

DIGITAL IMPLEMENTATION OF TRIGONOMETRIC FUNCTIONS VIA

FPGA DEVICES

Shakir Salman Ahmad

DECEMBER, 2017

DIGITAL IMPLEMENTATION OF TRIGONOMETRIC FUNCTIONS VIA

FPGA DEVICES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES OF

ÇANKAYA UNIVERSITY

BY

SHAKIR SALMAN AHMAD

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER

IN

THE DEPARTMENT OF

ELECTRONIC AND COMMUNICATION ENGINEERING

DECEMBER, 2017

iv

ABSTRACT

DIGITAL IMPLEMENTATION OF TRIGONOMETRIC FUNCTIONS VIA

FPGA DEVICES

AHMAD, Shakir Salman

M.Sc., Department of Electronics and Communication Engineering

Supervisor: Assoc. Prof. Dr. Orhan GAZİ

December. 2017, 52 Pages

As the technology improves, the importance of dynamic hardware design gains

more and more attention in the scientific world. FPGA devices are used for digital

circuit design purposes, and recently a significant improvement has been observed in

FPGA technology. Many communication systems employed in wireless and satellite

systems employ FPGAs.

Trigonometric functions, such as sine or cosine, are vital components of

communication systems. With the invention of coordinate rotation digital computer, i.e.,

CORDIC in short, algorithm in 1956, it became possible to generate the trigonometric

functions in digital devices, such as calculators, microcontrollers, and electronic chips

etc.

In this thesis work, we first implement the CORDIC algorithm in MATLAB

environment, and analyze the iteration number of the algorithm considering the accuracy

of the calculated sine or cosine value. Next, we implement the CORDIC algorithm in

FPGA environment using the VHDL programming language. For this purpose, we used

the FGPA board involving SPARTAN-3 FPGA chip produced by the XILINX company.

Later, we followed an alternative approach for the generation of sine signal. For this

purpose, we generated 1Hz sine signal in MATLAB and considering the ratio among

v

sine samples, we generated an integer sequence keeping approximately the same ratio

among samples, and using this integer sequence we generated sine signal in FPGA

platform and using the D/A converter, we observed the generated sine signal on

OSCILLOSCOPE screen. With this alternative approach, it became possible to generate

sine signal with any frequency and much less hardware complexity. To generate

different sine signals with different frequencies, we divide the clock of the FPGA device

by a desired amount and use it while sending the sine samples to the output port.

Keywords: Cordic algorithm, FPGA, VHDL, and Cosine function

vi

ÖZET

FPGA CİFAZLARI İLE TRİGONOMETRİK FONKSİYONLARIN DİJİTAL

GERÇEKLEŞTİRİMİ

AHMAD , Shakir Salman

YL, Elektronik ve Haberleşme Mühendisliği Bölümü

Danışman: Doçent Dr. Orhan GAZİ

Aralık 2017, 52 Sayfa

Teknolojinin gelişimi ile birlikte dinamik donanım yapılarının tasarlanması gün

geçtikçe daha da önem kazanmaktadır. FPGA cihazları dinamik donanımlar tasarlanmak

için kullanılan ve gittikçe dünyada popülaritesi artan elektronik ünitelerdir. FPGA

cihazları günümüzde birçok kablosuz ve uydu iletişim sistemlerinde kullanılmaktadır.

Sinüs ve kosinüs gibi trigonometrik fonksiyonlar iletişim sistemlerinin

vazgeçilmez unsurlarıdırlar. CORDIC algoritmasının 1956 yılında icadı ile

trigonometrik fonksiyonların sayısal elektronik cihazlarındaki gerçekleştirimlerinin önü

açılmıştır. Bugün günümüzde kullanılan birçok elektronik cihaz, mesela hesap makinesi,

mikrokontroller ve elektronik yongalar CORDIC algoritmasını kullanmaktadır.

Bu tez çalışmasında ilk olarak CORDIC algoritmasının MATLAB ortamında

gerçekleştirimini yapıyoruz ve algoritmada kullanılan yineleme sayısı ile elde edilen

sinüsün veya kosinüsün gerçek değerinden ne kadar sapma gösterdiğini inceliyoruz.

Daha sonra ise algoritmayı FPGA ortamında VHDL programlama dili kullanarak

gerçekleştiriyoruz. Bunun için XILINX firmasının üretmiş olduğu SPARTAN-3 yonga

içeren FPGA platformu kullanıyoruz. Tezin üçüncü çalışmasında sinüs veya kosinüs

sinyallerini üretmek için daha basit bir yol takip ediyoruz. Bunun için frekansı 1Hz olan

sinüs veya kosinüs sinyallerinin bir periyodunu MATLAB ortamında üretiyoruz. Daha

sonra üretilen sayılar arasındaki oranı göz önüne alarak bir tam sayı dizini

oluşturuyoruz. Oluşturulan tam sayı dizinini FPGA ortamında taşıyarak VHDL dili ile

FPGA cihazının saat darbe sayısı istediğimiz gibi ayarlayarak herhangi bir frekansa

vii

sahip olan sinüs veya kosinüs sinyalini üretiyoruz. Kullandığımız bu yöntem CORDIC

algoritmasına göre daha basit ve donanım karmaşıklığı çok daha az olmaktadır.

Anahtar kelimeler: Cordic Algoritması, FPGA, VHDL, Kosinüs fonksiyon.

viii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Assoc. Prof. Dr. Orhan GAZİ for his

supervision, special guidance, suggestions, and encouragement through the development

of this thesis.

It is a pleasure to express my special thanks to my family for their valuable support.

