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ABSTRACT 

 

 

RADIUS OF CURVATURE OF BESSEL-GAUSSIAN BEAM 

AKKOYUN, Sıdıka Türkan 

M.Sc., Department of Electronic and Communication Engineering 

Supervisor: Prof. Dr. Yusuf Z. UMUL 

September 2012, 28 pages 

 

In this thesis, for a turbulent atmosphere, the radius of curvature of Bessel-

Gaussian beam is formulated. For various order of Bessel-Gaussian beam of the first 

kind, the source size, propagation distance, wavelength, this formula is analyzed 

numerically in moderate turbulence, high turbulence and under free space condition. 

Results have shown that Bessel-Gaussian beam behaves as Gaussian beam and radius 

of curvature of Bessel-Gaussian beam decreases with growing turbulence levels. 

Results have also shown that the radius of curvature increases with the increasing 

source size and changes slowly with the wavelength.  

 

Keywords: Bessel Gaussian beam, radius of curvature, Gaussian beam, intensity, 

Gaussian beam width  
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ÖZET 

 

 

BESSEL-GAUSSIAN IŞIK DEMETİNİN EĞRİLİK YARIÇAPI 

AKKOYUN, Sıdıka Türkan 

Yüksek Lisans, Elektronik ve Haberleşme Mühendisliği Bölümü 

Yönetici: Prof. Dr. Yusuf Z. UMUL 

Eylül 2012, 28 sayfa 

 

Tezde, türbülanslı atmosfer ortamında Bessel-Gaussian ışık demetinin eğrilik 

yarıçapını veren bir eşitlik önerilmiş ve Bessel-Gaussian ışık demetinin eğrilik 

yarıçapı, Bessel fonksiyonunun ilk türünün farklı dereceleri, kaynak boyutları, 

hüzmenin yayılma mesafesi ve dalga boyları için ortalama türbülans, yüksek 

türbülans ve türbülansın olmadığı seviyelerde analiz edilmiştir. Sonuçlar Bessel-

Gaussian ışık demetinin Gaussian ışık demeti gibi davrandığını ve Bessel-Gaussian 

ışık demetinin eğrilik yarıçapının artan türbülans seviyeleriyle azaldığını 

göstermiştir. Sonuçlar aynı zamanda eğrilik yarıçapının artan kaynak genişliği ile 

beraber arttığını ve dalga boyuyla yavaşça değiştiğini de göstermiştir. 

 

Anahtar Kelimeler: Bessel Gaussian ışık demeti, eğrilik yarıçapı, Gaussian ışık 

demeti, ışık şiddeti, ışık demeti genişliği  
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INTRODUCTION 

 

 

Free space optical communication (FSO) systems operate in the infrared 

spectrum [1] and use free space (atmosphere) as transmitting media, in other words 

signal is transmitted between receiver and transmitter without cables in these 

systems. FSO has been came forward in recent years, since FSO supplies broadband, 

high speed data transfer, lower costs and no interference [2]. Against these 

advantages, there are disadvantages from atmospheric effects, i.e. fog, rain, solar 

warming, absorption from atmospheric gases [3]. In FSO communication, LEDs and 

lasers are usually used. So, propagation and properties of laser beam have been 

important. 

Lasers have optical resonator where amplified, monochromatic, inphase, 

linear beam is obtained. This beam propagation usually approximates Gaussian 

intensity profile. In this context, Gaussian beam propagation and its optical 

properties have been studied often to improve laser communication. Different optical 

properties of Gaussian beam have been researched under different conditions. Radius 

of curvature is also optical property of the laser beams which is major factor for laser 

beam shaping. In the previous studies, the effects of atmospheric turbulence have 

been researched on the radius of curvature for hyperbolic, sinusoidal, annular, dark 

hollow and flat topped Gaussian beams [4, 5]. 

  The purposes of this study are to obtain radius of curvature of Bessel-

Gaussian beam analytically, examine effects of different turbulence levels on radius 

of curvature of Bessel-Gaussian beam numerically, show that Bessel-Gaussian beam 

follow trend of Gaussian beam, compare Bessel-Gaussian beam and Gaussian beam. 

In Chapter I, Gaussian beam and its properties are mentioned for 

understanding how a beam, which has a Gaussian beam profile, should behave. It is 

mentioned beam parameters of a Gaussian beam such as, field, intensity, power, 

beam width, beam divergence, depth of focus, phase and radius of curvature. By this 
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way, the general information is presented about behavior of Gaussian beams. Radius 

of curvature of a Gaussian beam is also plotted in free space by the help of 

MATLAB. Bessel-Gaussian beam and Bessel functions are mentioned briefly. 

