekleştirilmiştir. Tekilsellik koşullarını saptamak ve ortam ile eyleticiler arasında 

kuvvet-tork dengesini kurabilmek için Jakobian analizi gerçekleştirilmiştir. Ateş 

Böceği Algoritması kullanılarak, eyleyici boyutsal olarak eniyilenmiştir. Elde edilen 

boyutsal parametreler çalışma alanı sınırları içerisinde çeşitli testler benzetim yapılarak 

gerçekleştirilmiştir. 

 

Anahtar Kelimeler: Rehabilitasyon robotları, aşırı-kapalı eyleyiciler, kinematik 

analiz, boyutsal eniyileme   
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1. INTRODUCTION 

 

1.1. Types of Manipulators 

 

Manipulators are devices designed to perform special tasks such as carrying objects, 

pick and place applications, welding, painting, assembling, entertainment, medical 

cure, surgery etc. Basic classification for manipulators can be lay out according to 

theirs DOFs, kinematic structures, actuator types, workspace geometry and motion 

characteristics [1]. 

Normally, 3 dimensional movements require 6 DOFs. If a manipulator can freely move 

towards and rotate in anyway in 3 dimensional space, we can call this type of a 

manipulator as general purpose manipulator. If this manipulator has more than 6 DOFs 

it’s called redundant and with less than 6 DOFs it’s called deficient manipulator. 

Manipulators also defined by types of actuator used to drive them such as electric, 

hydraulic and pneumatic. A volume scanned by an end-effector of a manipulator called 

workspace. Manipulators can be classified with shape of their workspace too. This 

classification can be made by taking into consideration the used joint types. Three 

perpendicular prismatic joints give Cartesian workspace. If we replace one prismatic 

joint with a revolute joint, then it’s workspace geometry will be a cylinder. If replace 

this joint with a spherical joint instead of a revolute one, this time it’s workspace will 

be a sphere. Motion type is one of the classification subject for manipulators. If a 

manipulator operates in a plane, we can call it as a planar manipulator. If this 

manipulator consists of only spherical links, it is a spherical manipulator. If this 

manipulator both performs planar and spherical motion this manipulator is a spatial 

manipulator. The most well-known classification for manipulator is according to their 

kinematic structures. In this classification, how manipulators connected to the ground 

is taken into consideration. We can examine manipulators in kinematic structure topics 

as serial, parallel and hybrid manipulators. In this thesis, types of proposed manipulator 

in listed categories is given Table 1. below.  

 

1.1.1. Serial Manipulators 

 

Serial manipulators have joints which are attached end to end (Figure 1). Because of 

their structural resemblance to the human arm, they also called as robotic arms. 

Generally, they consist of revolute and prismatic joints. There must be an actuator 

attached at each joints. Because of actuators are attached to make a chain each actuator 
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supports the movement of the next actuator. They mounted ground at a single point so 

their free ends can scan a large workspace. It is easy to solve their direct kinematic 

equations. In addition, they have high dexterity.  

 

Table 1. Types of manipulators  

DOFs 6 DOFs Redundant Deficient 

   

Actuators Electric Hydraulic Pneumatic 

   

Workspace Cartesian Cylindrical Spherical 

   

Motion Planar Spherical Spatial 

   

Structure Serial Parallel Hybrid 

   

 

 

 

Figure 1. A Serial manipulator [2] 

 

Compared to these advantages, joint failures of each actuator are added and effect the 

end-effector as a sum. Their load carrying capacity is low with respect to their weight 

and they have high inertia. Also, it is hard to solve their inverse kinematic equations.  
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1.1.2. Parallel Manipulators 

 

Parallel manipulators have moving platforms which are connected to the ground with 

several chains (Figure 2). Their chains are short and simple. This causes to gain extra 

rigidity to the parallel manipulators. Failures do not affect the moving platform as sum 

like serial manipulators. There is no need to carry the load of the actuators because they 

are attached to the ground. Fast systems with lightweight links and small actuators or 

systems with high load carry capacity can be designed.  

 

 

Figure 2. A Parallel manipulator [3] 

 

Parallel manipulators have limited workspaces. Because of singularity, either they gain 

one or more DOF and lose their rigidity or lose one or more DOF and gain infinite 

rigidity. It is hard to solve their direct kinematic equations, so it is reasonable to 

determine a workspace and search the dimensional parameters to fulfill this workspace. 

Dimensional optimization is required to avoid singularity conditions. At this point 

optimization algorithms should be used.  
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1.1.3. Hybrid Manipulators 

 

They consist of parallel and serial manipulators combination. Hybrid manipulators 

have both open and closed chains. Hybrid manipulators can be defined as modular 

manipulators.  This means that hybrid manipulators can be widen by adding extra 

modules. Each module has hemispherical workspace and this situation cause rising of 

dexterous symmetrical workspace [4]. They could contain advantages and 

disadvantages of both parallel and serial manipulators (Figure 3).  

 

 

Figure 3. A Hybrid manipulator [4] 

 

1.2. Applications of Parallel Manipulators 

 

Parallel manipulators can find various application areas such as simulation, industrial, 

medical, rehabilitation etc. As a simulation manipulator, first and the most popular 

parallel manipulator was proposed by Stewart in 1965 [5] (Figure 4.a). This 

manipulator has six pods, six spherical and universal joints and six DOFs. After that, 

Klaus Capper patented an octahedral hexapod parallel manipulator to be used as 

simulation manipulator (Figure 4.b). 3 DOFs spherical parallel manipulator was used 

as a camera orientation device and a simulator (Figure 4.c).  
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                       (a)                                     (b)                                         (c) 

 

Figure 4. Parallel manipulators for simulation, (a) Stewart platform [5], (b) Octahedral 

hexapod parallel manipulator [6], (c) 3 DOFs spherical manipulator [45] 

In industrial area, one of the first designs by William L. Polland is a 5 DOFs which has 

3 DOFs for positioning and 2 DOFs orientation, novel parallel automatic spray painting 

manipulator in 1942 [7] (Figure 5.a).  In 1954, Dr. Eric Gough proposed a 6 DOFs 

parallel manipulator for universal tyre testing machine [8] (Figure 5.b). Stewart 

platform which was mentioned above is used for underground excavation device in 

milling machines. Parallel cube manipulators are used in places which requires micro 

motion, in remote center compliance devices, for assembling processes. Hexapods are 

one another type of industrial parallel manipulators and they are used in manufacturing, 

inspection and research areas. Delta robots are used in industrial areas such as 

packaging, assembly of electrical components, pick and place applications so on 

(Figure 5.c). One other type of parallel manipulator is cable-driven ones and their 

application areas can be listed as; cutting, excavating and grading, shaping and 

finishing, lifting and positioning [9] (Figure 5.d). Main applications areas for parallel 

manipulators can be listed as; welding, grinding, cutting, inspection, material handling, 

pipe fitting, oil-well firefighting, ship building, bridge construction, air craft 

maintenance, ship-to-ship cargo handling, steel erection etc [9]. 
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(a)                                 (b)                         (c)                             (d) 

 

Figure 5. Industrial applications of parallel manipulator, (a) automatic spray painting 

manipulator [7], (b) universal tyre testing machine [8], (c) delta robot [5], (d) a cable-

driven parallel manipulator [9] 

 

Medical application is one of the application areas of the parallel manipulators. Having 

better precision and stiffness than serial manipulators make parallel manipulators 

popular in medical applications such as certain aneurysms, brain tumor, cervical spine 

problems, body joint surgery operations. Medical applications of parallel manipulators 

can be shown in Figure 6 below. 

 

 

(a)                                   (b)                                                  (c) 

 

Figure 6. Medical applications of parallel manipulators [10], (a) Brain surgery bot, (b) 

knee surgery bot, (c) delta robot application for brain scanning 
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1.3. Literature Survey on Rehabilitation Applications in Robotics 

 

The meaning of rehabilitation is recovery of injured body parts. Rehabilitation can be 

applied to tissues which have activity limitations and muscle-bone injuries by using 

heat, electrical current, human assist or robotic systems. These kind of disabilities could 

come from birth and they could be happened later as well. Rehabilitation is a process 

includes two phases diagnosis and therapy. In addition to these phases, patients should 

be supported psychologically. Rehabilitation can be applied following situations such 

as; neurologic injuries, paralysis, orthopedic problems, shoulder-elbow-wrist joint 

variables, tension on shoulder-back muscles, muscle spasms, backache, spinal disc 

herniation, neck arthritis, position disorders, kyphosis, hip-knee injuries, bone losses, 

limitation of movement etc. 

The most common application of physiotherapy is electrotherapy. It is expected 

physical, chemical or mechanical effect on the application part of human body with 

applied electrical current. In this situation, it is seemed real time movements of muscles 

are more useful. Also, there is always risk of burn because of electrical current. 

Physiotherapy is a branch that requires much repetitions to be effective and has been 

practiced for a long time period with physiotherapists’ own efforts and direct 

interventions.  In today’s world, by the usage of rehabilitation robots and mechanisms, 

the rehabilitation motions are performed more effectively [46]. There aren’t many 

robots for the orthopedic treatment of the upper extremity on the market, the ones that 

are for this treatment usually have not considered implementing the daily living 

activities applications and can’t control multiple joints.  

The upper extremity is frequently exposed to injuries because it is a region where most 

of the activities of daily living take place. As it is an anatomically complex structure, 

the movement systems used in rehabilitation are more limited than the lower 

extremities. With the prolongation of human life and the increase of the population 

over the age of 65 on the world, the likelihood of physical health problems has 

increased [11]. Physiotherapy and rehabilitation aim to increase the life quality by 

disposing or shortening physical disabilities and to reach maximum independence in 

daily life activities. For a long time, rehabilitation movements have been carried out by 

physiotherapists’ own power and direct intervention, and today more effective and 

controlled methods have emerged in the world. The use of rehabilitation robots is an 

area where people can perform daily living activities in the home or business 

environment [12]. A large number of robots have been developed for upper extremity 

rehabilitation because of this region (the region covering shoulder to hand) is a vital 

region which enables people to perform their daily life activities. The functions of the 

developed robots vary, and the mechanism used in the development of these robots 

greatly influence the robustness, workspace and precision of these robots.  
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Shoulder, elbow and wrist injuries are frequent problems on the upper extremity. In 

particular, bone fractures, muscle tears, ligament injuries and joint capsule problems of 

these three joints are frequently encountered injuries. Conservative or surgical 

treatment approaches are used in these injuries. Physiotherapy and rehabilitation 

practices have an important place in both treatment approaches. In recent years, static 

treatment methods have now left their places to more dynamic approaches. With the 

exercise applied considering the level of healing of the affected region, it is possible to 

avoid the negative effects of immobilization and stimulate tissue healing. In 

rehabilitation, exercises are applied as passive, active-assisted, active-resisting. Passive 

exercises allow movement of the limbs without allowing the muscle contract. Passive 

exercises are frequently preferred after orthopedic injuries and in the early 

postoperative periods. In the following periods, active assisted exercises are performed 

to enable the active movements. Active exercises start with the patient’s use of their 

muscular strength and are complemented by movement against the resisting systems 

for muscle strengthening. Although there are many rehabilitation robots operating in a 

single joint, the number of robots operating multiple joints at the same time for 

orthopedic treatment is very small. Studies on rehabilitation robotic can be seen in 

Table 2.  