ix

TABLE OF CONTENTS

ABSTRACT .. IV

ÖZET .. VI

ACKNOWLEDGEMENTS .. VIII

TABLE OF CONTENTS .. IX

LIST OF FIGURES ... XI

CHAPTER ONE .. 1

INTRODUCTION TO ISE SUITE .. 1

1.2. OVERVIEW OF ISE ... 2

1.2.1. Project Navigator Interface .. 2

1.3. DESIGN PANEL ... 2

1.3.1. Sources View .. 2

1.3.2. Processes View ... 3

1.3.3. Files Panel ... 5

1.3.4. Libraries Panel .. 5

1.3.5. Console Panel ... 5

1.3.6. Errors Panel .. 5

1.3.7. Warnings Panel .. 5

1.3.8. Workspace .. 5

1.4. ISE CONSOLE WINDOW ... 6

1.5. ISE REPORTS/EDIT WINDOW .. 6

CHAPTER TWO ... 7

FUNDAMENTAL OF VHDL AND FPGA .. 7

2.1. DEFINITION AND BACKGROUND ON VHDL .. 7

2.1.1. Design Flow in VHDL .. 8

2.1.2. Code Structure in VHDL .. 9

2.2. DEFINITION AND BACKGROUND ON FPGA ... 10

2.2.1. FPGA Application .. 11

2.2.2. Advantages of FPGA ... 13

CHAPTER THREE .. 14

x

FUNCTION CALCULATION USING CORDIC .. 14

3.1. TRIGONOMETRIC FUNCTIONS .. 14

3.2. NUMERICAL EXAMPLE FOR CORDIC .. 18

CHAPTER FOUR ... 23

IMPLEMENTING CORDIC IN FPGA USING VHDL .. 23

4.1. OVERVIEW OF CORDIC ARCHITECTURES .. 23

4.2. FPGA IMPLEMENTATION TO CORDIC ALGORITHM .. 25

CHAPTER FIVE .. 27

GENERATION OF SINUSOIDAL SIGNALS .. 27

5.1. DIGITAL TO ANALOG CONVERTER ... 27

SIMULATION AND RESULT ... 29

5.2. INTRODUCTION .. 29

5.2.1. Getting Started ... 29

5.3. BEHAVIORAL SIMULATION USING ISIM .. 30

5.3.1. How to open project ... 31

5.4. HOW TO ADD AN HDL TEST BENCH ... 32

5.5. BEHAVIORAL SIMULATION USING ISIM ... 33

5.6. INFORMATION FROM VHDL TEST BENCH .. 38

5.7. HOW TO SET-UP AND TEST NEXYS3 BOARD ... 38

5.8. SWITCHES AND 7-SEGMENTS DISPLAYS ... 39

5.8.1. LEDs .. 40

5.8.2. Seven Segment Displays ... 41

5.8.3. Switches .. 41

5.8.4. Push Buttons .. 42

CHAPTER SIX .. 52

CONCLUSIONS AND FUTURE WORKS .. 52

REFERENCES ... 53

xi

LIST OF FIGURES

Figure 1: Project Navigator ... 3

Figure 2 Design Flow Summarization. .. 8

Figure 3. VHDL Code Components ... 9

Figure 4 Classification of VLSI circuits ... 11

Figure 5 A field-programmable gate array architecture 12

Figure 6 CORDIC representation using rotation mode... 15

Figure7 number of iterations and angles ... 20

Figure8 iteration with error ratio ... 22

Figure 9 Basic Architecture of CORDIC .. 24

Figure 10 Nexys 3™ FPGA Board Reference .. 25

Figure 11 Digital to Analog Converte ... 28

Figure 12 How to create design file. ... 30

Figure 13. Project navigator window .. 31

Figure 14 Explain choices Implementation and Simulation options 31

Figure 15.creat test bench ... 32

Figure 16 To save test bench file .. 33

Figure 17. How to select ISim... 34

Figure 18 How to select Simulate Behavioral Model ... 35

Figure 19. Change properties and behavioral simulation properties..................... 36

Figure 20. How to perform simulation .. 37

Figure 21 Setup NEXYS3 board .. 39

Figure 22 Connection from LEDs to NEXYS 3 Board .. 40

Figure23 Results of cosine values ... 43

Figure24 cosine wave .. 45

Figure 25 Cosine wave with shift.. 45

Figure 26 R-2R ladder ... 50

Figure 27 practical circuit ... 50

Figure 28The waveform we generated it. ... 51

Figure 29 sine wave .. 51

1

CHAPTER ONE

Introduction to ISE Suite

1.1. Definition and Background

''Xilinx ISE (Integrated Synthesis Environment)'' is a software tool produced by

Xilinx for synthesis and analysis of HDL designs, enabling the developer to synthesize

("compile") their designs, perform timing analysis, examine RTL diagrams, simulate a

design's reaction to different motivations, and configure the target device with the

programmer.

Xilinx ISE is a software development platform for FPGA supplied from Xilinx,

and it was tightly-coupled to the architecture of given chips, and cannot be used with

FPGA products from other retailers. The Xilinx ISE is fundamentally utilized for circuit

design and synthesis, while ISIM or the ModelSim logic simulator is utilized for

framework level analysis. Different parts dispatched with the Xilinx ISE include the a

Software Development Kit (SDK) , Embedded Development Kit (EDK), and ChipScope

Pro.

Since 2012, Xilinx ISE has been stopped for VDS, that aids the same roles by

way of ISE with extra highlights for framework on a chip progression. Xilinx released

the last version of ISE in October 2013 (version 14.7), and states that "ISE'' has moved

into the supporting period of its item life cycle, and there are not any more arranged ISE

out.

2

1.2. Overview of ISE

All parts of design flow are controlled by ISE. Through the interface of Project

Navigator (PG)ö we can get the majority of the tools implementation design and entry

design. By this way, we can get files and documents related with our project.

1.2.1. Project Navigator Interface

Practically the Interface of Project Navigator is classified into four types of panel

sub-windows as explained in Figure 1. On the top-left of screen we see file, design and

libraries panel are displayed and they lead to source file of the project. At the lower part

of the Project Navigator we have the console, warnings and errors which show status

messages' warnings and errors. We see the multi-document- interface (MDI) window

indicate to workspace. We can use it to show schematics, text files, design reports, and

simulation of waveforms. Every window might be resized, undocked from PN, moved to

another area inside the fundamental PG window, tiled, layered, or shut. Boards might be

opened or shut by utilizing the View then Panels then menu choices.

1.3. Design Panel

1.3.1. Sources View

We can see the name of project by the sources view in order to display the name

of project documents of user the required device and source of design files related with

design view choices. The Design View ("Sources for") drop-down rundown at the

highest point of the Sources tab enables you to see just those source documents related

with the design view we choose, for example, Synthesis/Implementation or Simulation.

Every file has an icon referring to the type file (HDL, text, core, schematic). In

order to know the source type and their related icons we can use help in ISE™ . For this

purpose we can chose help and then select help contents. And search about “source file

type” after click on index tab. The sign ‘+’on the icon of the file refers to it has more

than one level of hierarchy and we can open these levels. We can expand and show the

3

contains of the file by click on the sign ‘+’and the file will be opened by indicating on

the file name then double click.

Figure 1: Project Navigator

1.3.2. Processes View

The Processes view is important context and we can change its state depending

on what we choose of the source type in sources part and top-level of source in our

project. By this way, we choose the necessary function for setting, in order to run our

design and analyzing. By using processes, we get several functions such as:

1-Report or design summary.

We can access the report of design and results data and message from summary

design.

4

2- Utilities of design.

We can access from utilities of design create schematic symbol, view command

log file and view HDL instantiation template.

3- Users constraints.

We get several branches such as: create timing constraints, I/O pin planning

(planned Ahead)-pre synthesis, I/O pin planning (planned Ahead)-post synthesis and

floor plan areal /IO/logic (planned Ahead).

4- Syntheses

 Synthesis contains many parts such as: view of RTL (register transfer level)

schematic, view technology schematic, check syntax and great post- synthesis

simulation model.

5- Implement design.

Implement of design part contains several levels

A- Translate.

Translate contains generate post-translate simulation model.

B- Map

Map contains several levels: Generate post-map static timing, analyze post-map

static timing, manually place and route (FPGA Editor) and generate post-map simulation

model.

C- Place and Route.

Place and Route panel has several types such as: Generate post-place and route

static timing, analyze post-place and route static timing, analyze timing/floor plan design

(plan Ahead), view/edit routed design (FPGA Editor), Analyze power distribution (x

power Analyzer), Generate text power report, generate post-place and route simulation

model, Generate IBIS model, view IBIS model, Back-annotate pin locations, view

locked pin constraints and generating programming file.

D-Configure target device.

