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ABSTRACT 

New Trends in Fractional Optimal Control Problems 

Gadriah Jamaah Ali MADI 

M.Sc: Department of Mathematics 

Supervisor: Dr. Instructor Dumitru BALEANU 

Co-Supervisor: Dr. Instructor Ӧzlem DEFTERLI 

April 2018, 45 pages 

In this thesis, I study the basics of some fractional derivatives (e. g. Riemann-

Liouville, Caputo) with the corresponding approximation based on Gr�̈�nwald-

Letnikov definitions. Later, the fundamentals of fractional optimal control problem 

are presented via mentioned fractional derivatives which are used in the definition of 

constraints and optimality conditions given through the formulation. Some new 

aspects are studied for the numerical solutions of fractional optimal control problems 

in the sense of integrating new orthogonal polynomials to approximate the 

considered fractional derivatives. In this respect, Bernstein polynomials, shifted 

Chebyshev polynomials and shifted Legendre orthonormal polynomials are newly 

used within the Legendre-Gauss quadrature method in order to approximate and 

solve numerically the Caputo based fractional partial differential equations coming 

from the formulation of fractional optimal control problem. Two dynamical systems 

are considered as illustrative examples based on the given control functions and the 

corresponding responses of the systems are presented under fractional derivatives. 

Then the comparison with the classical derivative is discussed. It is observed from 

numerical results and presented simulations that the system response increases as the 

fractional order of the derivative decreases for the same point of the variable t.      

Keywords: Riemann-Liouville fractional derivative, Caputo fractional derivative,  

Grünwald-Letnikov definition, Bernstein polynomials, Chebyshev polynomials, 

Legendre polynomials, Legendre-Gauss quadrature. 
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ZӦ 

 

reğilimle iyen erindeproblemcontrol Kesirli optimal  

Gadriah Jamaah Ail MADI 

Yüksek Lisans,, Matematik 

               Tez Yöneticisi: Dr.  Ӧǧr. Üyesi Dumitru BALEANU 

     Ortak Tez Yöneticisi: Dr. Ӧǧr. Üyesi Ӧzlem DEFTERLI 

         Nisan 2018, 45 sayfa 

Bu tez çalışmasında, bazı kesirli türevlerin (örn. Riemann-Liouville, Caputo ) 

temelleri Gr�̈�nwald–Letnikov tanımlarına dayanan ilgili yaklaşığıyla beraber 

çalışılmıştır. Daha sonra, kesirli optimal control probleminin temelleri, formülasyon 

da verilen kısıtlamaların ve optimalite koşullarının tanımlanmasında kullanılan bu 

kesirli türevler aracılığıyla sunulmaktadır. Göz önüne alınan kesirli türevlerin 

yaklaşığı için yeni orthogonal polinomların integrasyonu anlamında kesirli optimal 

kontrol problemlerinin sayısal çözümleri için bazı yeni yönelimler üzerinde 

çalışılmıştır. Bu bağlamda, Bernstein polinomları, kaydırılmış Chebyshev 

polinomları ve kaydırılmış Legendre ortonormal polinomları Legendre-Gauss 

kareleme yöntemin icerisinde kesirli optimal control probleminin formülasyonundan 

gelen Caputo tabanlı kesirli kısmi diferansiyel denklemleri sayısal olarak çözmek 

için kullanılmaktadır.Verilen control fonksiyonlarına dayanan iki dinamik 

sistem,açıklayıcı örnekler olarak ele alınmış ve sistemlerin ilişkili gelen karşılığı, 

kesirli türevler altında sunulmuş, daha sonra klasik türev ile karşılaştırılmıştır. 

Sayısal sonuçlardan ve verilen simulasyonlardan system cevabının, kesirli türevin 

derecesi azaldıkça t değişkeninin bazı noktalarında arttığı gözlemlenmiştir.   

Anahtar Kelimeler: Riemann-Liouville kesirli  türevi, Caputo tanımı, Gr�̈�nwald –

Letnikov kesirli  türevi  , dik polinomlar , Legendre-Gauss kareleme yontemi.   
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CHAPTER 1 

 

INTRODUCTION 

Fractional calculus deals with the study of so-called fractional integrals and 

differential operators over real or complex domains and their application [1-20]. 