 

Table 2. Literature survey on rehabilitation robotics 

Manipulator Focus Area Kinematics  

Parallel Shoulder 

Mechanism 

Human Arm 

(shoulder 

movements) 

High force- 

low mass 

robotic arm 

exoskeleton 

Parallel 

structure 

2 RRPS 

3 DOF 

 

A Cable Driven Upper 

Arm Exoskeleton for 

Upper Extremity 

Rehabilitation 

Shoulder to 

forearm 

Parallel 

structure 

5 DOF 
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Table 2. continue 

The RiceWrist: A Distal 

Upper Extremity 

Rehabilitation Robot for 

Stroke Therapy 

From forearm 

to wrist 

Hybrid 

structure 

3 RPS 

4 DOF 

 

Distal Arm Exoskeleton 

for Stroke and Spinal 

Cord Injury 

Rehabilitation 

From forearm 

to wrist 

Hybrid 

Structure 

3 RPS 

5 DOF 

 

ARMin – Exoskeleton 

for Arm Therapy in 

Stroke Patients 

Human 

arm(fitting to 

its range of 

motion) 

Serial 

Structure 

6 DOF 

 

A Bioinspired 10 DOF 
Wearable Powered Arm 

Exoskeleton for 
Rehabilitation 

Human 

Arm(Shoulder 

griddle to 

wrist) 

Serial 

Structure 

10 DOF 

 

A Haptic Knob for 

Rehabilitation of Hand 

Function 

Human Hand 

(opening/ 

closing of the 

hand) 

2 DOF 
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Table 2. continue  

Hand-Assist Robot with 

Multi-Degree-of-

Freedom for 

Rehabilitation Therapy 

Human Hand 

(wrist and 

fingers) 

18 DOFs 

Serial 

Robot 

 

 

A Robot for Wrist 

Rehabilitation 

Human Wrist 1 DOF  

 

ARMin: a robot for 

patient-cooperative arm 

therapy  

 

Human Arm 

(Shoulder, 

Elbow, Wrist)  

4 Active, 2 

Passive 

DoF  

 

Arm Exoskeleton with 

Scapular Motion for 

Shoulder Rehabilitation 

Shoulder 5 DoF 

 

 

 

 

Klein, Spencer et. al. [13] presented robotic-arm exoskeleton that uses a parallel 

mechanism to help naturalistic shoulder movements. They optimized the exoskeleton’s 

torque capabilities by the modification of the key geometric design parameters. Mao, 

Agrawal [14] proposed a 5 DoF cable-driven upper arm exoskeleton, with control of 

force. They selected light weight cables instead of rigid links to overcome the same 

problems of conventional robotic rehabilitation devices such as bulkiness, heaviness 

and disability of the providing joint level rehabilitation. O’ Malley, et. al. [15] designed 
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a 4 DoF upper extremity rehabilitation robot which can allow variability in methods of 

interference between the patient and the manipulator sort as passive, triggered and 

active constrained modes. Pehlivan, et.al. [16] designed a 5 DoF robot named MAHI 

Exo II which enables flexion-extension, and radial-ulnar deviation for the rehabilitation 

of upper stroke, spinal cord injury, or other brain injuries. Nef, Mihelj et.al. [16] 

presented an exoskeleton named ARMin which can work in different therapy modes: 

passive mobilization, game therapy and task-oriented training. Carignan et.al. [18] 

examined a 5 DoF arm exoskeleton for treating shoulder pathology. Lambercy, Dovat 

et.al. [18] designed a robot to train opening/closing of human hand. The design can be 

adaptable to various hand sizes and both hands; right and left. Kawasaki et.al. [20] 

designed a hand rehabilitation robot with 18 DoF uses “self-motion control” which 

provides patients to exercise alone with the help of their healthy hands. Williams et.al. 

[21] outlined the mechanical design of a robot for wrist rehabilitation. Manna [22] 

developed a wearable exoskeleton for human arm with 10 DoF. They focused in their 

research on the motion human shoulder griddle. 

 

1.4. Design and Optimization of Parallel Manipulators for Rehabilitation 

 

The purpose of this thesis is to improve the orthopedic treatment of patients with 

shoulder, elbow and wrist problems by designing a device that increase the efficiency 

of the treatment and help the patients adapting faster to daily living activities. Since 

over-constrained mechanisms are suitable for the subspace between the shoulder, 

elbow and the wrist, an over-constrained manipulator is suggested. The parallel 

mechanisms which work in subspaces are named as over-constrained mechanisms, 

compared to spatial mechanisms, the over-constrained mechanisms require less 

connectors and joints [23]. These mechanisms can be used for special cases since the 

system has a specified spatial boundary and are more efficient materially and in terms 

of application. In this project an over-constrained manipulator has been selected for the 

shoulder, elbow and wrist rehabilitation because of the above mentioned specifications 

and that there is a fitting over-constrained manipulator for the shoulder-elbow-wrist 

subspace. As an outcome of literature survey, rehabilitation robots using over-

constrained manipulators have not been sighted. With the specified boundaries of over-

constrained manipulator, a more reliable and sturdy structure will be achieved and 

because it is a parallel structure, compared to serial mechanism counterparts, the arm 

movements will be handled with more precision, power and speed. The proposed 

system in this thesis is proposed enable patients to adapt daily life easier. The over-

constrained manipulator chosen for shoulder-elbow-wrist subspace has one-to-one 

correspondence thus leading to advantageous dynamics, control and usage. Aludami 

H. and Selvi Ö. [10] proposed an over-constrained parallel manipulator and done its 
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kinematic analysis. After that, Yılmaz K. and Selvi Ö. [24] made workspace analysis 

of the same manipulator. 

 

In this thesis, chapter 2 lays out the geometry of the manipulator that works in a 5 

dimensional space to make rehabilitation movements for shoulder-elbow-wrist joint 

(upper extremity). Also in this chapter, workspace boundaries are obtained to operate 

the manipulator in. In chapter 3, kinematic analysis of the manipulator is done. Active 

joint rates of the manipulator are obtained according to the orientation and position of 

the platform in desired workspace. In chapter 4, Jacobian analysis of the manipulator 

is performed. Singularity conditions of the manipulator are examined. Besides, 

condition number of the manipulator is calculated. In chapter 5, dimensional 

parameters of the manipulator are optimized to fulfill the desired workspace. Principals 

of the Firefly algorithm are mentioned and, constraints and objective functions of the 

algorithm are given. Obtained dimensional parameters presented in this chapter. In 

chapter 6, dimensional parameters are tested whether rotations manipulator fulfills the 

desired workspace and occurs any singularity. In chapter 7, force analysis of the 

manipulator is proposed. 
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2. STRUCTURAL ANALYSIS OF THE MANIPULATOR 

 

When literature is examined for rehabilitation robotics, one could see that there are 

mostly serial manipulators for human wrist, elbow, shoulder or full arm rehabilitation. 

In this thesis, it is decided to design a manipulator which will assist patients to do both 

planar and spherical motions with their arms. In this regard, a manipulator is designed 

to combine motions for 3 DOFs rotation (wrist joint movements) and 2 DOFs 

translation in a plane (Figure 7).  

 

 

Figure 7. Determination of the movements 

 



14 
 

The mobility of the manipulator should be 5 because of 5 independent movements are 

defined in this study. This movement can be described with a sphere moving on a plane 

which can perform 3 rotations around 3 different axes and 2 translations on 2 different 

axes (Figure 8). When parallel manipulators compered to serial manipulators, it is 

known that parallel ones have several advantages such as rigidity, high load capacity 

etc. We can compensate 5 DOFs movements for a parallel manipulator with 3, 4 or 5 

legs. With 3 legs, we need to attach two actuators on the two different legs. This 

configuration has a disadvantage for control of the manipulator. With 5 legs, we will 

have extra joints compared to the 3 or 4 legs which causes extra energy loses. So, 4 

legs configuration seems best for this manipulator.  

 

 

Figure 8. Movements of a sphere in a 5 DoFs sub-space 

 

 

2.1. Manipulator Geometry 

 

Designed manipulator is shown in figure 9.a below. To obtain required hand and wrist 

movements and to solve inverse kinematic equations, the system is divided into two 

sub-systems named upper and lower with using three imaginary links and joints in both 

two sub-systems (figure 9.b, figure 9.c and figure 9.d). All joint axes on the spherical 

part are intersecting at a common point P. Also, joint axes of the four imaginary links 

on the upper part (figure 9.d) are intersecting at the point P as well. Here spherical part 

will provide the 3 rotational motion of the human wrist around x, y and z axes. It is 

assumed that, Wrist joint does; 

- pronation-supination movements about x axis 

- radial-ulnar deviations about y axis 

- flexion-extension movements about z axis (figure 10).  
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(a) 

 

 
(b) 

 
 

 
 

 

 

(c) (d) 

Figure 9. Parts of the manipulator (a) proposed manipulator, (b) proposed manipulator 

with imaginary links, (c) upper part of proposed manipulator with imaginary links, (d) 

lower part of proposed manipulator with imaginary links 

 

Lower part will provide x-y plane movements of arm. All links on the lower part are in 

flat shape and have two joints at both ends. Their joint axes are both parallel each other 

and z axis of the reference coordinate system. One joint axes of the four imaginary 

links on the lower part (c1, c2 and c3 for first three legs and b4 for forth leg) are 

intersecting at the point P`. Point P` is the x-y plane trajectory of point P (figure 9.a).  
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Figure 10. Human wrist movements  

 

In addition to these properties one should noticed that, this manipulator is an 

asymmetrical parallel manipulator. When we compare our manipulator with 

symmetricity conditions [1]; 

- Symmetrical manipulators have equal DOFs with number of limbs. Here, our 

manipulator has 4 limbs with 5 DOFs, so first condition is not satisfied. 

- Type and number of joints in all limbs should be arranged in an identical 

pattern. In proposed manipulator, we have 5 revolute joints at each limb. This 

condition is satisfied with our manipulator. 

- The number and location of all actuated in symmetrical manipulators should be 

the same in all limbs. As mentioned all actuator in our manipulator located at 

the ground plane but leg 4 have one more actuator than other 3 legs. Third 

condition is also not satisfied. 

The manipulator suggested in this thesis is an asymmetrical parallel manipulator. 

Before calculation of the mobility of the manipulator one should be noticed that, if 

some revolute joints of a loop are parallel to each other and the rest of the revolute 

joints are intersecting on a point, this loop becomes an over-constraint loop and 

subspace number (𝜆) of this loop will be 5. Here we have three over-constrained loops 

with subspace number 5. From Alizade-Freudenstein’s formula we can calculate the 

numbers of joint of the manipulator (m = ∑fi -  ∑λ).  

 

∑fi = m + ∑λ = 5 + 3 x 5 = 20                                          (1) 

 

The general form of a manipulator with 3 closed loops and 20 revolute joints is given 

in figure 9. below. The proposed manipulator and its loops can be shown below (Figure 

11). One should be noticed that the proposed manipulator has both planar and spherical 
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links. We can separate this manipulator into two sub-systems. When two sub-systems 

mobility are examined separately,  

 

Figure 11. General form of a manipulator with 3 closed loops and 20 revolute joints 

 

Figure 12. Loops of the manipulator 

 

the upper part has mobility;  

- 0 DoF (𝑚 = 9 − 3𝑥3 = 0) without imaginary joints  

- 3 DoFs (𝑚 = 12 − 3𝑥3 = 3) with imaginary joints. 

Similarly, the lower- part has mobility; 
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- 5 DoFs (𝑚 = 14 − 3𝑥3 = 5).  