Configure target device contains: generate target PROM/ACE file, manage

configuration project (IMACT) and analyze design using chip scope.

5

1.3.3. Files Panel

We get a list of flat sortable source files in our project from the files panel. We can

have sorted these file in view by any columns, we can modify and view properties to

every file by selecting the option source properties after indicating the file and right

clicking on it.

1.3.4. Libraries Panel

 HDL libraries and related source files of HDL can be managed by the tab of

libraries we can get, show the libraries and edit their libraries related with sources.

1.3.5. Console Panel

From project navigator and from run process, the Console panel gives us all output in

standard state. We see error in symbol (x) in red color and yellow color for warning in

symbol (i) with information about warning by way of a message.

1.3.6. Errors Panel

Only messages of error have been displayed here. Other massages are neglected out

consol.

1.3.7. Warnings Panel

If we have error of synthesis or message in console panel of warning or errors to

location of error in HDL file. We select the messages of errors or by right click and

chose the option go to source then HDL file will open and the indicator transfer to line

where the errors lies. Only messages of warning displayed in this panel. Other console

messages are neglected out. We can go to http://www.xilinx.com/support website to find

answer to our problems and errors

1.3.8. Workspace

The Workspace refers to the place of design editors with viewers with analysis

tools when it is opened. ISE Text Editor, Schematic Editor, Timing Constraint Editor,

6

Design Summary & Report Viewer, RTL and Technology Viewers, and Timing

Analyzer are included. Other tools such by way of Plan Ahead for I/O planning and

floor planning, ISE Simulator (ISim), 3rd party Text Editors, XPower Analyzer, and

iMPACT open in separate windows outside the main PN environment when invoked.

1.3.9. Report Viewer & Design Summary

We get a summary of main design data from design summary also get all the

reports and message from implementation and synthesis tools and gives important

information about our project and we can overview information summary of device

utilization performance data collected from place and route report summary and

constraint information from all reports individual links.

1.4. ISE Console window

The ISE console window provides narrative from the design processes by way of

they operate. Most of the scripts that the ISE runs and messages that are emitted by the

various processes can be gotten by way of a running display in the Console

window—seeing it while a design is being treated can be quite informative.

Infrequently, some message will flash by and trigger an insight into a

design’s characteristics or defects. When the processing of a design has ended or

finished, the “Errors” or “Warnings” tab will filter all of the process

dialog down to the important details.

1.5. ISE Reports/Edit window

This shows a viewer for the numerous reports produced in the Processes

window. It also becomes a very useful syntax-coloring editor for Verilog and

VHDL sources in the Sources window.

7

CHAPTER TWO

Fundamental of VHDL and FPGA

2.1. Definition and Background on VHDL

VHDL means VHSIC Hardware Description Language. VHSIC is itself acronym

to ''Very High Speed Integrated Circuits'' furnished through United States Department of

Defense in 1980s. It is a language to a hardware description. It is a language to a system

or electronic circuit behavioral description. It is the language for circuit simulation in

addition to circuit synthesis [2].

Its early version is VHDL 87, next developed to a so-called VHDL 93. It is the

first hardware description language and innovative standardized via Institute of

Electrical and Electronics Engineers with IEEE 1076 standard. Furthermore, IEEE 1164,

has been added to present a multi-valued logic system.

A major encouragement inspiration for utilizing VHDL (or its competitor,

Verilog) is that VHDLs are a standard, technology/vendor standalone language, and is to

portable and reusable. VHDL have two topmost instantaneous applications that are: 1) to

area of ASICs (Application Specific Integrated Circuits) 2) To area of Programmable

Logic Devices that comprising FPGAs—Field Programmable Gate Arrays and

CPLDs—Complex Programmable Logic Devices. VHDL codes are written for two

purposes: 1) it used to manufacture a chip of ASIC or to carry out circuit inside a

programmable device such as Xilinx, Atmel and Altera. Presently, numerous

8

multifaceted marketable chips have been designed utilizing this approach, e.g.,

microcontrollers.

2.1.1. Design Flow in VHDL

As explained previously, VHDL is mainly used for synthesis in FPGA or in PLD

or in ASIC. Design flow of VHDL is given in Figure 2 [2]. VHDL codes are saved in a

file with extension .vhd and they have similar name as that of ENTITY’s name.

Compilation is primary stage of a synthesis process [2].

Figure 2 Design Flow Summary [2].

It is a high-level VHDL language that defines every circuit at Register Transfer Level

(RTL) and feed it in a net list at gate level. Then, optimization is second step that is done

9

on gate-level. At this level, simulation of design is implemented. Lastly, it possible to

generate a physical layout to a FPGA and PLD chips or generate covers to ASIC through

place and-route (fitter) software

2.1.2. Code Structure in VHDL

 VHDL code is comprised from three components [2]:

1. LIBRARY declarations: Covers a list of libraries that is utilized in design.

Such as: ieee, std, work, etc.

2. ENTITY: Indicate I/O pins of a circuit.

3. ARCHITECTURE: Comprises VHDL code that defines the way circuit

should function.

Figure 3. VHDL Code Components [2]

To announce a LIBRARY and to make it visible to design; two lines of code

required, one is the name of library, and the other indicating the name of the package to

be used.

10

An ENTITY is a list containing all input and output pins named as PORTS. Its

syntax is given below.

 ARCHITECTURE is an explanation that according to it a circuit should

function. Its syntax is following:

2.2. Definition and Background on FPGA

VLSI circuits have been categorized as shown in Fig. 2.3. FPGA member of a

class of devices called field-programmable logic (FPL) [3]. FPLs describe

programmable devices covering repetitive fields of elements and small logic blocks. It is

seen that an FPGA is an ASIC technology of FPGAs application-specific ICs. Moreover,

a design of a classic ASIC needs extra semiconductor dispensation stages essential to an

FPL. Extra stages deliver higher-order ASICs in addition of energy consumption benefit

but also with high Non-Recurring Engineering (NRE) expenses.

The architecture of FPGA device is given in Fig. 5. Fundamental logic blocks

include 4 to 5-bit input tables, 1 or 2-bit output. Routing channel selections varies from

short too long. Programmable I/O block with flip-flops is connected to physical

boundary of device.

Traditionally, FPGA is not energy efficient, slower and usually given not much

functional compared to their fixed ASIC counterparts. Nowadays, FPGAs by Altera

https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
https://en.wikipedia.org/wiki/Altera

11

Stratix 5 have come to opposing like ASIC or Xilinx Virtex-7 and ASSP keys by giving

considerably less power usage, higher speed, less resources cost, insignificant

implementation real-estate, and more potentials to reconfiguration 'on- -fly'. Previously,

a project is comprised 6 to 10 ASICs, now same project can be implemented utilizing

only one FPGA [3].

2.2.1. FPGA Application

Any computable problem can be solved through FPGA. This is slightly

established via fact of FPGA that is utilized to implement a soft microprocessor.