In the first part of Chapter II, Radius of curvature of the Bessel-Gaussian 

beam is derived analytically using the previous study. In the second part of Chapter 

II, accuracy of the formula for the radius of curvature of Bessel-Gaussian beam is 

verified under stated conditions and is commented with the help of MATLAB. In the 

last part of Chapter II, radius of curvature of the Bessel-Gaussian beam is obtained 

numerically and graphics is plotted. The Bessel-Gaussian and the Gaussian beams 

are compared. It is shown that the Bessel-Gaussian beam acts similar as a Gaussian 

beam.  
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CHAPTER I 

 

BESSEL-GAUSSIAN BEAM 

 

1.1. GAUSSIAN BEAM AND BEAM PARAMETERS 

Gaussian beam is defined as electromagnetic beam by function of Gaussian with 

electrical field and intensity. Its mathematical function is a solution of paraxial 

Helmholtz equation. Field of Gaussian beam is given in [6] as; 

, exp exp tan
2

, (1.1)

 

where  is radial distance, z is axial distance(propagation distance), 2 /  is 

wave number,  is wavelength,	  is the field at the center, z  is the Rayleigh range 

which is defined by / ,  is radius of curvature,  is source size and  is 

beam width. 

Source size  and beam width  are beam parameters. They are shown 

below respectively, which are taken from [7]. 

. (1.2) 

1 . 
(1.3) 

 

Expanse of Gaussian beam is beam width along z propagation direction. 

Figure 1.1 is plotted by using equation (1.3) and includes  for easy to 

understand beam parameters. From Figure 1.1 it is clear that the beam width is at its 

minimum value at 0, which is known as beam waist or source size, after that 

beam expands, i.e. the beam width increases. On the other hand spot size is equal to 

2 . 
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Figure 1.1 Variations of beam width of Gaussian beam versus propagation distance at fixed 

source size and wavelength 

 

In Figure 1.1,  is the beam divergence, which is another beam parameter.  

is the angle with z axis of wavefront of the Gaussian beam and can be written by 

using paraxial approach as; 

tan . (1.4)

When Rayleigh range is substituted into equation (1.4), beam divergence is 

. (1.5)

From equation (1.5), it is clear that highly directed beam can be obtained by using 

short wavelength and thick waist. In other words, if the beam divergence decreases, 

the beam will becomes more directed. 

Depth of focus is also a beam parameter, which is defined as 2  long. This 

parameter is shown in Figure 1.1 and is expressed by 

2
2

. (1.6) 

From equation (1.6), it is seen that the depth focus is inversely proportional with 

wavelength and directly proportional with the area of spot size (i.e. ). In this 

area, Gaussian beam achieves best focus. 

From (1.1), the phase of Gaussian beam is 
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φ tan
2

. (1.7)

The phase is on the beam axis 

φ tan ,   (1.8)

where  is the phase of plane wave and tan /  is the phase retardation, which 

causes delay of the wavefront. From ∞ to ∞, total phase retardation is , 

which is the Gouy effect. 

 

1.2. INTENSITY OF THE GAUSSIAN BEAM 

The intensity of the Gaussian beam is calculated by the power per unit area [7] 

and it is equal to the square of its complex field, which is given in [7] as; 

, | , | . (1.9)

If equation (1.1) is substituted into equation (1.9), intensity of Gaussian beam would 

be 

, exp
2

, (1.10)

where  is the intensity at the source. Unit of ,  is watts/m2. Figure 1.2 is 

plotted by using equation (1.10) at r 0. From Figure 1.2, it is clear that normalized 

intensity of Gaussian beam reaches its maximum value at z 0. At z z , the 

intensity reaches I /2, namely it has half of maximum value . At larger z, the 

intensity decreases.  
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Figure 1.2 Variations of normalized intensity of the Gaussian beam versus propagation 

distance at fixed source size and wavelength 

 

The optical power , which is carried by Gaussian beam, is integral of 

intensity of Gaussian beam. The optical power is given in [7] as; 

, 2 . (1.11)

 

1.3.RADIUS OF CURVATURE OF THE GAUSSIAN BEAM 

In general, the radius of curvature is a parameter, which is inversely proportional 

to curvature of surfaces. If the radius of curvature increases, surfaces will become 

more flat. For example, the radius of earth is 6,371 km and the earth appears to us as 

if it is flat. Similarly, for a beam, if the radius of curvature of wavefront deacreses, 

the wavefront is more flat. 