It seems that when the actuators are attached to the lower-part, the whole system can 

be controlled. Point O0(x, y, z) is selected the origin of the reference coordinate system. 

Four actuators are placed at first joints of all limbs (joints A1, A2, A3 and A4) and the 

fifth actuator is placed at the second joint of the fort limb (joint B4). 

 

 

2.2. Workspace Specification of the Manipulator 

 

Workspace boundaries for human wrist are chosen from a study which worked on 

healthy people to obtain upper-limb range of motion [25]. These boundaries are given 

in the table 3. below. For planar motion a 240 mm x 240 mm square is selected as a 

workspace. The geometric center of this square is located as the ground point. 

 

Table 3. Workspace boundaries for human wrist 
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3. KINEMATIC ANALYSIS OF THE MANIPULATOR 

 

To obtain motion in a given workspace without any singularity condition for active 

joint rates, dimensional parameters of the manipulator should be optimized. By doing 

inverse kinematic analysis of the manipulator constraints are obtained to use them later 

in optimization algorithm. Inverse kinematic analysis of the manipulator is done 

separately for both sub-systems. 

In the spherical part, with given orientation of the end-effector for human wrist 

movements, we will find imaginary active joint rates for first three legs. In the leg 4, 

we have two spherical links with three revolute joints. This kind a combination acts 

like a spherical joint and a spherical joint does not have effect on the rotation of the 

end-effector. So, we can define leg 4 as redundant. Orientation of the end-effector, 

dimensional parameters and active joint rates of the upper part can be shown in figure 

13.a below. After all, we can easily define upper part as a 3 DOFs spherical parallel 

manipulator (Figure 13.b).  

 

 
 

(a)                                                                    (b) 

Figure 13. (a) Orientation of the end-effector, (b) Spherical part of the manipulator 

 

For lower part, ranges obtained for imaginary active joints of spherical part are used as 

boundaries for first three legs. By using this new boundaries, active joint rates for lower 

part will be found. We know that leg 4 is independent from the orientation. Because of 

that position of the x-y plane trajectory of the point P can be easily controlled by 

attached 2 actuators on this leg. Leg 4 is acting as a 2 DOFs serial manipulator with 

this configuration. Dimensional parameters and active joint rates of the legs in lower 

part can be seen in figure 14. 
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(a)                                                                 (b) 

Figure 14. (a) First leg of the planar part, (b) fourth leg of the planar part 

 

3.1. Inverse Kinematic Solutions for Upper Part 

 

Objective function which will be used in optimization was derived by help of inverse 

kinematics and Jacobian equations. The orientation of the end-effector is given and 

rotation matrices for platform joints can be defined with following equations. Let’s 

define unit vector u as [0,0,1]𝑇. 

δ = δ𝑧 . δ𝑦. δ𝑥                                                          (2) 

Orientation of 𝜔𝑖 with respect to the platform is, 

𝑤𝑖
∗ = R𝛾

𝑧 . R𝛽𝑖
𝑥 . [0,0,1]𝑇                                                (3) 

𝛽 is the orientation of each joints around x axis with respect to z axis and is equal for 

all three joints and will be found with firefly algorithm. 𝛾𝑖 is the orientation of each 

joint around z axis selected for this study as 0o, 90o, 180o respectively. 

 𝑤𝑖 =.𝑅δ1𝑥 . 𝑅δ2
𝑦 . 𝑅δ3𝑧 . 𝑤𝑖

∗                                               (4) 

and orientation of  𝑤𝑖 from manipulators legs can be written as, 

 𝑤𝑖 = 𝑅θ1,𝑖
𝑧 . 𝑅α1,𝑖

𝑥 . 𝑅θ2,𝑖
𝑧 . 𝑅α2,𝑖

𝑥 . [0,0,1]𝑇                                     (5) 

Let’s write Eq. 5 in matrix form, 

(

𝑤𝑥
𝑤𝑦
𝑤𝑧
) =

(

 
 
Cos(α2,𝑖)Sin(α1,𝑖)Sin(θs1,𝑖) + Sin(α2,𝑖) (Cos(α1,𝑖)Cos(θs2,𝑖)Sin(θs1,𝑖) + Cos(θs1,𝑖)Sin(θs2,𝑖))

−Cos(θs1,𝑖) (Cos(α2,𝑖)Sin(α1,𝑖) + Cos(α1,𝑖)Cos(θs2,𝑖)Sin(α2,𝑖)) + Sin(α2,𝑖)Sin(θs1,𝑖)Sin(θs2,𝑖)

Cos(α1,𝑖)Cos(α2,𝑖) − Cos(θs2,𝑖)Sin(α1,𝑖)Sin(α2,𝑖) )

 
 
          (6) 

Let’s eliminate Sin(θ2,𝑖) from x and y components of Eq. 6, we will have, 

𝑤𝑦Cos(θs1,𝑖) + Cos(α2,𝑖)Sin(α1,𝑖) + Cos(α2,𝑖)Cos(θ2,𝑖)Sin(α2,𝑖) − 𝑤𝑥Sin(θs1,𝑖) = 0  (7) 

Then find Cos(θs2,𝑖) from the z component of Eq. 6. 
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           𝑤𝑥 Sin(θs1,𝑖) = 𝑤𝑦 Cos(θs1,𝑖) + Cos(α2,𝑖)Sin(α1,𝑖)   

+Cos(α1,𝑖)Cos(θ2,𝑖)Sin(α2,𝑖)                                                         (7) 

Cos(θs2,𝑖) = −(𝑤𝑧 − Cos(α1,𝑖)Cos(α2,𝑖)) Csc(α1,𝑖)Csc(α2,𝑖)                          (8) 

Substituting Eq. (8) into Eq. (7) will give the below equation. 
 

𝑤𝑦  Cos(θs1,𝑖) + (−𝑤𝑧 + Cos(α1,𝑖)Cos(α2,𝑖)) Cot(α1,𝑖) + Cos(α2,𝑖)Sin(α1,𝑖) −

𝑤𝑥Sin(θs1,𝑖) = 0                                                                                                                                        (9) 

Now, let’s substitute half angle formulas as, Cos(θs1,𝑖) =
1−𝑡𝑢

2

1+𝑡𝑢
2 , Sin(θs1,𝑖) =

2𝑡𝑢

1+𝑡𝑢
2 ,        

𝑡𝑢 =  𝑇𝑎𝑛(𝜃𝑠1,𝑖/2), we get, 

(−𝑤𝑦 −𝑤𝑧 Cot(α1,𝑖) + Cos(α2,𝑖)Csc(α1,𝑖)) 𝑡2 − 2𝑤𝑥𝑡 +𝑤𝑦 −𝑤𝑧Cot(α1,𝑖) +

Cos(α2,𝑖)Csc(α1,𝑖) = 0                                                                                                          (10) 

Solving Eq. 10 for t gives, 

𝑡𝑢 =
−𝑟1±√𝑟12−4 𝑝1 𝑠1

2 𝑝1
                                                    (11) 

Where, 

𝑝1 = −𝑤𝑦 −𝑤𝑧  Cot(α1,𝑖) + Cos(α2,𝑖)Csc(α1,𝑖) 

𝑟1 = −2𝑤𝑥 

𝑠1 = 𝑤𝑦 − 𝑤𝑧Cot(α1,𝑖) + Cos(α2,𝑖)Csc(α1,𝑖) 

Finally, active joint rates can be found as, 

θs1,𝑖 = 2 ArcTan(𝑡𝑢)                                                 (12) 

Let’s find Sin(θs2,𝑖)  from wx components of Eq. 6 and find Cos(θs2,𝑖)  from wz 

component of Eq. 6. We will have below equations. 

Sin(θs2,𝑖) = Csc(α2,𝑖) (𝑤𝑥Cos(θ1,𝑖) + 𝑤𝑦Sin(θ1,𝑖))                              (13) 

Cos(θs2,𝑖) = −(𝑤𝑧 − Cos(α1,𝑖)Cos(α2,𝑖)) Csc(α1,𝑖)Csc(α2,𝑖)                   (14) 

And finally, θs2,𝑖 will be, 

θs2,𝑖 = 𝐴𝑟𝑐𝑇𝑎𝑛[Cos(θs2,𝑖), Sin(θs2,𝑖)]                                   (15) 
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3.2. Inverse Kinematic Solutions for Lower Part 

 

As mentioned before, actuators are attached to the lower part. We have 3 actuators for 

first 3 legs and 2 actuators for leg 4. First three legs control the orientation of the end-

effector and the last leg controls its position. Let’s define the x and y components of 

the point P as P = (Px, Py) and orientation of the last joints (Ci) of the first three legs as 

ɸi. We found ranges for ɸi from upper part by setting it equal to θs1,𝑖. We can define 

the x and y position of the third joints of first three legs from the given boundaries 

above.  

𝐶𝑥,𝑖 = 𝑐𝑖 𝐶𝑜𝑠(𝜙𝑖)  +  𝑃𝑥                                                                  (16) 

𝐶𝑦,𝑖 = 𝑐𝑖 𝑆𝑖𝑛(𝜙𝑖)  +  𝑃𝑦                                                   (17) 

 

From the position of the third joints at first three legs we can get active joint rates for 

first three legs (θp11, θp12, θp13). The vector loop equation for first three legs is given 

below. 

𝑶𝟎𝑪𝒊 = 𝑶𝟎𝑨𝒊 + 𝑨𝒊𝑩𝒊 + 𝑩𝒊𝑪𝒊                                        (18) 

Then define above equation in the fixed coordinate frame. 

𝑎𝑖𝐶𝑜𝑠(𝜃𝑝1𝑖) + 𝑏𝑖  𝐶𝑜𝑠(𝜃𝑝2𝑖) = C𝑥,𝑖 –  𝑑𝑥,𝑖                            (19) 

𝑎𝑖𝑆𝑖𝑛(𝜃𝑝1𝑖) + 𝑏𝑖 𝑆𝑖𝑛(𝜃𝑝2𝑖) = C𝑦,𝑖 – 𝑑𝑦,𝑖                             (20) 

Let’s set C*
x,i = Cx,i – dx,i and  C

*
y,i = Cy,i – dy,i and eliminate passive joint variable 𝜃𝑝2𝑖 

from Eq. (19) and (20). 

𝐶𝑥,𝑖
∗ 2 + 𝐶𝑦,𝑖

∗ 2
− 2 𝐶𝑥,𝑖

∗ 2 𝑎𝑖𝐶𝑜𝑠(𝜃𝑝1𝑖) − 2 𝐶𝑦,𝑖
∗  𝑏𝑖 𝑆𝑖𝑛(𝜃𝑝1𝑖) + 𝑎𝑖

2 + 𝑏𝑖
2 = 0     (21)  

Rearrange Eq. (21) as, 

𝑝2𝑆𝑖𝑛(𝜃𝑝1𝑖) + 𝑟2 𝐶𝑜𝑠(𝜃𝑝1𝑖) + 𝑠2 = 0                                (22) 

Where,  

𝑝2 = −2 𝑎𝑖 𝐶𝑦,𝑖
∗ ,  

𝑟2 = −2 𝑎𝑖 𝐶𝑥,𝑖
∗  

𝑠2 = 𝐶𝑥,𝑖
∗ 2 + 𝐶𝑦,𝑖

∗ 2
+ 𝑎𝑖

2 + 𝑏𝑖
2
 

Then, let’s substitute half angle trigonometric identities for                                 

Cos(θp1,𝑖) =
1−𝑡𝑙

2

1+𝑡𝑙
2 , Sin(θp1,𝑖) =

2𝑡𝑙

1+𝑡𝑙
2 where 𝑡𝑙 =  𝑇𝑎𝑛(𝜃𝑝1,𝑖/2). 