Figure 4 Classification of VLSI circuits [3]

FPGAs initially started as a competition to CPLDs to carry out glue logic to PCBs

considering their size, abilities, and speed improved. The created multipliers inside

FPGA architectures in late 1990s,

https://en.wikipedia.org/wiki/Xilinx
https://en.wikipedia.org/wiki/Application-specific_standard_product
https://en.wikipedia.org/wiki/Computable
https://en.wikipedia.org/wiki/Soft_microprocessor
https://en.wikipedia.org/wiki/CPLD
https://en.wikipedia.org/wiki/Glue_logic
https://en.wikipedia.org/wiki/Printed_circuit_board

12

Figure 5 A field-programmable gate array architecture [3]

One more trend in utilizing of FPGAs is hardware acceleration is that it is

possible to utilize FPGA to speed up given parts of algorithm and dividend part of

calculation between FPGA and a generic processor.

13

Usually, FPGAs reserved to exact vertical applications where size of

manufacture is not large. To these small size applications, premium that companies pay

in hardware costs per unit to a programmable chips not less affordable compared to

development resources consumed on making an ASIC to a small-size application.

Nowadays, fresh cost and performance dynamics broadened variety of feasible

applications.

2.2.2. Advantages of FPGA

FPGAs have turned out to be extremely prominent in current years due to its

abundance of benefits. FPGA enable parallel processing operations do be done reducing

the computation overhead of complex algorithms. Programming time of FPGA can be

considered small relative to its ASIC counterparts. Re-programmability property of the

FPGAs provide us with great flexibility of circuit design.

NRE cost is zero: NRE denotes to one-time cost of investigating, developing,

designing and testing a new product. Since FPGAs are

re-programmable and can be utilized without any loss of quality every time,

NRE cost is not present. This significantly decreases initial cost of manufacturing

 ICs since program is applied and verified on FPGAs free of cost. Due to look up table

which used by FPGA technology, the execution time will be much less compared to

ASIC technology. FPGAs are produced in great numbers, considering their benefits,

they can be accepted as cheap in price and they are too friendly to the designer. In

addition, power consumption is too less.

https://en.wikipedia.org/wiki/Vertical_application

14

CHAPTER THREE

Function Calculation using CORDIC

3.1. Trigonometric functions

Calculation of sine and cosine can be achieved via CORDIC. We start our

discussion with those two simple functions to verify simplification of CORDIC.

Differences between CORDIC classes not complicated in derivative and concept point

of view, hence considering one or two classes can lead to other classes’ derivation and

calculation. Thereto, considering those classes will serve to provide details to one class

of function and extension to another class.

Sine and cosine calculations performed in rotation scenario and named by way of

rotation mode. Rotating a (technically) is unit-length vector over any predetermined

angle. Let us assume to calculate 𝑐𝑜𝑠 𝜃 and 𝑠𝑖𝑛 𝜃, to give angle θ. If we consider a

vector (𝑋0, 𝑌0) ≜ (1 ,0), rotate it on circle 𝑋2 + 𝑌2 = 1, over a sequence of positive

angles, 𝜃0 , 𝜃1, . . . , 𝜃𝑛, such that 𝜃0 + 𝜃1 + · · · , 𝜃𝑛 = 𝜃, and finish with vector

(𝑋𝑛+1 , 𝑌𝑛+1), then 𝑌𝑛+1 = 𝑠𝑖𝑛 𝜃 and 𝑋𝑛+1 = 𝑐𝑜𝑠 . Then, let us take look at rotation

technique in CORDIC in rotation mode.

Figure 3.1 gives steps of rotation, by an angle 𝜃𝑖, of unit-length vector

with coordinates (𝑋𝑖, 𝑌𝑖) at an angle φ from x axis. Coordinates,

(𝑋𝑖+1
∗ , 𝑌𝑖+1

∗), of new vector given as:

𝑋𝑖+1
∗ = 𝑐𝑜𝑠(𝜃𝑖 + 𝜑)

15

𝑋𝑖+1
∗ = 𝑐𝑜𝑠 𝜑 𝑐𝑜𝑠 (𝜃𝑖) − 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 (𝜃𝑖)

𝑋𝑖+1
∗ = 𝑋𝑖 𝑐𝑜𝑠 (𝜃𝑖) − 𝑌𝑖 𝑠𝑖𝑛 (𝜃𝑖)

𝑋𝑖+1
∗ = (𝑋𝑖 − 𝑌𝑖 𝑡𝑎𝑛 (𝜃𝑖)) 𝑐𝑜𝑠 (𝜃𝑖)

(1)

𝑌𝑖+1
∗ = 𝑠𝑖𝑛(𝜃𝑖 + 𝜑)

𝑌𝑖+1
∗ = 𝑠𝑖𝑛 (𝜑) 𝑐𝑜𝑠 (𝜃𝑖) − 𝑐𝑜𝑠 (𝜑) 𝑠𝑖𝑛 (𝜃𝑖)

𝑌𝑖+1
∗ = 𝑋𝑖 𝑐𝑜𝑠 (𝜃𝑖) − 𝑌𝑖 𝑠𝑖𝑛 (𝜃𝑖)

𝑌𝑖+1
∗ = (𝑋𝑖 − 𝑌𝑖 𝑡𝑎𝑛 (𝜃𝑖)) 𝑐𝑜𝑠 (𝜃𝑖)

(2)

Figure 3.1 Rotation mode CORDIC algorithm.

In CORDIC, rotation of (𝑋𝑖, 𝑌𝑖) to (𝑋𝑖+1
∗ , 𝑌𝑖+1

∗), is shown in Figure 3.1 and this

rotation can mathematically be expressed as follows

16

𝑋𝑖+1 = 𝑋𝑖 − 𝑌𝑖 𝑡𝑎𝑛 (𝜃𝑖)

𝑌𝑖+1 = 𝑋𝑖 − 𝑌𝑖 𝑡𝑎𝑛 (𝜃𝑖))

(3)

As we shall see below, utilization of a pseudo-rotation, in place of an exact

rotation can reduce complexity and hardware implementation of the algorithm that is

most important feature of CORDIC.

A comparison of Equations 1–2 and Equation 3 demonstrations that

vector(𝑋𝑖+1, 𝑌𝑖+1), is lengthier than vector (𝑋𝑖+1
∗ , 𝑌𝑖+1

∗), by a factor of(1/ 𝑐𝑜𝑠 𝜃𝑖).

Consequently, to obtain 𝑠𝑖𝑛 𝜃 and 𝑐𝑜𝑠 𝜃 at end of final rotations of algorithm, it is

important to multiply (scale) each 𝑋𝑖 and 𝑌𝑖 by this factor. Then, if magnitudes of

rotation angles are constant and total number of rotations also constant, nevertheless of

given angle, 𝜃 and thus, same situation with recurrences above if 𝜃𝑖 suitably selected

then multiplying of scaling factors is also constant. Thereto, rather than scaling by

(1/ 𝑐𝑜𝑠 𝜃𝑖) at each given step, i, to 𝑛 + 1 iterations, it is adequate to simply multiply

(scale) last out come by factor

𝑘 = ∏
1

cos 𝜃𝑖

𝑛

𝑖=0

 ,

𝑘 = ∏ √1 + tan(𝜃𝑖)

𝑛

𝑖=0

 ,

(4)

Actually, the last process, i.e., scaling by 𝐾 can be avoided by setting 𝑋0 to the

initial value1/𝐾. This initial scaling in X subsequently introduces a similar scaling in

𝑌 .