Over the past few decades, fractional differentiation have attracted more and more 

attention in the study of so-called anomalous social and physical behaviors, where 

the fractional scale power law seems to be commonly used as an empirical 

description of this complex phenomenon [21-43]. It is worth noting that the standard 

mathematical model with the integer-order derivatives, including the nonlinear 

model, does not work well in many cases where the power law is obviously observed 

[1-30]. In order to accurately reflect the non-local, frequency, and historical 

correlation properties of the power law phenomenon, several alternative modeling 

tools must be introduced into this fractional calculus. The study of fractional 

differentiation is essentially multidisciplinary, and its application is dispersed in 

various disciplines. As one would expect, since the fractional derivative is a 

generalization of ordinary derivatives, it loses many of its basic properties. For 

example, it loses its geometric or physical interpretation. The indexing method works 

only when working in a very specific function space. The derivative of the product of 

the two functions is difficult to obtain, and the chain rules are not suitable for direct 

application. Fractional –order differential equations (i.e., equations involving real or 

complex derivatives) play an important role in simulating the anomalous dynamic 

processes of many processes associated with complex systems in the most diverse 

areas of science and engineering. The thesis consists of six chapters. Chapter 1 is the 

introduction part. Chapter 2 include some basic definitions identified with fractional 

derivatives. In chapter 3, the principles of fractional optimal control problems are 

given. In chapter 4, the descriptions of some use full orthonormal polynomials are 

presented. Chapter 5, is about the useful Chebyshev polynomials to find the 

numerical solutions of fractional optimal control problems. Chapter 6 is about 

Legendre polynomials to be used for the same purpose. 
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CHAPTER 2 

BASIC TOOLS 

2.1 The Definitions of Riemann-Liouville and Caputo Fractional Derivatives 

In this section we present some essential definitions identified with fractional 

derivatives. The left Riemann-Liouville fractional integral and the right Riemann-

Liouville fractional-order integral are characterized separately by [1 − 5] 

𝑎𝐼𝛽𝑓(𝑠) =
1

Γ(𝛽)
∫ (𝑠 − 𝜏)𝛽−1

𝑠

𝑎

𝑓(𝜏)𝑑𝜏,                                                                     (2.1) 

𝐼𝑏
𝛽
𝑓(𝑠) =

1

Γ(𝛽)
∫ (𝜏 − 𝑠)𝛽−1

𝑏

𝑠

𝑓(𝜏)𝑑𝜏,                                                                           (2.2) 

where  𝛽 > 0 ,𝑚 − 1 < 𝛽 < 𝑚 and Γ(𝛽) represents the Gamma function.  

The left Riemann-Liouville fractional derivative is defined as [1 − 5] 

𝑎𝐷𝛽𝑓(𝑠) =
1

Γ(𝑚 − 𝛽)
(

𝑑

𝑑𝑠
)

𝑚

∫ (𝑠 − 𝜏)𝑚−𝛽−1𝑓(𝜏)
𝑠

𝑎

𝑑𝜏.                                        (2.3) 

The right Riemann-Liouville fractional derivative is defined by [1 − 5] 

𝐷𝑏
𝛽
𝑓(𝑠) =

1

Γ(𝑚 − 𝛽)
(−

𝑑

𝑑𝑠
)
𝑚

∫ (𝜏 − 𝑠)𝑚−𝛽−1𝑓(𝜏)𝑑𝜏
𝑏

𝑠

.                                          (2.4) 

The Riemann-Liouville fractional derivatives of a constant can be calculated as 

[1 − 5] 

𝑎𝐷𝛽𝐶 = 𝐶
(𝑠 − 𝑎)−𝛽

Γ(1 − 𝛽)
 ,                                                                                                   (2.5) 

where as the fractional derivative of a power function  takes the form [1 − 5] 

𝑎𝐷𝛽(𝑠 − 𝑎)𝛼 =
Γ(𝛽 + 1)(𝑠 − 𝑎)𝛼−𝛽

Γ(𝛼 − 𝛽 + 1)
                                                                        (2.6) 

for 𝛼 > −1, 𝛽 ≥ 0. 
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The left Caputo fractional derivative is defined as [1 − 5] 

𝐷𝛽
𝑎
𝐶 𝑓(𝑠) =

1

Γ(𝑚 − 𝛽)
∫ (𝑠 − 𝜏)𝑚−𝛽−1 (

𝑑

𝑑𝜏
)
𝑚𝑠

𝑎

𝑓(𝜏)𝑑𝜏,                                          (2.7) 

and the Right Caputo fractional derivative has the form [1 − 5] 

𝑐𝐷𝑏
𝛽
𝑓(𝑠) =

1

Γ(𝑚 − 𝛽)
∫ (𝜏 − 𝑠)𝑚−𝛽−1 (−

𝑑

𝑑𝜏
)
𝑚

𝑓(𝜏)𝑑𝜏,                                   (2.8)
𝑏

𝑎

 

where 𝛽 represents the order of the derivative such that m − 1 <  𝛽< m. Note that the 

Caputo partial derivative of a constant function is zero [1 − 5]. 