𝑟2 + 𝑠2 + 2 𝑝2 𝑡𝑙 + (−𝑟2 + 𝑠2) 𝑡𝑙
2 = 0                                      (23) 



23 
 

Solving Eq. (23) for t gives, 

𝑡𝑙 =
−𝑝2±√𝑝22+𝑟22−𝑠22

𝑠2−𝑟2
                                                 (24) 

Finally, active joint rates for first three legs can be found. 

𝜃𝑝1,𝑖 = 2 𝐴𝑟𝑐𝑇𝑎𝑛(𝑡𝑙), 𝑖 =  1,2,3                                       (25) 

For passive joint rates, we can define, 

𝐶𝑜𝑠(𝜃𝑝2𝑖) =
C𝑥,𝑖 – 𝑑𝑥,𝑖−𝑎𝑖𝐶𝑜𝑠(𝜃𝑝1𝑖)

𝑏𝑖
                                       (26) 

𝑆𝑖𝑛(𝜃𝑝2𝑖) =
C𝑦,𝑖 – 𝑑𝑦,𝑖−𝑎𝑖𝑆𝑖𝑛(𝜃𝑝1𝑖)

𝑏𝑖 
                                        (27) 

From Eq. (26) and (27), 

𝜃𝑝2,𝑖 = 𝐴𝑟𝑐𝑇𝑎𝑛(𝐶𝑜𝑠(𝜃𝑝2𝑖), 𝑆𝑖𝑛(𝜃𝑝2𝑖)), 𝑖 =  1,2,3                      (28) 

 

As mentioned previous chapter, leg 4 is acting like a 2 DOFs serial manipulator. We 

can define end point equations of leg 4 as below. 

𝑃𝑥 = a4Cos(θp14) + b4Cos(θp24 − θp14) + d𝑥,4                      (29) 

 𝑃𝑦 = a4 Sin(θp14) + b4 Sin(θp24 − θp14) + d𝑦,4                      (30) 

First, elimination of the θp24 from above equations gives, 

𝑎4
2 − 𝑏4

2 + 𝑑𝑥4
2 + 𝑑𝑦4

2 + 𝑃𝑥
2 + 𝑃𝑦

2 − 2(𝑑𝑥4𝑃𝑥 + 𝑑𝑦4𝑃𝑦) + 2𝑎4((𝑑𝑥4 −

𝑃𝑥)Cos(θ14) + (𝑑𝑦4 − 𝑃𝑦)Sin(θ14)) = 0                              (31) 

Then, let’s substitute half angle trigonometric identities for                                       

Cos(θp4) =
1−𝑡𝑘

2

1+𝑡𝑘
2 , Sin(θp14) =

2𝑡𝑘

1+𝑡𝑘
2 where 𝑡𝑘 =  𝑇𝑎𝑛(𝜃𝑝14/2).  

We get, 

(𝑎4
2 − 𝑏4

2 − 2𝑎4𝑑𝑥4 + 𝑑𝑥4
2 + 𝑑𝑦4

2 + 2 𝑎4𝑃𝑥 − 2 𝑑𝑥4𝑃𝑥 + 𝑃𝑥
2 − 2 𝑑𝑦4𝑃𝑦 +

𝑃𝑦
2)𝑡2 + (4 𝑎4 𝑑𝑦4 − 4 𝑎4𝑃𝑦)𝑡 + 𝑎4

2 − 𝑏4
2 − 2𝑎4𝑑𝑥4 + 𝑑𝑥4

2 + 𝑑𝑦4
2 + 2 𝑎4𝑃𝑥 −

2 𝑑𝑥4𝑃𝑥 + 𝑃𝑥
2 − 2 𝑑𝑦4𝑃𝑦 + 𝑃𝑦

2 = 0                                (32) 

Solving Eq. 32 for t gives, 

𝑡𝑘 =
−𝑟3±√𝑟32−4 𝑝3 𝑠3

2 𝑝3
                                                    (33) 

Here, 

𝑝3 = 𝑎4
2 − 𝑏4

2 − 2𝑎4𝑑𝑥4 + 𝑑𝑥4
2 + 𝑑𝑦4

2 + 2 𝑎4𝑃𝑥 − 2 𝑑𝑥4𝑃𝑥 + 𝑃𝑥
2 − 2 𝑑𝑦4𝑃𝑦 + 𝑃𝑦

2 
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𝑟3 = 4 𝑎4 𝑑𝑦4 − 4 𝑎4𝑃𝑦 

𝑠3 = 𝑎4
2 − 𝑏4

2 − 2𝑎4𝑑𝑥4 + 𝑑𝑥4
2 + 𝑑𝑦4

2 + 2 𝑎4𝑃𝑥 − 2 𝑑𝑥4𝑃𝑥 + 𝑃𝑥
2 − 2 𝑑𝑦4𝑃𝑦 + 𝑃𝑦

2 

Finally, first active joint rate for leg 4 can be found as, 

θp14 = 2 ArcTan(𝑡𝑘)                                                 (34) 
 

For θp24, solving Cos(θp24) and Sin(θp24) from Eq. (29) and (30) respectively gives, 

Cos(θp24) =
(−𝑑𝑥4+𝑃𝑥)Cos(θp14)−𝑎4 Cos(2θp14)+(𝑑𝑦4−𝑃𝑦)Sin(θp14)

𝑏4
                  (35) 

Sin(θp24) =
(−𝑑𝑥4+𝑃𝑥−2 𝑎4Cos(θp14))+(−𝑑𝑦4+𝑃𝑦) Cot(θp14))  Sin(θp14)

𝑏4
                (36) 

From Eq. (35) and (36), θp24 becomes, 

θp24 = 𝐴𝑟𝑐𝑇𝑎𝑛(Cos(θp24), Sin(θp24))                                 (37) 
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4. JACOBIAN ANALYSIS OF THE MANIPULATOR 

 

In this chapter, Jacobian analysis is done to avoid singularity conditions. Under a 

singularity condition, manipulators gain or loss one or more DOF which cause loss of 

stiffness completely [1]. In parallel manipulators, an end-effector connected to the 

ground with several loops. This kind of a configuration requires both active and passive 

joints. It is suggested that in a parallel mechanism, number of actuators equal to DOF. 

Actuated joint variables is denoted by q vector and end-effector position is denoted by 

x vector. Then, kinematic constraint equation can be written as, 

𝒇(𝒙, 𝒒) = 0                                                     (38) 

Here, f is an n-dimensional implicit function of q and x. When differentiate Eq. (38) 

with respect to time, we get, 

𝐽𝑥𝒙̇ = 𝐽𝑞𝒒̇                                                       (39) 

In Eq. (36), 𝐽𝑥  and 𝐽𝑞  represent direct and inverse Jacobian matrices respectively. 

When following conditions happen, we can say that direct and inverse kinematic 

singularity occur respectively. 

det(𝐽𝑥) = 0                                                     (40) 

det (𝐽𝑞) = 0                                                     (41) 

While Eq. (40) yields, end-effector gains 1 or more DOF which means the manipulator 

has no resistance to forces or moments in some directions. While Eq. (41) yields, end-

effector loses 1 or more DOF which means manipulator has infinite resistance to forces 

or moments in some directions. While both Eq. (40) and (41) yield a combined 

singularity occurs. With this type of singularity, end-effector can be locked or go 

infinitesimal motion.  

Jacobian matrices can be characterized by using a parameter called condition number. 

Condition number of an any A matrix can be defined as below. 

𝑐 = ‖𝐴‖‖𝐴−1‖                                                  (42) 

‖ ‖  sign denotes the norm of a matrix. Condition number is a link lengths and 

manipulator configuration depending measurement. Condition number indicates 

farness of the manipulator from singularity. The value of the condition number is 

wanted to be 1. Jacobian analysis of the proposed manipulator is examined separately 

for both sub-systems.  
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4.1. Jacobian Analysis of the Upper Part 

 

Let’s angular velocity of end effector be as ω=[ ωx ωy ωz]
T and input angle velocities 

of the spherical part be as 𝛉̇=[𝜃̇1,𝑖 𝜃̇2,𝑖 𝜃̇3,𝑖]
T. Jacobian relation between them, 

𝑱𝒔𝒙𝝎 =  𝑱𝒔𝒒𝜽̇                                                      (43) 

Resulting end-effector velocity equation becomes, 

𝜔 = 𝑢𝑖 . θ̇1,𝑖 + 𝑣𝑖 . θ̇2,𝑖 + 𝑤𝑖. θ̇3,𝑖                                        (44) 

Let’s dot product both sides in Eq. (44) with 𝑣 𝑥 𝑤 . By using following relations 

𝑎. (𝑏 𝑥 𝑐) = 𝑏. (𝑐 𝑥 𝑎) = 𝑐. (𝑎 𝑥 𝑏), we will have, 

𝜔. (𝑣𝑖 𝑥 𝑤𝑖) = 𝑢𝑖 . (𝑣𝑖  𝑥 𝑤𝑖). θ̇1,𝑖                                       (45) 

Let’s define 𝑅𝐵
𝐴 = 𝑅δ3𝑧 . 𝑅δ2

𝑦 . 𝑅δ1𝑧  as and for a rigid body skew-symmetric matrix 

angular velocity matrix can be calculated as below. 

𝛺 ≡ 𝑅̇𝐵
𝐴𝑅𝐵

𝐴−1 = (

0 −𝜔𝑧 𝜔𝑦
𝜔𝑧 0 −𝜔𝑥
−𝜔𝑦 𝜔𝑥 0

)                                 (46) 

And angular velocity components become, 

𝜔𝑥,𝑖 = 𝐶𝑜𝑠(δ2) 𝐶𝑜𝑠(δ3)δ̇1 − 𝑆𝑖𝑛(δ3)δ̇2                                (47) 

𝜔𝑦,𝑖 = 𝐶𝑜𝑠(δ2) 𝑆𝑖𝑛(δ3)δ̇1 + 𝐶𝑜𝑠(δ3)δ̇2                                (48) 

𝜔𝑧,𝑖 = −𝑆𝑖𝑛(δ2)δ̇1 + δ̇3                                               (49) 

Also we know that from geometry of spherical part, 

u = [0,0,1]𝑇                                                         (50) 

𝑣 = 𝑅θ1,𝑖
𝑧 . 𝑅α1,𝑖

𝑥 . [0,0,1]𝑇                                               (51)  

  𝑤𝑖 = 𝑅θ1,𝑖
𝑧 . 𝑅α1,𝑖

𝑥 . 𝑅θ2,𝑖
𝑧 . 𝑅α2,𝑖

𝑥 . [0,0,1]𝑇                                    (52)  

When we substitute this equations into Eq. 45 we get 𝑱𝒔𝒙 𝑎𝑛𝑑 𝑱𝒔𝒒.  

𝐽𝑠𝑞 = (

𝐽𝑠𝑞1,1 0 0

0 𝐽𝑠𝑞2,2 0

0 0 𝐽𝑠𝑞3,3

)                                             (53) 

Where, 

𝐽𝑠𝑞1,1 = Sin(𝛼1,1)Sin(𝛼2,1)Sin(𝜃2,1), 

𝐽𝑠𝑞2,2 = Sin(𝛼1,2)Sin(𝛼2,2)Sin(𝜃2,2) and 
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𝐽𝑠𝑞3,3 = Sin(𝛼1,3)Sin(𝛼2,3)Sin(𝜃2,3). 