Rotation by angle 𝜃𝑖 can be converted into shifting by carefully selecting the

rotations angles as will be explained now. Let us select 𝜃𝑖 = tan−1 2−𝑖, this yields

17

𝑋𝑖+1 = 𝑋𝑖 − 𝑌𝑖 2
−𝑖

𝑌𝑖+1 = 𝑋𝑖 − 𝑌𝑖 2
−𝑖

(5)

where 2−𝑖 signifies a simple shift to right by i bits, and the constant term is

𝑘 = ∏ √1 + 2−2𝑖

𝑛

𝑖=0

 .

(6)

Last issue in this presentation is convergence. We might dive into points of

interest of that beneath, however we make some preparatory comments here with a

specific end goal to finish definition of algorithm.

In order to choose whether to add or subtract at the current iteration in the

algorithm, total rotation angle so far is subtracted from 𝜃. If difference is negative, then

an addition takes place; and if it is positive, then a subtraction takes place. Alternatively,

we can look at the difference between the accumulated angle and target angle. If last

rotation was to forward (backward), then next one can be backward (toward). In

algorithm, the difference is calculated incrementally by way of 𝜃0 ± 𝜃1, 𝜃0 ± 𝜃1 ±

𝜃2, 𝜃0 ± 𝜃1 ± 𝜃2 ± 𝜃3, etc. and preceding actions thereto correspond to making

adjustments according to “how much farther we have to go”. Angle residual is computed

in a third variable 𝑍𝑖.

To summarize, recurrences to computation of sine and cosine are done as

𝑋0 =
1

𝑘
 , 𝑌0 = 0 , 𝑍0 = 𝜃 𝑎𝑛𝑑 𝜃𝑖 = tan−1 2−𝑖

𝑋𝑖+1 = 𝑋𝑖 − 𝑠𝑖 2
−𝑖 𝑌𝑖

𝑌𝑖+1 = 𝑌𝑖 + 𝑠𝑖 2
−𝑖 𝑋𝑖

𝑍𝑖+1 = 𝑍𝑖 − 𝑠𝑖 𝜃𝑖

18

𝑠𝑖 = {
1 𝑖𝑓 𝑍𝑖 ≥ 0

−1 𝑖𝑓 𝑍𝑖 ≤ 0

3.2. Numerical Example for CORDIC

In this section, a numerical example is given about rotation mode of CORDIC

algorithm. We are going to evaluate sin and cos of the angle 0.735 radians.

First we need to find and set initial values of algorithms as:

𝑌1 = 0 , 𝑍1 = 30o → 0.523 rd, s1 = +1

 𝑘 = ∏ √1 + 2−2𝑖

10

𝑖=1

 = 1.1644, 𝑋1 =
1

𝑘
= 0.8588

Then, iterations are performed as follows:

For 𝑖 = 0,

𝜃0 = 0.7853 𝑟𝑑

𝑋2 = 𝑋1 − 𝑠1 2−1 𝑌1 → 𝑋2 = 0.8588 − 1 × 2−1 × 0 = 0.8588

𝑌2 = 𝑌1 − 𝑠1 2−1 𝑋1 → 𝑌1 = 0 + 𝑠1 2−1 𝑋1 = 0.4294

𝑍1 = 𝑍0 − 𝑠1 𝜃1 → 𝑍1 = 0.523 − 𝑠1 0.7853 = −0.2623

For 𝑖 = 1,

𝜃1 = 0.4636 𝑟𝑑 , 𝑍1 < 0, 𝑠2 = −1

𝑋2 = 𝑋1 − 𝑠1 2−1 𝑌1 → 𝑋2 = 0.8588 + 1 × 2−1 × 0 = 0.8588

𝑌2 = 𝑌1 − 𝑠1 2−1 𝑋1 → 𝑌1 = 0 − 𝑠1 2−1 𝑋1 = − 0.4294

19

𝑍2 = 𝑍1 − 𝑠1 𝜃1 → 𝑍1 = −0.262 + 𝑠1 0.4636 = −0.2016

For 𝑖 = 2,

𝜃2 = 0.2450 𝑟𝑑, 𝑍2 < 0, 𝑠2 = −1

𝑋3 = 𝑋2 − 𝑠2 2−2 𝑌2 → 𝑋2 = 0.8588 + 1 × 2−2 × 0.4294 = 0.75145

𝑌3 = 𝑌2 + 𝑠2 2−2 𝑋2 → 𝑌3 = 0.4294 − 𝑠2 2−2 𝑋2 = 0.2147

𝑍3 = 𝑍2 − 𝑠2 𝜃2 → 𝑍3 = −0.2016 + 𝑠2 0.2450 = −0.0434

and so on ⋯, and lastly

For 𝑖 = 10,

𝜃10 = 0.0020 𝑟𝑑, 𝑍2 < 0, 𝑠10 = −1

𝑋11 = 𝑋10 − 𝑠10 2−10 𝑌10 → 𝑋10 = 0.8659 + 1 × 2−10 × 0.5002 = 0.8569

𝑌11 = 𝑌10 + 𝑠10 2−10 𝑋10 → 𝑌10 = 0.5002 − 1 × 2−10 × 0.8659 = 0.5002

𝑍11 = 𝑍10 − 𝑠10 𝜃10 → 𝑍10 = −0.0002 + 1 × 0.002 = −0.002

We wrote a program in MATLAB to calculate the cosine and sine values

of the angles, and find the number of iterations needed considering the accuracy

of the calculated value, the program and its outputs are depicted in Fig. 3.2 and

Fig. 3.3.

clc;clear all;close all
format short
s=input('enter angle');
i=0;
flag=1;
k=atan(2^-i)*180/pi;
Z(1)=k;
while flag==1
if abs(k-s)<=0.01
flag=0;
end
if k>s
i=i+1;

20

k2=atan(2^-i)*180/pi
k=k-k2
Z(i+1)=k;
else
i=i+1;
k2=atan(2^-i)*180/pi
k=k+k2
Z(i+1)=k;
end
end
plot(Z)
grid on; hold on;
_Iteration=i

Figure 3.2 Number of iterations w.r.t angles.

clc;clear all;close all

 %epserror=[3 2 1 0.1 0.05 0.01 0.001 0.0001]

 epserror=[0.0001 0.001 0.01 0.1 0.5 1]
 z0_in=[35 14 65]
 colorset={[1 0 0];[0 0 1];[0 1 0]}
 colorset =cell2mat(colorset)
 for k=1:3
 for j=1:length(epserror)
 m=0;
 xi=0.607252935;
yi=0;
z0=z0_in(k);

21

zi=z0;

 theta=[45 26.6 14 7.1 3.6 1.8 0.9 0.4 0.2 0.1]
for i=0:length(theta)

 if (zi>=0)
 xi1=xi-(2^-i)*yi;
 yi1=yi+(2^-i)*xi;
 zi1=zi-theta(i+1);
 else
 xi1=xi+(2^-i)*yi;
 yi1=yi-(2^-i)*xi;
 zi1=zi+theta(i+1);
 end
 xi=xi1;
 yi=yi1;
 zi=zi1;

 m=m+1;

 if (abs(zi1)<=epserror(j))

 break;
 end
end

itr(j)=m;
 end
 C=colorset(k,:);
 figure(1)
plot(epserror,itr, 'color',C); xlabel('epserror'),

ylabel('iteration'),hold on;
legend('35','14','65')
pause
 end

xi
cos(z0*pi/180)
yi
sin(z0*pi/180)

22

Figure 3.3 Iteration number w.r.t accuracy parameter.