In equation (1.7), term of /2  causes to curvature of wavefront. This 

situation is shown in Figure (1.3). The radius of curvature of the Gaussian beam can 

be given in [7] as; 

1 . (1.12)
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Figure 1.3 Bending of wavefronts with increasing radius of curvature 

 

If the Rayleigh range ( ) is substituted into equation (1.12), the radius of curvature 

will become 

1 . (1.13)

After some simplifications, the radius of curvature can be written as 

0.25 4 . (1.14)

Figure 1.4 Variations of radius of curvature versus propagation distance under free space 

conditions at fixed source size and wavelength 
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Figure 1.4 is obtained by using equation (1.14). Figure 1.4 shows that the radius 

of curvature is infinite at first, namely there is no wavefront bending and the radius 

of curvature reaches minimum value at . After that point, the radius of 

curvature increases with increasing . 

 

1.4. THE BESSEL FUNCTIONS  

The Bessel differential equation is obtained by using cylindrical coordinates 

for three dimensional Laplace in Cartesian coordinate, which is given in [8] as; 

0 (1.14)

where n is known as order argument and constant. Functions, which are solutions of 

equation (1.14), are called n-th order Bessel functions. In Bessel differential 

equation, since point of 0 is singular, solution of (1.14) is obtained by using 

Frobenius method. For solution, this method uses series as; 

. (1.15) 

If  is a non-integer, equation (1.14) has two solutions as  and , which 

are called the Bessel functions of the first kind . Figure 1.5 represents the Bessel 

function of the first kind, which is plotted by using MATLAB. These functions are 

given in [8] as; 

1
! Γ 1 2

, (1.16)

where  can be obtained by replacing  with –  and , which is the 

modified Bessel function, can be obtained by replacing  with . So, general 

solution of the Bessel differential equation can be written as; 

, (1.17)

where  and  are arbitrary constants. 

If  is a non-integer, general solution of the Bessel differential equation 

cannot be written as equation (1.17). Hence, a function is defined as; 

cos
sin

 (1.18)
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which is called the Bessel function of the second kind and also known as The 

Neumann or The Weber function. As a result, for all valid of n, a general solution 

can be written as;  

. (1.19)

where  and  are arbitrary constants. 

 
Figure 1.5 Bessel function of the first kind against x-axis for different order ( ) 

 

1.5. THE BESSEL-GAUSSIAN BEAM 

The Bessel-Gaussian beam follows trend of the Gaussian beam and its field 

equation includes Bessel function. On the source plane, its field distribution is given 

in (3) of [9] as; 

, exp exp , (1.20)

 

where  and  are radial coordinates on a source plane, 2 /  is wavenumber,  

is wavelength,	 1/ / 2  is related to Gaussian beam source size  

and focusing parameter ,  is radial distance,  is √ 1,  defines the beam width 

and	 0 is order of the Bessel function of the first kind . 

When the Bessel-Gaussian beam propagates at distance  from the source 

plane, the field is given in (4) of [9] as; 

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1

x

J n
(x

)

 J0(x)

 J1(x)  J2(x)
 J3(x)
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,
exp
1 2

exp exp
2

2 1 2

1 2
 

 

(1.21)

where  and  are radial coordinates on a receiver plane. 
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CHAPTER II 

 

RADIUS OF CURVATURE BESSEL GAUSSIAN BEAM 

 

2.1. DEVELOPMENT OF FORMULATION 

From (3) of [10], at a distance of  from the source plane on a receiver plane, the 

radius of curvature is; 

, (2.1)

 

where  and  are respectively radial and radial-angular second moments. 

From (4a) and (4b) of [10], the numerator and the denominator of (2.1) are; 

0 2 0 0
4
3

, (2.2a)

0 0 2 , (2.2b)

where at source plane, 0 , 0  and 0  are respectively radial, radial-

angular and angular second moments.  represents an integration over the spatial 

frequencies of the spectrum function  and is given in (5) of [5] as; 

, (2.3)

where  is the scalar spatial frequency. For , modified von Karman spectrum is 

applied in developing formulation, which includes inner and outer scale parameters. 

So  is given in [11] as; 

0,033 5,92

2
, (2.4)
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where  is a measure of strength of the fluctuations in the refractive index and is 

known as structure constant. Also,  and  are respectively inner and outer scales. 