𝐽𝑠𝑥 = (

𝐽𝑠𝑥1,1 𝐽𝑠𝑥2,1 𝐽𝑠𝑥3,1
𝐽𝑠𝑥1,2 𝐽𝑠𝑥2,2 𝐽𝑠𝑥3,2
𝐽𝑠𝑥1,3 𝐽𝑠𝑥2,3 𝐽𝑠𝑥3,3

)                                           (54) 

Where,  

𝐽𝑠𝑥1,𝑖 = Sin(𝛼2,𝑖)(Sin(𝛼1,𝑖)Sin(𝛿2)Sin(𝜃2,𝑖) − Cos(𝛿2)(Cos(𝛿3 − 𝜃1,𝑖)Cos(𝜃2,𝑖) +

                            Cos(𝛼1,𝑖)Sin(𝛿3 − 𝜃1,𝑖)Sin(𝜃2,𝑖))), 

𝐽𝑠𝑥2,𝑖 = Sin(𝛼2,𝑖)(Cos(𝜃2,𝑖)Sin(𝛿3 − 𝜃1,𝑖) − Cos(𝛼1,𝑖)Cos(𝛿3 − 𝜃1,𝑖)Sin(𝜃2,1)) and 

𝐽𝑠𝑥3,𝑖 = −Sin(𝛼1,𝑖)Sin(𝛼2,𝑖)Sin(𝜃2,𝑖). 

 

4.2. Jacobian Analysis of the Lower Part 

 

Let the output vector be as x=[Px Py ϕ1 ϕ2 ϕ3] and input vector of the lower part be as    

q=[ 𝜃11, 𝜃12, 𝜃13, 𝜃14, 𝜃24] and where loop-closure equation of leg 1,2,3 can be written 

as follow, 

 𝑨𝒊𝑷’ +  𝑷’𝑪𝒊 = 𝑨𝒊𝑩𝒊 + 𝑩𝒊𝑪𝒊                                     (55) 

When derivatives of the both sides with respect to time is taken in loop-closure 

equation, consider VP is the velocity of point P’. To be eliminate the passive joint 

variable (𝜃̇2𝑖), both side of loop-closure equation is dot-multiplied by bi leads to, 

𝑏𝑖,𝑥𝑉𝑝,𝑥 + 𝑏𝑖,𝑦𝑉𝑝,𝑦 + (𝑐𝑖,𝑥𝑏𝑖,𝑦 − 𝑐𝑖,𝑦𝑏𝑖,𝑥) 𝜙𝑖̇  =  (𝑎𝑖,𝑥𝑏𝑖,𝑦 − 𝑎𝑖,𝑦𝑏𝑖,𝑥) 𝜃̇𝟏𝒊    (56) 

   The loop-closure equation for leg 4 can be written as 

 A4P’+ P’B4 = A4B4                                               (57)  

Similarly, taking derivative of loop-closure equation for leg 4 with respect to time and 

separating vector parts leads followings, 

𝑉𝑝,𝑥 = −𝑎4,𝑦𝜃̇𝟏𝟒  −  𝑏4,𝑦(𝜃̇𝟐𝟒 − 𝜃̇𝟏𝟒)                                        (58) 

𝑉𝑝,𝑦 =  𝑎4,𝑥𝜃̇𝟏𝟒 + 𝑏4,𝑥(𝜃̇𝟐𝟒 − 𝜃̇𝟏𝟒)                                       (59) 

   From Eq. (56), (58) and (59) Jacobian matrices can be written as, 

 𝐽𝑝 = 𝐽𝑝𝑞
-1 𝐽𝑝𝑥                                                     (60)     

Where,   
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𝐽𝑝𝑥 =

(

 
 

𝐽𝑝𝑥,11 𝐽𝑝𝑥,12 𝐽𝑝𝑥,13 0 0

𝐽𝑝𝑥,21 𝐽𝑝𝑥,22 0 𝐽𝑝𝑥,24 0

𝐽𝑝𝑥,31 𝐽𝑝𝑥,32 0 0 𝐽𝑝𝑥,35
1 0 0 0 0
0 1 0 0 0 )

 
 

                             (61)  

𝐽𝑝𝑞 =

(

  
 

𝐽𝑝𝑞,11 0 0 0 0

0 𝐽𝑝𝑞,22 0 0 0

0 0 𝐽𝑝𝑞,33 0 0

0 0 0 𝐽𝑝𝑞,44 𝐽𝑝𝑞,45
0 0 0 𝐽𝑝𝑞,54 𝐽𝑝𝑞,55)

  
 

                             (62) 

Here, components of the Jacobian matrices can be written as,  

JP,x,11=b1,x 

JP,x,12=b1,y 

JP,x,13=b1,y c1,x - b1,x c1,y 

JP,x,21=b2,x 

JP,x,22=b2,y 

JP,x,24=b2,y c2,x – b2,x c2,y 

JP,x,31=b3,x 

JP,x,32=b3,y 

JP,x,35=b3,y c3,x – b3,x c3,y. 

JP,q,11= a1,x b1,y - a1,y b1,x 

JP,q,22= a2,x b2,y – a2,y b2,x 

JP,q,33= a3,x b3,y – a3,y b3,x 

JP,q,44= -a4,y + b4,y 

JP,q,45=-b4,y 

JP,q,54= a4,x – b4,x 

JP,q,55=b4,x 
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5. DIMENSIONAL OPTIMIZATION OF THE MANIPULATOR 

 

We can examine mechanisms kinematically into two ways. One of them is workspace 

specification with selected dimensional parameters which includes direct kinematic 

solutions and the other is dimensional parameter specification with desired workspace 

which includes inverse kinematic solutions. In this thesis, we specified the workspace 

boundaries for rehabilitation purpose. To fulfill these boundaries without any 

singularity condition we need to determine dimensional parameters. In kinematic 

synthesis of the manipulators 3 main ways are used. These methods are, 

- Function generation 

- Motion generation 

- Path generation 

Function generation is a method to establish a relation between input and output rates 

of mechanisms with a function. From this relation, mechanisms properties are found to 

provide the desired function. In this method the relation will be set by using functions. 

There are two main ways to solve function generation problems. These are 

approximation and optimization methods. 

- Approximation Methods 

 

+   Interpolation Methods 

+   Least Square Method 

+   Chebyshev Method 

 

- Optimization Methods 

 

+ Linear Optimization (Newton Raphson Method etc.) 

+ Non-Linear Optimization (Genetic Algorithms, Firefly Algorithms etc.) 

Consider our input rate 𝜃 is a function of x as 𝜃=f(x) and output rate 𝜙 is a function of 

y as 𝜙=f(y). Also y is a function of x as y=f(x). The aim of the function generation is 

to make a relationship between 𝜃 and 𝜙 by using function y=f(x). After that, ranges for 

x, 𝜃, 𝜙 should be determined. Graphical representation for function generation is given 

in figure 15 below. 
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Figure 15. Graphical representation of function generation 

Motion generation is an another method to find mechanisms architectural parameters. 

In motion generation, we have the position and orientation of end effector of 

mechanisms for desired points (3, 4 or 5 points) and we aim to calculate architectural 

parameters of the mechanism. Consider we have a four bar as figure 16. below. 

 

Figure 16. Fourbar for motion generation 

 

We know only end effector’s position and orientation (Px , Py  and 𝜙) for some desired 

points and our end effector moves on these desired points. To provide this motion we 

need to determine architectural parameters (a, b, r1, r2, r3, r4 and r5) and their 

orientations (α, β, γ, 𝜙, θ1, θ2, θ3 and θ4 ) with respect to the reference coordinate system 

O. 
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The aim of the path generation is specifying the dimensional parameters and the output 

rate of the mechanism to provide a point on the end-effector follows the desired points. 

In this thesis, dimensional parameters are wanted to determine with given path in the 

workspace boundaries. But, one should be noticed that we have large number of path 

points with highly nonlinear equations. In path generation synthesis problems with 

more than 5 points, analytical methods remain incapable. At this point, numerical 

methods become a part of activity to obtain mechanism dimensions with large number 

of desired path points. In literature, researchers usually used evolutionary algorithms 

to overcome synthesis problems for mechanism. Z. Nariman et al. [26] used hybrid 

multi-objective genetic algorithms for Pareto optimum synthesis of four bar 

mechanism with minimizing two objective functions (tracking error and transmission 

angle error) at the same time. Lin W [27] compounded two different evolutionary 

algorithm named differential evolution (DE) and real-valued genetic algorithm (RGA) 

to synthesize four bar mechanism with several design parameters for 6, 10 and 18 

points in different cases.  Only considered constraints of his work were the Grashof 

condition, design parameters within specified ranges, rotation range of the crank and 

relation between input angle and crank. Acharyya S. K. and Mandal M. [28] applied 

three different type of evolutionary algorithm (GA, PSO and DE) to minimize the error 

between desired and obtained coupler curve in four bar path generation synthesis. 

Researcher also compared these methods between each other and selected the best one. 

H Yu., et al. [29] presented a computer method which uses coupler-angle function 

curve to synthesize a four bar mechanism. They practiced a two DoFs additional 

mechanism to transform coupler-points of the given path to a coupler-angle function 

curve. They also presented a software which give opportunity to users to define up to 

20 points for path. Bulatovic R. R. and Djordjevic S. R. [30] used a direct searching 

method for four bar synthesis named Hooke-Jeeves’s which compares its values at each 

iteration and changes parameters in order to described objective function. They 

proposed that the used algorithm in their research does not depend on the preliminary 

selected variables. Researchers showed a four bar example which coupler point draw a 

straight line. 

There have been applied several ways to optimize parallel manipulators by using 

indexes such as specified conditioning index (SCI), global conditioning index (GCI) 

and global dynamic conditioning index (GDCI). There are also several algorithms and 

methods were applied to solve optimization problems of parallel manipulators such as 

multi-criteria analysis controlled random search, linear actuation method, Monte Carlo 

method, exhaustive search minimization algorithm, firefly algorithm, genetic 

algorithms etc. Huang T. et. al. [31] bounded the workspace of 2-DOF parallel 

manipulators in a rectangular area by using specified conditioning index. Further Olds 

K.C. [32] developed a new approach for global indices to solve optimization problems 

for parallel robots. Dou R. [33] investigated the global conditioning index (GCI), the 
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global velocity index (GVI), and global stiffness index (GSI) of 3-RRR parallel 

manipulators and represented corresponding atlases. Based on these atlases he 

determined geometric parameters without dimensions for 3-RRR parallel 

manipulators. Lou, Y. J., et. all. [34] utilized dexterity index to characterize the 

effectiveness of the workspace. In their study, the inverse condition number of Jacobian 

matrix was used in order to measure dexterity. 

Optimization on medical robots is a very vital issue because of the task is human body. 

Stan, S. [35] summarized the mono-objective optimal design procedure using the 

workingspace for the parallel robot and the numerical optimality criterion. Kinematic 

performance optimization was performed to maximize the workspace of the mini 

parallel robot. Optimization was performed using Genetic Algorithms. Likewise, Stan, 

S. et.al. [36] used Generic Algorithms to optimize the geometric parameters of a planar 

medical parallel robot. Badescu, M. And Mavroidis, C. [37] calculated several indices 

by using Monte Carlo Methods for workspace optimization of upu and ups parallel 

platforms with three legs. Stock, M., and Miller, K. [38] examined the mobility, 

workspace and manipulability characteristics of a linear deltas robots by using the 

exhaustive search minimization algorithm. They use a sophisticated search algorithm 

to reliably locate possible design candidates in a four-dimensional parameter space. 