23

CHAPTER FOUR

Implementing CORDIC in FPGA using VHDL

4.1. Overview of CORDIC Architectures

Architecture of CORDIC algorithm is presented in this section. Generally,

architectures are categorized into two parts: first unfolded and second folded as depicted

in Figure 9. We can have folded-architectures by implementing difference equations in

hardware for CORDIC algorithm and time multiplexing of whole iterations inside a

single efficient part. Folded-architectures give mechanism to an interchange zone into

signal processing architectures to timing. Folded architectures has been divided to bit-

serial and word-serial architectures subject to whether functional unit carry out logic into

one bit or one word for every iteration of traditional CORDIC algorithm [4].

Traditionally, CORDIC algorithm can be implemented using serial bit

architecture including, and entire iterations can be performed using the same hardware.

In such implementations, computing device gets slow-down and, is not appropriate for

high-speed application. An iterative CORDIC architecture is word serial architecture

proposed in [5, 6] which is fast compared to classical implementations. Suitable simple

angles 𝜃𝑖 are retrieved from lookup-table.

 Carry or borrow generation, addition or subtraction and variable

shifting operations have degrading speed factors throughout iterations of word serial

architecture, however, these operations in traditional CORDIC implementation causes

the hardware to function very slowly. Thereto, through unfolding iteration process,

24

drawbacks have been overcome by performing same iteration at each processing

elements as shown in Figure 4.1. Unfolded pipelined architecture possess large

throughput because of hardwired shifts instead of time and region consuming barrel

shifters and removal of ROM that is main benefit of unfolded pipelined architecture

over Folded architecture. Pipelined architectures give throughput enhancement by a

factor of n to n-bit precision at the price of rising hardware complexity by factor not

more than n.

Figure 9 Basic Architecture of CORDIC [4]

25

4.2. FPGA Implementation to CORDIC Algorithm

Nexys 3™ FPGA Board Reference is used for algorithm implementations.

Nexys 3 is a complete, ready-to-utilizing digital circuit development platform involving

Xilinx Spartan-6 LX16 FPGA. Spartan-6 is enhanced to high performance logic, and

gives not less than 50% more capacity, improved performance, and additional resources

over Nexys 3™ Spartan-3 500E FPGA can be found in [7].

Figure 10 Nexys 3™ FPGA Board Reference

Structures of Nexys 3™ FPGA Board are:

1. 16 Mbyte Cellular RAM x16

2. Xilnx Sprtan-6 LX16 FPGA a 324-pin BAG package

26

3. 16 Mbyts SIP PMC non-volatile memory

4. 16 Mbyts parallel PCM non-volatile memory

5. 10/100 Ethernet PHY

6. On-board USB2 port to programming & data xfer

7. USB-UART and USB-HID port (to mouse/keyboard)

8. 8-bit VGA port

9. 100 MHz COMS oscllator

10. 72 I/O routed to expnsion connectors

11. GIPO comprises 8 LEDs, 5 buttons,8 slide switches and 4-digit seven-segment

display USB2 programming cable comprised

Besides Spartan-6 FPGA, Nexys 3 gives better group of peripherals comprising

32Mbytes of Micron's latest Phase Change Nonvolatile memory, a 10/100 Ethernet

PHY, 16Mbytes of Cellular RAM, a USB-UART port, a USB host port to mice and

keyboards, and an enhanced high-speed expansion connector. Large FPGA and broad

set of peripherals make Nexys 3 board a perfect host to a wide variety of digital systems,

comprising embedded processor designs founded on Xilinx's MicroBlaze. Nexys 3 is

well-matched with every Xilinx CAD tools, comprising ChipScope, EDK, and free

WebPack. Nexys 3 utilizes Digilent's latest Adept USB2 system that gives FPGA and

ROM programming, automatic board tests, virtual I/O, and basic user-data transmission

services.

27

CHAPTER FIVE

Generation of Sinusoidal Signals

In order to generate an output signal having a sinusoidal waveform, we will be

use a digital stores at different locations binary-coded amplitudes at equally spaced

instants of time during a complete cycle of a sine wave. Those locations are addressed in

turn by incomes of a pulse counter and the signals supplied by the memory are passed to

a digital/analogue converter from which the required output signal is resultant. The pulse

signal supplied to the counter is achieved from a sequence of clock pulses by a

programmable divider. To get a frequency change in the output signal (for the purpose

of signaling binary data), the frequency of the divider is changed in a sequence of steps

so that the overall change in output frequency is less quick than would otherwise be the

case.

5.1. Digital to analog Converter

The abbreviation DAC is refers to converts from digital to analog. A device

gives an analogue signal from convert’s digital data. The digital to analogue converter

takes serial numbers of discrete values as input values and gives an analogue signal that

is instantaneous with the equivalent numerical value. Several kinds of Digital to Analog

converter ICs are obtainable commercially built on this same standard. The R-2R ladder

28

circuit is constructed by a set of resistors of two values. It makes the circuit simpler and

economical for several applications.

R-2R biased resistor ladder circuit consumptions only 2 set of resistors- R and

2R. If you need to construct a very fixed DAC, be accurate while selecting the values of

resistors that will exactly equal to the R-2R ratio

Figure 11 Digital to Analog Converter

29

Simulation and Result

5.2. Introduction

In order to test a circuit by software we can use simulator platforms.

Conventionally, we can build a digital circuit on board using chips to test logical circuit

but this state has some disadvantages. One of the important disadvantages is high cost,

because in this method we need heavy expensive lab equipment and hardware. Cost can

increase more because many chips may be hooked up and incorrectly destroyed. Some

errors often difficult to detect on board. Solution to these problems is design re-usable

circuits. In next step, we will explain Xilinx ISE Design Suite 14.5 ISim Simulator.

 We will learn the following topics:

1. How to use a simulator and learn different capabilities of it?

2. How to create a test bench in (VHDL) in order to be used by simulator?

3. How to verify functionality (CORDIC Algorithm) by using Xilinx ISim Simulator?

5.2.1. Getting Started

In this section, we will describe requirements to conducting behavioral

simulations. To create design files in VHDL, we open icon (file) and chose open (new

project) option and name it, see Fig. 12.

• To simulate design, we need a bench file to provide stimulus to design.

• Simulation Libraries: We need Xilinx simulation libraries when we use

Xilinx primitive or IP core in design.

30

Figure 12 How to create a design file.

5.3. Behavioral Simulation Using ISim

The steps to be followed to simulate your design are:

1. Open your design project (cordicAlgorithversion1).

2. Choose simulation mode.

3. Add a HDL test bench to your existing design.

4. Identify simulations.

5. Determine simulation properties.

6. Simulation performance.

7. Add signals.

31

8. Signal analysis.

5.3.1. How to open project

1. Open Project Navigator from all programs Xilinx ISE design suite 14.5.

2. We see project navigator window Figure 13.

3. We have two method to open any project:

1. Directly open project and chose project from list.

2. Open existing project on screen and we will see previous project to example

(cordicAlgorithversion1) and chose it.