So, expression (2.3) can be written with expression (2.4) and condition of  → ∞ 

0,033
5,92

. (2.5)

 

As a result,  becomes (2.6) by use of Eq. (3.478.1) of [10]. 

0.1661 . (2.6)

 

For calculation of the radius of curvature, it is necessary to obtain , which is 

free space equivalence of . From (6) of [5] 

4
3

. (2.7)

 

At a distance of  from the source plane on a receiver plane,  can be adapted 

from (7) of [4], which is; 

. (2.8)

 

In equation (2.8),  is the free space receiver intensity of the Bessel-Gaussian 

Beam and given in (6) of [12] as; 

∗

4
2 ∗

∗ , 

 

(2.9)

where  is radial distance,  is the Gaussian source size, 1/ / 2  is 

related to the Gaussian source size, 	 ∗ is conjugate of , 2 /  is wavenumber, 

 is / 2  and  is √ 1. If numerator and denominator of (2.8) are respectively 

called as A and B, numerator of (2.8) is; 
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∗ 2 ∗

4
2 ∗

	 ∗ . 

(2.10)

 

And denominator of (2.8) is; 

∗ 2 ∗

4
2 ∗

	 ∗ . 

(2.11)

 

For solution of (2.10), derivation of Eq. (6.633.2) of [10] with respect  is used, 

which is; 

exp
1
2 8 2

4 2 4
. 

(2.12)

If equation (2.10) is adapted to equation (2.12), related parameters are 

4
2 ∗ , (2.13a)

, 	 (2.13b)

∗ , (2.13c)

, (2.13d)
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and numerator of (2.8) is; 

∗ 2 ∗

1
2 4

2 ∗

∗

8 4

2 ∗
∗

2 ∗

4 4 ∗ ∗

∗ 2 ∗

4 4
. 

(2.14)

For solution of denominator of (2.8), Eq. (6.633.2) of [10] is used, which is 

exp
1
2 4 2

 (2.15)

 

And denominator of (2.8) is 

∗ 2 ∗

2 ∗

2 4 ∗

∗ 2 ∗

4 4
. 

(2.16)
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Finally, equation (2.8) becomes to 

2 1 ∗

4
∗

4 4

∗

2 4
4

4

. 

(2.17a)

 

For using of  in , the coefficient of  must be associated with the 

coefficient of . / 2   is used for associating equations and ∗

1/  for the sake of simplicity, so  is given by; 

1
2 8

4

4

1 	

2
1
2 8

4

4

1 								

2 1 ∗ 	
∗

4

∗

2

4

4

.																																																																 

(2.17b)

 

 

 

 

 

 



16 
 

When  is written in (2.7),  is 

1
2 8

4

4

1 													

2
1
2 8

4

4

1 																								

2 1 ∗
∗

4

∗

2
																		

4

4

2.1857
.																																																 

(2.18)

 

By use of same coefficients between (2.2a) and (2.2b),  will become 

1
2 8

4

4

1 2 1 ∗

∗

4

∗

2
4

4

3.2786 . 

(2.19)
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Finally, from (2.1), radius of curvature of Bessel-Gaussian beam will become 

1
2 8

4

4

1

2
1
2 8

4

4

1 																					

2 1 ∗
∗

4

∗

2
														

4

4

2.1857
																																																

1
2 8

4

4

1 																																

2 1 ∗
∗

4

∗

2
															

4

4

3.2786  

(2.20)

 

2.2. ACCURACY OF FORMULATION 

If the Bessel-Gaussian beam follows trend of the Gaussian beam, radius of 

curvature of the Gaussian beam can be obtained in free space by eliminating 

parameters, which include Bessel functions and turbulence effects in the formula of 

the radius of curvature for Bessel-Gaussian beam. In other words, the order of the 
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Bessel function of the first kind , the width parameter  and the structure constant 

 must be equal to zero. So, in free space, equation (2.20) will be equal to the radius 

of curvature of the pure Gaussian beam.  

 
Figure 2.1 Radius of curvature of Bessel-Gaussian and Gaussian beams versus propagation 

distance . For radius of curvature of Bessel-Gaussian beam, order , the width parameter 

 and the structure constant  is taken zero. 

 

,  and   are eliminated in formula for the radius of curvature of the Bessel-

Gaussian beam. So, as expected, the radius of curvature of the pure Gaussian beam is 

obtained. In Figure 2.1, this situation is shown. Radii of curvatures for the Bessel-

Gaussian and Gaussian beams overlap and are equal to each other under stated 

conditions. Accuracy of formula (2.20) can be ensured by this way. 