Gao, Z., and Zhang, D. [39] applied the particle swarm algorithm to maximize the 

workspace volume of a new parallel mechanism with 3 DoFs. 

 

5.1. Optimization Method (Firefly Algorithm) 

 

In this study, Firefly algorithm was used to optimize dimensional parameters of 

purposed manipulator. Firefly algorithm is developed by Yang [41] and is a nature 

inspired metaheuristic algorithm [42]. In firefly algorithm, each agents (fireflies) 

propagate lights and brighter ones pull other fireflies in close [41]. Few researchers in 

robotics used firefly algorithm to overcome optimization problem for their 

mechanisms. Nedic N. et. al. [42] proposed a cascade load force control design for a 

parallel robot platform. They used Firefly algorithm for parameter searching.  

Researchers who worked with Firefly Algorithm in robotics indicate that [42, 43]: 

• Firefly algorithm is very effective in nonlinear optimization tasks and 

performs better than other metaheuristic algorithms.  

• Firefly Algorithm is independent from the complexity of problems. 

• Firefly Algorithm has a better rate of convergence.  

• Firefly Algorithm gives values faster than other algorithms. 
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• Firefly Algorithm can solve highly nonlinear, multimodal problems with high 

efficiency. 

In the study, local minimum solutions are searched and it is taught that it is sufficient 

for this study. Optimization is performed by separating the workspace into small pieces 

to operate the manipulator into whole workspace. Genetic algorithm was also tested in 

this study. It has seen that Genetic algorithm stay slow comparing to Firefly algorithm.  

Firefly algorithm was applied our optimization problem as follow. Parameters used in 

the algorithm were selected by taking into consideration of Lukasik S. and Zak S.’s 

research about firefly algorithm [44]. Here, 𝑛𝑓 denotes the population of fireflies and 

𝑛𝑐 is the number of coordinates and signs the number of variables which are expected 

to be optimized. γ is called approach speed or absorption coefficient and it states 

multifariousness with escalating distance from interacted firefly [44]. 𝛽0  is the 

attractiveness, it indicates the capability of a firefly to draw in other fireflies. 𝛼 is 

defined as randomness and it remarks the how much fireflies move randomly. S denotes 

to scale of randomness 𝛼 and randomness is multiplied with scale at each iteration. 

Light intensity of a firefly is measured by I and it directly impresses the movement of 

fireflies. Here  𝑓(𝒙𝑖) is the objective function and 𝒙𝑖  is the solution for parameters 

which are wanted to be optimized at each iteration. Finally 𝑟𝑖,𝑗 is the monotonically 

decreasing function of the distance between fireflies.  

 

Objective function 𝑓(𝒙𝑖),  
𝒙𝑖 = (Define the parameters to be optimized)

𝑇, where 

𝑓(𝒙𝑖) = (𝐷𝑒𝑓𝑖𝑛𝑒 𝑡ℎ𝑒 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) 

Generate initial population of fireflies 𝒙𝑖(𝑖 = 1,2, … , 𝑛𝑓). 

Light intensity I at 𝒙𝑖 is determined by 𝑓(𝒙𝑖)  
Define light absorption coefficient γ 

for (𝑚𝑖; 1,𝑀𝑎𝑥𝐺𝑒𝑛) 

   for 𝑖 = 1: 𝑛𝑓 

      for 𝑗 = 1: 𝑛𝑓 

if (𝐼𝑖 < 𝐼𝑗), 

    𝑟𝑖,𝑗 = √𝑆𝑢𝑚 [(𝑥𝑘,𝑖 − 𝑥𝑘,𝑗)
2
, (𝑘, 1, 𝑛𝑐)] ; 

   Do [𝑥𝑘,𝑖 = 𝑥𝑘,𝑖 +
𝛽0 𝑆𝑘

1+𝛾 𝑟𝑖,𝑗
2 
(𝑥𝑘,𝑗 − 𝑥𝑘,𝑖) + 𝛼 𝑆(𝑅𝑎𝑛𝑑𝑜𝑚[ ] − 0.5), {𝑘, 1, 𝑛𝑐}], 

(move firefly i towards to j) 

    else Do[𝑥𝑘,𝑖 = 𝑥𝑘,𝑖 + 𝛼 𝑆(𝑅𝑎𝑛𝑑𝑜𝑚[ ] − 0.5), {𝑘, 1, 𝑛𝑐}], (move firefly random) 

end if 

Evaluate new solutions of 𝑓(𝒙𝑖) and update light intensity  

      end for j 

   end for i 

Rank the fireflies and find the current global best g* 

end for 
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5.2. Optimization of Upper Part 

 

Dimensional parameters which are wanted to be optimize for the spherical part is, 

- 𝛼1,𝑖, length of the first spherical links (selected equal for each leg) 

- 𝛼2,𝑖, length of the second spherical links (selected equal for each leg) 

- 𝛽, orientation of each joints around x axis with respect to z axis (selected equal 

for each leg) 

Selected Firefly Algorithm parameter are given on table 4. below. 

 

Table 4. Selected Firefly Algorithm parameters for spherical part 

nf nc γ 𝜷𝟎 α S 

50 3 0.8 0.8 0.1 1 

 

Parameters used in the algorithm were selected by taking into consideration of Lukasik 

S. and Zak S.’s research about firefly algorithm [44]. Constraints are selected as which 

make imaginary active joints and passive joints indefinite or imaginary and which make 

determinant of the inverse and direct Jacobian matrices are zero. Let’s remember Eq. 

(12) (θs1,𝑖 = 2 ArcTan(𝑡)) depend on t whose equation is 𝑡 =
−𝑏±√𝑏2−4 𝑎 𝑐

2 𝑎
. Here the 

terms which are capable to make t undefined are selected as constraints. These 

constraints can be listed as follow, 

C1 = 𝑏2 − 4 𝑎 𝑐 ≥ 0 

C2 = a ≠ 0. 

For passive joints, let’s remember their equation ( θs2,𝑖 = 𝐴𝑟𝑐𝑇𝑎𝑛[Cos(θs2,𝑖),

Sin(θs2,𝑖)]. For ArcTan function that is in form z = ArcTan (x, y) gives the arc tangent 

of y/x. So, we can define our constraint for passive joints as, 

C3 = Cos(θs2,𝑖) ≠ 0.  

From inverse and direct Jacobian matrices, two more constraints can be defined as, 

C4 = det(𝐽𝑠𝑥) ≠ 0  

C5 = det (𝐽𝑠𝑞) ≠ 0. 

Also, some ranges are determined for dimensional parameters to keep them in 

reasonable values. After specification of the constraints, objective function is selected 
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as minimization of the dimensional parameters and maximization of the condition 

numbers for both direct and inverse Jacobian matrices. 

𝑂𝐵𝐽𝑠 =
100

√1+𝛼1
2+𝛼2

2+𝛽2
𝐿𝑒𝑛𝑔𝑡ℎ(𝐶𝑠𝑞)𝐿𝑒𝑛𝑔𝑡ℎ(𝐶𝑠𝑥)                         (63) 

Here 𝐶𝑠𝑞  and 𝐶𝑠𝑥  represent the condition numbers of inverse and direct Jacobian 

matrices respectively. After necessary iterations, dimensional parameters are found 

(Table 5). Here, we combined the upper and lower part of the manipulator to minimize 

imaginary input ranges. 

 

Table 5. Optimized dimensional parameters for spherical part 

 𝜶𝟏 (Rad) 𝜶𝟐 (Rad) 𝜷 (Rad) 

Optimized 

Values  

0.938802 1.34815 1.39626 

 

5.3. Optimization of Lower Part 

 

Dimensional parameters which are wanted to be optimize for the planar part is, 

- 𝑎𝑖, length of the first planar links  

- 𝑏𝑖, length of the second planar links  

- 𝑐𝑖, length of the second planar links  

- 𝑑𝑥,𝑖, x axis distance to the ground point of first joints 

- 𝑑𝑦,𝑖, y axis distance to the ground point of first joints 

Selected Firefly Algorithm parameter are given on table 6 below. 

 

Table 6. Selected Firefly Algorithm parameters for planar part 

nf nc γ 𝜷𝟎 α S 

30 11 0.2 0.8 0.1 20 

 

Constraints are selected as which make active and passive joints indefinite or imaginary 

and which make determinant of the inverse and direct Jacobian matrices are zero. As 

seen in Eq. (31) depend on t whose equation is 𝑡 =
−𝑒1±√𝑒12+𝑒22−𝑒32

𝑒3−𝑒2
. Here the terms 

which are capable to make t undefined are selected as constraints. These constraints 

can be listed as follow, 
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C1 = 𝑒1
2 + 𝑒2

2 − 𝑒3
2 ≥ 0, C2 =𝑒3 − 𝑒2 ≠ 0. 

For passive joints, let’s remember their equation ( 𝜃𝑝2,𝑖 =

𝐴𝑟𝑐𝑇𝑎𝑛(𝐶𝑜𝑠(𝜃𝑝2𝑖), 𝑆𝑖𝑛(𝜃𝑝2𝑖)), 𝑖 =  1,2,3 ). For ArcTan function that is in form z = 

ArcTan (x, y) gives the arc tangent of y/x. So, we can define our constraint for passive 

joints as, 

C3 = 𝐶𝑜𝑠(𝜃𝑝2𝑖) ≠ 0.  

For leg 4, let’s remember active joint equations ( θp14 = 2 ArcTan(𝑡) , θp24 =

𝐴𝑟𝑐𝑇𝑎𝑛(Cos(θp24), Sin(θp24)) and 𝑡 =
−𝑏±√𝑏2−4 𝑎 𝑐

2 𝑎
). Active joints constraints from 

leg 4 are listed below. 

C4 = 𝑏2 − 4 𝑎 𝑐 ≥ 0 , C5 =  𝑎 ≠ 0, C6 = Cos(θp24) ≠ 0 

From inverse and direct Jacobian matrices, two more constraints can be defined as, 

C7  = det(𝐽𝑝𝑥) ≠ 0, C8 = det (𝐽𝑝𝑞) ≠ 0 

Also, some ranges are determined for dimensional parameters to keep them in 

reasonable values. In addition to this constraints, to keep the ground points of the legs 

out the workspace and away from the each other additional constraints are added. After 

specification of the constraints, objective function is selected as minimization of the 

dimensional parameters and maximization of the condition numbers for both direct and 

inverse Jacobian matrices. 

𝑂𝐵𝐽𝑝 =
100

√1+𝑎2+𝑏2+𝑐2+∑ 𝑑𝑥,𝑖
24

𝑖 +∑ 𝑑𝑦,𝑖
24

𝑖

𝐿𝑒𝑛𝑔𝑡ℎ(𝐶𝑝𝑞)𝐿𝑒𝑛𝑔𝑡ℎ(𝐶𝑝𝑥)               (64) 

Here 𝐶𝑝𝑞  and 𝐶𝑝𝑥  represent the condition numbers of inverse and direct Jacobian 

matrices respectively. After necessary iterations, dimensional parameters are found 

separately for each leg (Table 7). Optimized and assembled manipulator can be seen in 

figure 17. More detailed figures are given in Appendix B. 