Figure 13. Project navigator window

4. We see two choices, implementation or simulation, See Fig. 14.

Figure 14 Explanation of the choices for the implementation and simulation options

5. You should use implementation mode when you want to design a circuit using

VHDL. On other hand, you should switch to simulation mode when you want to

32

simulate your design. To simulate the design, we should use Simulation mode

and chose implementation mode when you want to design a circuit using VHDL.

•When we use simulation mode, we see behavioral check syntax and simulate behavioral

model, translate simulation (that is executed after synthesis), mapping (that is

implemented after executing design), route simulation (that is achieved after mapping,

placement and routing).

5.4. How to add an HDL Test Bench

In order to create a new test bench file to our project and modify by editing it

with statements, we should follow these steps:

1. Highlight our project and then click on new source and select VHDL Test Bench

and enter “cordicAlgorithversion1_tb”, and click next, see Fig. 15.

Figure 15.Creating a test bench.

33

Figure 16 Saving a test bench file

2. We will see new file with our project in Hierarchy pane

(cordicAlgorithversion1.vhd) and a skeleton VHDL file in Workspace panel on

right hand side of screen.

3. We write a test bench program and save it.

4. To save test bench file see Fig. 16.

5.5. Behavioral Simulation Using ISim

After we get a test bench in our project, we can implement behavioral simulation

using ISim and ISE software full integration. ISE software supports ISim to create

directory, compile main files, load design, and implement simulation.

How to Select ISim

We can do double-click in device line in hierarchy pane of Project Navigator Design

panel, right-click device line and select Design Properties and set Simulator field to

ISim(VHDL/Verilog) and press OK., see Fig. 17.

To save

all

34

Figure 17. How to select ISim

35

How to locate ISim processes

a. Select Simulation, and select Behavioral from drop-down list and

select test bench file (cordicAlgorithversion1- TB), see Fig. 18.

Figure 18 How to select Simulate Behavioral Model

b. Expand ISim Simulator in Processes pane to view list of processes.

c. At beginning check syntax, and simulate behavioral model. If all goes

fine, we will get message ("Completed successfully).

36

How to do behavioral simulation:

We can change properties and see behavioral simulation properties by

apply these steps:

d. Choice test bench files (cordicAlgorithmversion1_tb).

e. Expand ISim Simulator, right-click Simulator Behavioral Model, and

choice Process Properties.

f. Set Property display level to Advance in Process Properties dialog

box.

g. Convert Simulation Run Time, say 200 ns.

h. Click on apply.

i. Click OK, see Fig. 19.

Figure 19. Change properties and behavioral simulation properties

37

How to perform simulation

To obtain the simulation waveforms, we follow the following steps:

a. Will need to use zoom tools (zoom out and in), and we can click in

restart simulation icon .

As an example, if we choose the angle value as 10, and run the cordic

algorihm, we get 𝑐𝑜𝑠(10) = 0.984375, see Fig. 20.

Figure 20. How to perform simulation

38

5.6. Information from VHDL Test Bench

We can use test bench program to with timing utility. When we want to write a suitable

test bench we need provide simulation data to test the behavior of the circuit.

 Every test bench consist three elements:

• Unit under test (UUT)

• Stimulus generate

• Response monitor.

Unit Under Test: A test bench is top-level VHDL program that includes an

instantiation of the module under consideration.

We can achieve authentication in simple project test-benches by visual

examination of UUT’s outputs in simulator’s waveform window.

However, a more efficient approach is to include code in test bench so that we

can automatically check real UUT output values in contrast to probable values. We

consider test bench by self-checking .We will get a message if any error appears during

the test.

5.7. How to set-up and test NEXYS3 board

Setup of NEXYS 3 boards is not difficult. We will use LEDs by way of outputs. The

following steps are pursued for the setting up of FPGA board.

1. We connect NEXYS 3 board to USB cable.

2. We connect USB cable to our computer.

3. Small yellow LED is energized when power is turned on.

4. By using Digilent Adept tool we can test, if digilent NEXYS3 board is

active.

5. On Test icon click “Start Peripherals Test”.

On LEDs we will have different output values depending on the used angle value.

39

In order to reset board to industry settings, we press the “reset button’. At top left part of

board, we use slide switch to power off, see Fig. 21.

Figure 21 Setting up of NEXYS3 board

5.8. Switches and 7-Segments displays

We use NEXYS 3 Board.

We need to know connection and location of DIP switches and LEDs.

40

5.8.1. LEDs

 NEXYS 3 Board affords a sequence of eight LEDs (LD0–LD7) to use. Every

LED glows when high”1-logic”is applied on it.

In this thesis, we use the LED locations listed in Table 1 as illustrated in Fig. 22.

In Table 1, connections from LEDs to NEXYS 3 Board and UCF constraints are shown.

Figure 22 Connection from LEDs to NEXYS 3 Board

Table 1: NEXYS 3 (Light Emitting Diodes) LEDs

Location Description

LOC = U16 NET LD0

LOC = U16 NET LD1

LOC = U15 NET LD2

LOC = U15 NET LD3

LOC = U11 NET LD4

LOC = U11 NET LD5

LOC = U11 NET LD6

LOC = U11 NET LD7

41

5.8.2. Seven Segment Displays

 Digilent NEXYS 3 Board includes 4 multiplexed 7-segment displays to use.

If we need to display on 7-segment displays, we can use the addresses in Table 2 for

UCF file.

Table 2: NEXYS 3 (7-Segment display)

Location Description

LOC = T17 NET CA

LOC = T16 NET CB

LOC = U17 NET CC

LOC = M14 NET CD

LOC = N14 NET CE

LOC = L14 NET CF

LOC = M13 NET CG

LOC =N16 NET DP

LOC = N15 NET AN0

LOC = P19 NET AN1

LOC = P17 NET AN2

LOC = T17 NET AN3

5.8.3. Switches

We see eight slide switches available on NEXYS 3 board. When we put switch at

ON state, each DIP switch pull pin of NEXYS 3 Board is connected to the ground, but

when DIP switch is at OFF state, pin is drawn high through a 10K resistance.

In Table 3 below we show connections of switches to Digilent NEXYS 3 Board.

42

Table 3: NEXYS 3 (Slide Switches)

Location Description

LOC = T10 NET SW0

LOC = T9 NET SW1

LOC = V9 NET SW2

LOC = M8 NET SW3

LOC = N8 NET SW4

LOC = U8 NET SW5

LOC = V8 NET SW6

LOC =T5 NET SW7

5.8.4. Push Buttons

 We see five pushbuttons (labeled BTNS through BTNR) on Digilent NEXYS 3 board

available to the user. When pushed, each pushbutton is connected to the ground pin of

NEXYS 3 Board. Else, pin is drawn high through a 10K resistor.

 In Table 4 we see connections from push buttons to Digilent NEXYS 3 Board.