 

2.3. NUMERICAL ANALYSIS OF FORMULATION 

Commonly, in free space optical systems,  is used as 5	cm and  is used as 

1.55	 m. Hence, in this study, when source size and wavelength are taken as 

constant, these parameters are used as stated above. Additionally, all plots are scaled 

to analyze all graphics easily. And maximum value of order for Bessel-Gaussian 

beam is taken as 4. Because, for the values n is bigger than 4, all plots approximate 

each other and overlap. 
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Figure 2.2 Variations of radius of curvature versus propagation distance at fixed source size, 

moderate turbulence level, wavelength and width parameter 

 

 In Figure 2.2, for varied orders of the Bessel function of the first kind, 

variations of radius of curvature of Bessel-Gaussian beam are displayed versus 

propagation distance at fixed source size, wavelength, width parameter and moderate 

turbulence level ( 10 	m / ). Figure 2.2 indicates that radius of curvature of 

Bessel-Gaussian beam is infinite at first, and then the radius of curvature decreases 

with increasing propagation distance and reaches finite value. Finally the radius of 

curvature reaches its minimum value and subsequently increases with increasing 

propagation distance. For the bigger orders of the Bessel function of the first kind, 

the radius of curvature will be greater. 
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Beam Type in m-1   in km  in km 

Bessel-Gaussian Beam 40 

4 4.4 6.560 

3 4.1 6.102 

2 3.8 5.492 

1 3.2 4.618 

0 2.2 3.250 

Gaussian Beam 0 0 4.2 4.762 

 

Table 2.1 In moderate turbulence level ( 10 	m 2/3), comparison of the radii of 

curvatures and Rayleigh ranges of Bessel-Gaussian beam and Gaussian beam 

 

 In Table 2.1, it is obviously seen that Rayleigh ranges of Bessel-Gaussian 

beam increase with increasing order under condition of moderate turbulence level. 

When Bessel-Gaussian and Gaussian beams are compared with each other, it is seen 

that Bessel-Gaussian beam propagates farther than Gaussian beam before spreading 

out for order 4. 

 
Figure 2.3 Variations of radius of curvature versus propagation distance under free space 

conditions at fixed source size, wavelength and width parameter 
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propagation distance at fixed source size, wavelength, width parameter and under 

free space condition ( 0). Figure 2.3 indicates that there is no turbulence where 

radius of curvature is longer and for the higher orders of the Bessel function of the 

first kind, the radius of curvature will be greater. Likewise, for lower orders of the 

Bessel function of the first kind, the radius of curvature will be smaller. 

 

Beam Type in m-1   in km  in km 

Bessel-Gaussian Beam 40 

4 4.2 8.308 

3 4 7.913 

2 3.7 7.305 

1 3.1 6.270 

0 2.2 4.329 

Gaussian Beam 0 0 5.1 1.013 

 

Table 2.2 In free space ( 0), comparison of the radii of curvatures and Rayleigh ranges 

of Bessel-Gaussian beam and Gaussian beam 

 

In Table 2.3, under condition of free space, Gaussian beam propagates farther 

than Bessel-Gaussian beam. But, in practice, there is always atmospheric turbulence.  

 
Figure 2.4 Variations of radius of curvature versus propagation at fixed source size, high 

turbulence level, wavelength and width parameter 
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In Figure 2.4, for varied orders of the Bessel function of the first kind, 

variations of radius of curvature of Bessel-Gaussian beam are displayed versus 

propagation distance at fixed source size, wavelength, width parameter and high 

turbulence level ( 10 	m / ). Figure 2.4 indicates that high turbulence levels 

suppress radii of curvatures for all orders. 

For Figures 2.2, 2.3 and 2.4, it is seen that radii of curvatures of Bessel-

Gaussian beam show the same behavior. For all orders of Bessel-Gaussian beam, 

radii of curvatures decrease with growing turbulence levels. It is also clear that 

Bessel-Gaussian beam follows the trend of Gaussian beam. 