 

Table 7. Optimized dimensional parameters for planar part 

(mm) a1 b1 c1 dx1 dy1 dx2 dy2 dx3 dy3 dx4 dy4 

Optimized 

Values 

437 431 71 -271 -349 405 42 493 2 224 -224 

 a2 a2 c2 a3 b3 c3 a4 b4 

540 607 74 554 648 44 328 241 
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Figure 17. Optimized and assembled manipulator 
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6. TEST OF OPTIMIZED PARAMETERS WITH DESIRED MOVEMENTS 

INTO WORKSPACE 

 

The presented manipulator in this paper was modelled and simulated by the help of 

MATLAB Simmechanics package. In this section, it was checked whether the obtained 

optimum dimensional parameters provided the workspace. With giving platform 

movements, it was tested that input variables are continuous. Simulations are done 

separately for both sub-systems. Obtaining active joint rates from upper part will be 

the boundaries for lower part.  

 

6.1. Simulations of Upper Part  

 

In the tests for spherical part it is checked whether rotations around three principal axes 

provided. Behaviors of three imaginary active joints are examined with specified 

movements by using workspace boundaries which were originated from rotation 

around x, y and z axes. In this chapter, only position control of the manipulator is done 

by using MATLAB software. Firstly, manipulator modelled in 3D by using Inventor 

software. Then, assembled version of the manipulator is exported for MATLAB 

software. Input of the inverse kinematic functions block is connected to the input values 

for platform orientation and output of the inverse kinematic functions block is 

connected to the input of the active joint blocks. This block is a MATLAB function 

block and includes dimensional parameters of the upper part and its inverse kinematic 

equations for imaginary active joints. Scopes are connected to the output of the 

imaginary active joints to observe the behaviors of them. Additional 3 control block 

added to observe the rotation angle of the platform around x, y and z axes. This control 

blocks are also modelled by adding three extra joint in Inventor software. Given and 

obtained rotation around axes are observed from these blocks.  

Motion control of the manipulator is done by using PID blocks. PID control blocks 

were established for three imaginary active joints. A PID block was tuned by using 

simmechanics tools for one linked system and obtained P, I and D values (P = 11.8, I 

= 74.8, D = 0.413) were used for all three active joints. It was accepted that effect of 

other joints on the model was disturbance. Twelve different test results can be viewed 

as followed figures. Table 8 shows that the input variables of the manipulator for three 

different sets of simulations and figure 18 shows these simulation results. The obtained 

simulation results show that the dimensional parameters obtained with firefly algorithm 

provide the workspace completely and the manipulator operated without any 

singularity condition for spherical part. 
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Table 8. Simulations on spherical part 

Set 1 

 𝜹𝟏 𝜹𝟐 𝜹𝟑 

A Sin wave (Amplitude: 0.4, Frequency:1 rad/sec) -30 Degree -40 Degree 

B Sin wave (Amplitude: 0.4, Frequency:1 rad/sec) -30 Degree 40 Degree 

C Sin wave (Amplitude: 0.4, Frequency:1 rad/sec) 40 Degree -40 Degree 

D Sin wave (Amplitude: 0.4, Frequency:1 rad/sec) 40 Degree 40 Degree 

 

Set 2 

 𝜹𝟏 𝜹𝟐 𝜹𝟑 

A -10 Degree Sin wave (Amplitude: 0.4, Frequency:1 rad/sec) -40 Degree 

B -10 Degree Sin wave (Amplitude: 0.4, Frequency:1 rad/sec) 40 Degree 

C 50 Degree Sin wave (Amplitude: 0.4, Frequency:1 rad/sec) -40 Degree 

D 50 Degree Sin wave (Amplitude: 0.4, Frequency:1 rad/sec) 40 Degree 

 

Set 3 

 𝜹𝟏 𝜹𝟐 𝜹𝟑 

A -10 Degree -30 Degree Sin wave (Amplitude: 0.4, Frequency:1 rad/sec) 

B -10 Degree 40 Degree Sin wave (Amplitude: 0.4, Frequency:1 rad/sec) 

C 50 Degree -30 Degree Sin wave (Amplitude: 0.4, Frequency:1 rad/sec) 

D 50 Degree 40 Degree Sin wave (Amplitude: 0.4, Frequency:1 rad/sec) 

 

 

                                                                     

 
Figure 18 (a). Set 1, simulation A
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Figure 18 (b). Set 1, simulation B 

 
Figure 18 (c). Set 1, simulation C 
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Figure 18 (d). Set 1, simulation D 

 
Figure 18 (e). Set 2, simulation A 
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Figure 18 (f). Set 2, simulation B 

 
Figure 18 (g). Set 2, simulation C 
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Figure 18 (h). Set 2, simulation D 

 
Figure 18 (i). Set 3, simulation A 
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Figure 18 (j). Set 3, simulation B 

 
Figure 18 (k). Set 3, simulation C 
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Figure 18 (l). Set 3, simulation D 

 

6.2. Simulations of Lower Part 

 

In the tests for planar part it is checked whether manipulator provide the translational 

and rotational motions in the desired planar workspace. Behaviors of five active joints 

are examined with specified movements by using workspace boundaries which were 

originated from spherical part. This part is also modelled in MATLAB. The same 

procedure was followed as in the spherical part. Motion control of the manipulator is 

done by using PID blocks. PID blocks are tuned for first three active joints and fourth 

and fifth joint separately and these obtained P, I and D values were used (for first three 

active joints P = 1.35, I = 0.95 and D =0.31, for fourth active joint P = 37.05, I = 21.62 

and D = 14.11 and for fifth active joint P = 59,59, I = 331.09 and D = 2.38). Five 

different test results can be viewed as followed figures. Table 9 shows that the input 

variables of the manipulator for three different sets of simulations and figure 19 shows 

these simulation results. The obtained simulation results show that the dimensional 

parameters obtained with firefly algorithm provide the workspace completely and the 

manipulator operated without any singularity condition for planar part. 
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Table 9. Simulations on planar part 

Set 1     

ɸ𝟏 ɸ𝟐 ɸ𝟑 Px Py 

Sin Wave Sin Wave Sin Wave Linear Linear 

Amplitude: 

0.5 

Amplitude: 

0.5 

Amplitude: 

0.5 

Px = 0, t = (0,300) 

 

Px = 0, t = (0,300) 

F:0.1 rad/sec F:0.1 rad/sec F:0.1 rad/sec   

 

Set 2     

ɸ𝟏 ɸ𝟐 ɸ𝟑 Px Py 

Sin Wave Sin Wave Sin Wave Linear Linear 

Amplitude: 

0.5 

Amplitude: 

0.5 

Amplitude: 

0.5 

Px = 8t, t = (0,150) 

Px = 120, t = (150,300) 

Py = -8t, t = (0,150) 

Px = -120, t = (120,300) 

F:0.1 rad/sec F:0.1 rad/sec F:0.1 rad/sec   

 

Set 3     

ɸ𝟏 ɸ𝟐 ɸ𝟑 Px Py 

Sin Wave Sin Wave Sin Wave Linear Linear 

Amplitude: 

0.5 

Amplitude: 

0.5 

Amplitude: 

0.5 

Px = 8t, t = (0,150) 

Px = 120, t = (150,300) 

Py = 8t, t = (0,150) 

Py = 120, t = (150,300) 

F:0.1 rad/sec F:0.1 rad/sec F:0.1 rad/sec   

 

Set 4     

ɸ𝟏 ɸ𝟐 ɸ𝟑 Px Py 

Sin Wave Sin Wave Sin Wave Linear Linear 

Amplitude: 

0.5 

Amplitude: 

0.5 

Amplitude: 

0.5 

Px = -8t, t = (0,150) 

Px = -120, t = (150,300) 

Px = -8t, t = (0,150) 

Px = -120, t = (150,300) 

F:0.1 rad/sec F:0.1 rad/sec F:0.1 rad/sec   

 

Set 5     

ɸ𝟏 ɸ𝟐 ɸ𝟑 Px Py 

Sin Wave Sin Wave Sin Wave Linear Linear 

Amplitude: 

0.5 

Amplitude: 

0.5 

Amplitude: 

0.5 

Px = -8t, t = (0,150) 

Px = -120, t = (150,300) 

Px = 8t, t = (0,150) 

Px = 120, t = (150,300) 

F:0.1 rad/sec F:0.1 rad/sec F:0.1 rad/sec   
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Figure 19 (a). Test results for planar part optimization (Set 1) 

 

Figure 19 (b). Test results for planar part optimization (Set 2) 
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Figure 19 (c). Test results for planar part optimization (Set 3) 

 

Figure 19 (d). Test results for planar part optimization (Set 4) 
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Figure 19 (e). Test results for planar part optimization (Set 5) 

 

 

6.3. Simulations of Whole Manipulator 

 

In the tests for whole manipulator it is checked whether manipulator provide the 

translational and rotational motions in the desired workspace. Behaviors of five active 

joints are examined with specified movements by using workspace boundaries which 

were originated from both spherical and planar part. Whole manipulator is also 

modelled in MATLAB. Motion control of the manipulator is done by using PID blocks. 

The same procedure was followed as in the both spherical and planar parts. PID blocks 

are tuned for first three active joints and fourth and fifth joint separately and these 

obtained P, I and D values were used (for first three active joints P = 1.35, I = 0.95 and 

D =0.31, for fourth active joint P = 37.05, I = 21.62 and D = 14.11 and for fifth active 

joint P = 59,59, I = 331.09 and D = 2.38).  Fifteen different test results can be viewed 

as followed figures. Table 10 shows that the input variables of the manipulator for 

fifteen different sets of simulations and figure 20 shows these simulation results. The 

obtained simulation results show that the dimensional parameters obtained with firefly 

algorithm provide the workspace completely and the manipulator operated without any 

singularity condition within given workspace completely. Simmechanics model of 

spherical, planar and whole manipulator are given in appendix A.   
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Table 10. Simulations on whole manipulators 

Note: Rotational motions are applied at time interval between 150 and 300 seconds. 