 Table 4: NEXYS 3 (Pushbuttons)

Location Description

LOC = B8 NET BTNS

LOC = A8 NET BTNS

LOC = C4 NET BTNS

LOC = C9 NET BTNS

LOC = D9

NET BTNS

43

We get the following results, when we use our code as shown below

Figure23 Results of cosine values

 cos(0.0000)=01111111=1/2+1/4+1/8+1/16+1/64+1/128-----------> = 0.9884375

 cos(05.6250)=01111110=1/2+1/4+1/8+1/16+1/32+1/64-------> = 0.984375

 cos(11.2500)=01111110=1/2+1/4+1/8+1/16+1/32+1/64------> = 0.984375

 cos(16.8750)=01111011=1/2+1/4+1/8+1/16+1/64+1/128-----> = 0.9609375

 cos(22.5000)=01110110=1/2+1/4+1/8+1/32+1/64-----------> = 0.921875

 cos(28.1250)=01110010=1/2+1/4+1/8+1/64----------------> = 0.890625

 cos(33.7500)=01101100=1/2+1/4+1/16+1/32---------------> = 0.84375

 cos(39.3750)=01100110=1/2+1/4+1/32+1/64---------------> = 0.796875

44

 cos(45.0000)=01011010=1/2+1/8+1/16+1/64---------------> = 0.703125

 cos(50.6250)=01001111=1/2+1/16+1/32+1/64+1/128--------> = 06171875

 cos(56.2500)=01000111= 1/2+1/32+1/64+1/128------------> = 0.5546875

 cos(61.8750)=00111100=1/4+1/8+1/16+1/32---------------> = 0.46875

 cos(67.5000)=00110010=1/4+1/8+1/64-----------------------> = 0.390625

 cos(73.1250)=00100010=1/4+1/64-----------------------------> = 0.265625

 cos(78.7500)=00010110=1/8+1/32+1/64--------------------> = 0.171875

 cos(84.3750)=00001110=1/16+1/32+1/64-------------------> = 0.109375

 cos(90.0000)=11111101=~zero

The MATLAB code to create a vector representing the values of cosine is written as:

clc
Clear all
Close all
 x1=[0.9884375 0.984375 0.984375 0.9609375 0.921875 0.890625 0.84375

0.796875 0.703125 0.6171875 0.5546875 0.46875 0.390625 0.265625

0.171875 0.109375 0];
 x2=-x1(end-1:-1:1);
 x3=-x1(2:1:end);
 x4=x1(end-1:-1:2);
 xn=[x1 x2 x3 x4]
plot(1:64,xn)
figure;
stem(1:64,xn)

45

Figure24 Cosine wave

clc
clear all
close all

x1=[0.9884375 0.984375 0.984375 0.9609375 0.921875 0.890625 0.84375

0.796875 0.703125 0.6171875 0.5546875 0.46875 0.390625 0.265625

0.171875 0.109375 0];

 x2=-x1(end-1:-1:1);
 x3=-x1(2:1:end);
 x4=x1(end-1:-1:2);
 xn=[x1 x2 x3 x4];
 xn1=ceil((xn+1)*128)
plot(1:64,xn1)
figure;
stem(1:64,xn1)

Figure 25 Cosine wave with shift

46

xn1=[255 254 254 251 246 242 236 230 218 207 199 188 178 162 150 142

128 114 106 94 78 68 57 49 38 26 20 14 10 5 2 2 2 2 2 5 10

14 20 26 38 49 57 68 78 94 106 114 128 142 150 162 178 188 199 207

218 230 236 242 246 251 254 254]

The VHDL code loaded into FPGA

Main program

The package program

47

48

Program to create a vector of sine values

49

Program to generate sine and cosine wave

And then connect R-2R ladder and the output of R-2R ladder connect to oscilloscope.

We get the figures of waves.

50

We designed R-2R ladder in order to use it in our circuit as shown in Fig. 26.

Figure 26 R-2R ladder

We connect all the parts of our circuit as shown in Fig. 27.

Figure 27 practical circuit

We get the waveform shown in Fig. 28.

51

Figure 28 The waveform we generated it.

The Fig. 29 shows the sin wave we generated.

Figure 29 The generated sine wave

52

CHAPTER SIX

Conclusions and Future Works

In this thesis work, we studied the CORDIC algorithm in details. We implemented the

algorithm in MATLAB platform and inspected its iteration number considering the

accuracy of the calculated sine or cosine value. Later on, we implemented the algorithm

on FPGA platform using the VHDL language.

Considering the hardware complexity of the CORDIC algorithm, we proposed a simpler

technique for the generation of trigonometric waveforms. In this method, we first

generate the signal in MATLAB platform and take samples from the generated signal

and then represent each simple by an integer value. considering the ration between

samples. Later, the obtained integer sequence is carried on to the VHDL program and

using the clock frequency of the FPGA any sine signal with any frequency is generated.

The proposed method is simple and effective to use, and very flexible. In fact, the

method used for the generation of sine waves can be used for the generation of any

waveform used in communication, such as square root raised cosine filter design, low

pass filter design etc.

Future Work

1- Design and implementation of multistage band pass filter on FPGA.

2- FPGA implementation of special DSP processor.

3- Implementation of frequency analysis of real discrete signal.

4- Hardwar implementation of Ethernet signal analysis on FPGA.

53

REFERENCES

1. ISE in depth tutorial “www.xillinx.com'

2. Volnei A. Pedroni “Circuit Design with VHDL”, MIT Press Cambridge,

Massachusetts London, England, 2004.

3. Uwe Meyer-Baese “Signals and Communication Technology', Springer-Verlag

Berlin Heidelberg 2014.

4. B. Lakshmi and A. S. Dhar “CORDIC Architectures: A Survey” Hindawi

Publishing Corporation, Volume 2010, Article ID 794891, 19 pages

doi:10.1155/2010/794891.

5. J. E. Volder, “The birth of CORDIC,” Journal of VLSI Signal Processing, vol. 25,

no. 2, pp. 101–105, 2000.

6. M. D. Erecegovac and T. Lang, “Digital Arithmetic”, Elsevier, Amsterdam, The

Netherlands, 2004.

8. Eva Murphy and Colm Slattery “www.analog.com/dds”

9. Antonius P. Renardy∗, Nur Ahmadi, Ashbir A. Fadila, Naufal Shidqi, Trio

Adiono “FPGA Implementation of CORDIC Algorithms for Sine and Cosine

Generator” The 5th International Conference on Electrical Engineering and Informatics

2015 August 10-11, 2015, Bali, Indonesia

http://www.analog.com/en/analog-dialogue/articles/all-about-direct-digital-synthesis.html#author
http://www.analog.com/en/products/clock-and-timing/direct-digital-synthesis.html

54

APPENDIX

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Shakir Salman Ahmad

Nationality: Iraqi

Date and Place of Birth: 23.Feb.1974, Mosul, Iraq

Marital status: Married

Phone: 009647701638934

E-mail: shakirsalman3@gmail.com

EDUCATION

Degree Institution Year of Graduation

M.Sc.

Çankaya University

College of engineering

Electronic and Communication

Department

2017

B.Sc. AL- Mosul University 1998

WORK EXPERIENCE

Year Place Occupation

1999- Present Ministry of Electricity Department Manager