 

Beam Type in m-1   in km  in km 

Bessel-Gaussian Beam 40 

4 3.2 3.558 

3 2.9 3.255 

2 2.6 2.885 

1 2.2 2.399 

0 1.5 1.706 

Gaussian Beam 0 0 2.2 2.250 

 

Table 2.3 In high turbulence level ( 10 	m 2/3), comparison of the radii of 

curvatures and Rayleigh ranges of Bessel-Gaussian beam and Gaussian beam 

 

Under condition of high turbulence level, Table 2.2 shows that Bessel-

Gaussian beam propagates farther than Gaussian beam before spreading out for order 

1. Rayleigh range and radius of curvature of Bessel-Gaussian beam deacrese 

with increasing turbulence levels. 
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Figure 2.5 Variations of radius of curvature versus source size at fixed propagation distance, 

moderate turbulence level, wavelength and width parameter 

 

In Figure 2.5, for varied orders of the Bessel function of the first kind, 

variations of radius of curvature of Bessel-Gaussian beam are displayed versus 

propagation distance at fixed source size, wavelength, width parameter and moderate 

turbulence level ( 10 	m / ). Figure 2.5 indicates that at smaller source 

sizes, radius of curvature is around propagation distance and at bigger source sizes, 

radius of curvature increases sharply with growing orders of the Bessel function of 

the first kind. 

 
Figure 2.6 Variations of radius of curvature versus source size under free space conditions at 

fixed propagation distance, wavelength and width parameter 
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In Figure 2.6, for varied orders of the Bessel function of the first kind, 

variations of radius of curvature of Bessel-Gaussian beam are displayed versus 

propagation distance at fixed source size, wavelength, width parameter and under 

free space condition ( 0). Figure 2.6 indicates that at smaller source sizes, 

radius of curvature is around propagation distance but because of there is no 

turbulence, at bigger source sizes, radius of curvature rises more sharply with 

growing orders of the Bessel function of the first kind. 

The comparison of Figures 2.5 and 2.6 shows that again, for all orders of 

Bessel-Gaussian beam, radii of curvatures are decreased by growing turbulence 

levels. 

 

 
Figure 2.7 Variations of radius of curvature versus wavelength at fixed propagation 

distance, source size, moderate turbulence level and width parameter 

 

In Figure 2.7, for varied orders of the Bessel function of the first kind, 

variations of radius of curvature of Bessel-Gaussian beam are displayed versus 

wavelength at fixed source size, propagation distance, width parameter and moderate 

turbulence level ( 10 	m / ). Figure 2.7 indicates that radius of curvature 

decreases with increasing wavelength except the condition of lowest order of Bessel-

Gaussian beam. 

 

0.5 1 1.5 2

4

5

6

7

8

9

10

 (Wavelength) in m

R
(z

) 
(R

ad
iu

s 
o

f 
C

u
rv

at
u

re
) 

in
 k

m

n = 1

n = 0

n = 2

n = 4

n = 3

s = 5 cm

C
n
2 = 10-15 m-2/3

z = 5 km

a
B
 = 40 m-1



25 
 

CONCLUSION 

 

 

With the help of previous studies, the radius of curvature of the Bessel-

Gaussian beam has been developed and its accuracy has been verified. Effects of 

atmospheric turbulence on the radius of curvature of Bessel-Gaussian beam are 

analyzed. The radius of curvature of the Bessel-Gaussian beam versus the 

propagation distance, source size and wavelength graphs show that the radii of 

curvatures of the Bessel-Gaussian beam act as the Gaussian beam under different 

conditions. In all plotted figures, radii of curvatures decrease with growing 

turbulence effect. Especially, in the radius of curvature of Bessel-Gaussian beam 

versus the propagation distance graph, radii of curvatures are infinite at the source, 

and then decrease until they reach a minimum value. After they reach their 

minimum, the radii of curvatures approximate to infinity for very large propagation 

distances. This minimum value is determined always as their Rayleigh range . 

As it is known, in the optical systems, a beam can propagate to distance of the 

Rayleigh range before it spreads out in free space [13]. Also, in the optical systems, 

it is important to transmit a signal to the farthest point with minimum loss. If these 

two cases are taken into account, the beam, which has the highest Rayleigh range, 

can be selected. From tables, according to distance, where data is desired to be sent, 

beam type or order can be selected. It must be taken into account that increasing 

radius of curvature with increasing propagation distance causes the beam width to 

expand. 

In addition, the radius of curvature of Bessel-Gaussian beam increases with 

increasing source size and increasing order (n) of the Bessel function at a fixed 

propagation distance. Also, when wavelength is increased, the radius of curvature 

stays same for lowest order of Bessel-Gaussian beam and the radius of curvature 

decreases for other orders. 
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