Set 1     

𝜹𝟏 𝜹𝟐 𝜹𝟑 Px Py 

Sin Wave Constant Constant Constant Constant 

Amplitude: 0.4 Magnitude: 0 Magnitude: 0 Magnitude: 0 Magnitude: 0 

F:0.1 rad/sec     

 

Set 2     

𝜹𝟏 𝜹𝟐 𝜹𝟑 Px Py 

Constant Sin Wave Constant Constant Constant 

Magnitude: 0 Amplitude: 0.5 Magnitude: 0 Magnitude: 0 Magnitude: 0 

 F:0.1 rad/sec    

 

Set 3     

𝜹𝟏 𝜹𝟐 𝜹𝟑 Px Py 

Constant Constant Sin Wave Constant Constant 

Magnitude: 0 Magnitude: 0 Amplitude: 0.6 Magnitude: 0 Magnitude: 0 

  F:0.1 rad/sec   

 

Set 4     

𝜹𝟏 𝜹𝟐 𝜹𝟑 Px Py 

Sin Wave Constant Constant Linear Linear 

Amplitude: 0.4 Magnitude: 0 Magnitude: 0 Px = 8t, t = (0,150) 

Py = -8t, t = (0,150) 

Px = 120, t = (150,300) 

Py = -120, t = (150,300) 

F:0.1 rad/sec     

 

Set 5     

𝜹𝟏 𝜹𝟐 𝜹𝟑 Px Py 

Sin Wave Sin Wave Sin Wave Linear Linear 

Magnitude: 0 Amplitude: 0.5 Magnitude: 0 Px = 8t, t = (0,150) 

Py = -8t, t = (0,150) 

Px = 120, t = (150,300) 

Py = -120, t = (150,300) 

 F:0.1 rad/sec    

 

Set 6     

𝜹𝟏 𝜹𝟐 𝜹𝟑 Px Py 

Constant Constant Sin Wave Linear Linear 

Magnitude: 0 Magnitude: 0 Amplitude: 0.6 Px = 8t, t = (0,150) 

Py = -8t, t = (0,150) 

Px = 120, t = (150,300) 

Py = -120, t = (150,300) 

  F:0.1 rad/sec   

 

Set 7     

𝜹𝟏 𝜹𝟐 𝜹𝟑 Px Py 

Sin Wave Constant Constant Linear Linear 

Amplitude: 0.4 Magnitude: 0 Magnitude: 0 Px = 8t, t = (0,150) 

Py = 8t, t = (0,150) 

Px = 120, t = (150,300) 

Py = 120, t = (150,300) 
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F:0.1 rad/sec F:0.1 rad/sec F:0.1 rad/sec   

 

Set 8     

𝜹𝟏 𝜹𝟐 𝜹𝟑 Px Py 

Sin Wave Sin Wave Sin Wave Linear Linear 

Magnitude: 0 Amplitude: 0.5 Magnitude: 0 Px = 8t, t = (0,150) 

Py = 8t, t = (0,150) 

Px = 120, t = (150,300) 

Py = 120, t = (150,300) 

 F:0.1 rad/sec    

 

Set 9     

𝜹𝟏 𝜹𝟐 𝜹𝟑 Px Py 

Constant Constant Sin Wave Linear Linear 

Magnitude: 0 Magnitude: 0 Amplitude: 0.6 Px = 8t, t = (0,150) 

Py = 8t, t = (0,150) 

Px = 120, t = (150,300) 

Py = 120, t = (150,300) 

  F:0.1 rad/sec   

 

Set 10     

𝜹𝟏 𝜹𝟐 𝜹𝟑 Px Py 

Sin Wave Constant Constant Linear Linear 

Amplitude: 0.4 Magnitude: 0 Magnitude: 0 Px = -8t, t = (0,150) 

Py = -8t, t = (0,150) 

Px = -120, t = (150,300) 

Py = -120, t = (150,300) 

F:0.1 rad/sec     

 

Set 11     

𝜹𝟏 𝜹𝟐 𝜹𝟑 Px Py 

Sin Wave Sin Wave Sin Wave Linear Linear 

Magnitude: 0 Amplitude: 

0.5 

Magnitude: 

0 

Px = -8t, t = (0,150) 

Py = -8t, t = (0,150) 

Px = -120, t = (150,300) 

Py = -120, t = (150,300) 

 F:0.1 rad/sec    

 

Set 12     

𝜹𝟏 𝜹𝟐 𝜹𝟑 Px Py 

Constant Constant Sin Wave Linear Linear 

Magnitude: 0 Magnitude: 0 Amplitude: 

0.6 

Px = -8t, t = (0,150) 

Py =-8t, t = (0,150) 

Px = -120, t = (150,300) 

Py = -120, t = (150,300) 

  F:0.1 rad/sec   

 

Set 13     

𝜹𝟏 𝜹𝟐 𝜹𝟑 Px Py 

Sin Wave Constant Constant Linear Linear 

Amplitude: 0.4 Magnitude: 0 Magnitude: 0 Px = -8t, t = (0,150) 

Py =8t, t = (0,150) 

Px = -120, t = (150,300) 

Py = 120, t = (150,300) 

F:0.1 rad/sec     

 

Set 14     

𝜹𝟏 𝜹𝟐 𝜹𝟑 Px Py 

Sin Wave Sin Wave Sin Wave Linear Linear 
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Magnitude: 0 Amplitude: 0.5 Magnitude: 0 Px = -8t, t = (0,150) 

Py =8t, t = (0,150) 

Px = -120, t = (150,300) 

Py = 120, t = (150,300) 

 F:0.1 rad/sec    

 

Set 15     

𝜹𝟏 𝜹𝟐 𝜹𝟑 Px Py 

Constant Constant Sin Wave Linear Linear 

Magnitude: 0 Magnitude: 0 Amplitude: 

0.6 

Px = -8t, t = (0,150) 

Py =8t, t = (0,150) 

Px = -120, t = (150,300) 

Py = 120, t = (150,300) 

  F:0.1 rad/sec   

 

 

 Figure 20 (a). Test results for whole part manipulator (Set 1) 
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Figure 20 (b). Test results for whole part manipulator (Set 2) 

 
Figure 20 (c). Test results for whole part manipulator (Set 3)
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Figure 20 (d). Test results for whole part manipulator (Set 4) 

 
Figure 20 (e). Test results for whole part manipulator (Set 5)
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Figure 20 (f). Test results for whole part manipulator (Set 6) 

 
Figure 20 (g). Test results for whole part manipulator (Set 7)
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Figure 20 (h). Test results for whole part manipulator (Set 8) 

 
Figure 20 (i). Test results for whole part manipulator (Set 9)
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Figure 20 (j). Test results for whole part manipulator (Set 10) 

 
Figure 20 (k). Test results for whole part manipulator (Set 11)
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Figure 20 (l). Test results for whole part manipulator (Set 12) 

 
Figure 20 (m). Test results for whole part manipulator (Set 13)
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Figure 20 (n). Test results for whole part manipulator (Set 14) 

 
Figure 20 (o). Test results for whole part manipulator (Set 15) 
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7. FORCE ANALYSIS OF MANIPULATOR 

 

Force analysis plays important role on rehabilitation robotics because of these kind 

of robots directly interact with human bodies. To avoid harmful situations, forces 

acting on the manipulator from environment and users to manipulator and from 

manipulator to human should be predictable. After dynamic analysis we could 

select required actuators to use for the manipulator. Multiple closed loops lead to 

complication of dynamic solution of parallel manipulators [1]. The main 

approaches could be used to solve dynamic equations of any parallel manipulators. 

These approaches can be listed as; Newton-Euler formulation, the Lagrangian 

formulation and the principle of virtual work. The designed manipulator is a 

parallel manipulator and it is considered that when the manipulator’s end effector 

moves from one location to another, it moves slowly (near a constant speed). So 

there is low acceleration. Also, the weight effect of the manipulator is less than the 

external forces. In such cases, we can use static calculations to get a relation for 

external forces and actuator torques. Jacobian matrix analysis can help us to define 

force relations between actuators and environment. We defined Jacobian relation 

for spherical part in chapter 4. We can define it for force relation as follow. 

𝑱𝒔𝒙𝑴 =  𝑱𝒔𝒒𝝉𝑺                                                   (65)                               

Here 𝑴 refers to external moments from all direction (3x1 matrix vector) and its 

components becomes 𝑴𝒙, 𝑴𝒚 and 𝑴𝒛  respectively. 𝝉𝑺  refers imaginary active 

joint torques and its components becomes 𝝉𝑺,𝟏, 𝝉𝑺,𝟐 and 𝝉𝑺,𝟑 respectively. We can 

express 𝝉𝑺 with following relation. 

𝝉𝑺 =  𝑱𝒔𝒒
−𝟏 𝑱𝒔𝒙𝑴                                                (66) 

These calculated torque values for spherical part become external moment 

components for planar part. Besides that, two external forces are acting on planar 

sub-manipulator in direction x and y. With considering these external forces, we 

can write down force relation for planar part as following equation. 

𝑱𝒑𝒙𝑬𝑬 =  𝑱𝒑𝒒𝝉𝒑                                                (67) 

Now here, 𝑬𝑬 refers external effects acting on planar sub-manipulator. Finally, we 

can compute needed torque values actuator as following equation. 

𝝉𝒑 =  𝑱𝒑𝒒
−𝟏 𝑱𝒑𝒙𝑬𝑬                                              (68) 

In static force analysis, external moments are selected 1 N.m for wrist torque [47] 

around three different axes. From Eq. 66, torques of imaginary active joints are 

found -0.17 N.m, -1.66 N.m and -1.96 N.m respectively. These values are used for 

lower sub-system. Also, external forces on x and y directions are selected as 10 N. 
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From Eq. 68, motor torques are found -3.63 N.m, 3.37 N.m, 2.41 N.m, -11.16 N.m 

and 6.28 N.m respectively. 
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8. CONCLUSION 

 

This thesis deals with the design, analysis and dimensional optimization of 5 DoFs 

over-constrained planar-spherical parallel manipulator. This manipulator is designed 

to improve the efficiency of treatment of human shoulder, elbow and wrist and help the 

patients to daily living activities faster. Since the subspace of the manipulator match 

up with the subspace between the shoulder, elbow and wrist, this kind of a design are 

selected. Because of this mechanism has specific spatial workspace boundaries, could 

be used for special cases. 

Every design begins with determining how and where the design will be used. So, we 

started to design with specification of the motion of manipulator during rehabilitation. 

We consider a sphere which can perform three rotational motions around x, y and z 

axes and two translational motions on x and y axes. This motion set has subspace 

number five. For five independent movements five actuators are needed. After 

specification of degrees of freedom, leg and joint numbers are selected.  

Next step is the determination of the geometry of the manipulator. Remember, we have 

both planar motion in plane and rotational motion in space. So, our manipulator should 

have both planar and spherical parts. A three degrees of freedom spherical manipulator 

can provide three rotational motions around three different axes. Of course, a two 

degrees of freedom manipulator can perform a plane motion on two different axes. 

Because of we have parallel manipulator, we should place all actuators at ground joints 

or near the ground joints. Placing one actuator at first three legs will provide the 

spherical motion and placing last two actuators to fourth leg will provide the planar 

motion.  

Before optimization processes are performed for the manipulator, we obtained 

constraints and objective function by doing inverse kinematic and Jacobian analysis. 

Optimization processes are performed by using Firefly Algorithm. Firefly Algorithm 

is a nature inspired metaheuristic algorithm which is very effective for optimization 

task in several different ways. 

After optimized dimensional parameters are obtained, the manipulator is tested in given 

workspace boundaries by simulated with using MATLAB. Several simulations are 

done for several different cases. The obtained simulation results show that the 

dimensional parameters obtained with Firefly Algorithm provide the definite 

workspace completely and the manipulator is operated without any singularity 

condition both spherical and planar parts.  
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Static force relations are established for both spherical and planar part of the 

manipulator. Selection of 4 N.m motor torque for first three actuators, 12 N.m motor 

torque for fourth actuator and 8 N.m motor torque for fifth actuator will be sufficient 

to drive manipulator. 

 

In this thesis, a 5 DOFs parallel over-constrained manipulator was proposed for 

rehabilitation purpose. Its workspace was defined and manipulator geometry was 

given. After that, inverse kinematic solution of the manipulator was done and Jacobian 

analysis of the manipulator was proposed. Then, dimensional parameters of the 

manipulator were found by using Firefly algorithm. Several simulations were done for 

spherical, planar and whole manipulator and it was seen that founded dimensional 

parameters were fulfill the proposed workspace without any singularity condition.  
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APPENDIX A: Simmechanics Models of Manipulator 

 

 

Figure 21. Simmechanics model of spherical part 

 

Figure 22. Simmechanics model of planar part 
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Figure 23. Simmechanics model of whole manipulator 

 

Figure 24. PID control model of any active joint 
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APPANDIX B: Several Views of Obtained Manipulator 

 

 

Figure 25. Top view of the manipulator 
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Figure 26. Front view of the manipulator 

 

 

Figure 27. A detailed view of spherical part 

 