The Riemann-Liouville and Caputo fractional derivatives are related each other by 

[1 − 5] 

𝐷𝛽
𝑎
𝑐 𝑓(𝑠) =𝑎 𝐷𝛽𝑓(𝑠) − ∑

𝑓(𝑗)(𝑎)

Γ(𝑗 − 𝛽 + 1)

𝑚−1

𝑗=0

(𝑠 − 𝑎)𝑗−𝛽 ,                                              (2.9) 

c𝐷𝑏
𝛽
𝑓(𝑠) = 𝐷𝑏

𝛽
𝑓(𝑠) − ∑

(−1)𝑗𝑓(𝑗)(𝑏)

Γ(𝑗 − 𝛽 + 1)

𝑚−1

𝑗=0

(𝑏 − 𝑠)𝑗−𝛽 .                                         (2.10) 

The formulation in below gives a formula [1] for the fractional integration by parts in 

[a, b]. 

Lemma 2.1.1 [1-5] 

Let 𝛽>0, w, z≥ 1, and 
1

𝑤
+

1

𝑧
≤ 1 + 𝛽(𝑤 ≠ 1 and  𝑧 ≠ 1 in this case when 

1

𝑤
+

1

𝑧
= 1 + 𝛽). 

if  휂 ∈ 𝐿𝑤(𝑎, 𝑏) and 𝜒 ∈ 𝐿𝑧(𝑎, 𝑏)  , then 

∫ 휂(𝑠)(𝑎𝐼𝛽𝜒)(𝑠)𝑑𝑠
𝑏

𝑎

= ∫ 𝜒(𝑠)(𝐼𝑏
𝛼휂)(𝑠)𝑑𝑠

𝑏

𝑎

                                                             (2.11) 

if 𝑒 ∈ 𝐼𝑏
𝛽(𝐿𝑤) and 𝑓 ∈𝑎 𝐼𝛽(𝐿𝑧) , then  

∫ 𝑒(𝑠)(𝑎𝐷𝛽𝑓)(𝑠)𝑑𝑠
𝑏

𝑎

= ∫ 𝑓(𝑠)(𝐷𝑏
𝛽
𝑒)(𝑠)𝑑𝑠

𝑏

𝑎

,                                                          (2.12) 

wher𝑒 𝑎𝐼𝛽(𝐿𝑧) ≔ {𝑓: 𝑓 =𝑎 𝐼𝛽𝑒, 𝑒 ∈ 𝐿𝑤(𝑎, 𝑏)} and 
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𝐼𝑏
𝛽(𝐿𝑤) ≔ {𝑓: 𝑓 = 𝐼𝑏

𝛽
𝑒, 𝑒 ∈ 𝐿𝑤(𝑎, 𝑏)}. 

In [6] and [7] the fractional integration by parts on the subintervals [a, r] and [r, b] 

are given by the next lemmas. 

 

Lemma 2.1.2 [1-7] 

Let 𝛽 > 0, 𝑤, 𝑧 ≥ 1, 𝑟 ∈ (𝑎, 𝑏) and 
1

𝑤
+

1

𝑧
≤ 1 + 𝛽 ,𝑤 ≠ 1 and 𝑧 ≠ 1 

in the case  when 
1

𝑤
+

1

𝑧
= 1 + 𝛽. 

(a) If  휂 ∈ 𝐿𝑤(𝑎, 𝑏) and 𝜒 ∈ 𝐿𝑤(𝑎, 𝑏), then 

∫ 휂(𝑠)(𝑎𝐷𝛽𝜒)(𝑠)
𝑟

𝑎

𝑑𝑠 = ∫ 𝜒(𝑠)(𝐼𝑟
𝛽
휂)(𝑠)

𝑟

𝑎

𝑑𝑠.                                                           (2.13) 

So if e ∈ 𝐼𝑟
𝛽(𝐿𝑤) and 𝑓 ∈𝑎 𝐼𝛽(𝐿𝑧) , then 

∫ 𝑒(𝑠)(𝑎𝐷
𝛽𝑓)(𝑠)

𝑟

𝑎

𝑑𝑠 = ∫ 𝑓(𝑠)(𝐷𝑟
𝛽
𝑒)(𝑠)

𝑟

𝑎

𝑑𝑠.                                                         (2.14) 

(b) If 휂 ∈ 𝐿𝑤(𝑎, 𝑏) and 𝜒 ∈ 𝐿𝑧(𝑎, 𝑏), then 

∫ 휂(𝑠)(𝑎𝐼𝛽𝜒)(𝑠)
𝑏

𝑟
𝑑𝑠 = ∫ 𝜒(𝑠)(𝐼𝑏

𝛽
휂)(𝑠)

𝑏

𝑟
𝑑𝑠+ 

1

Γ(𝛽)
∫ 𝜒(𝑠) (∫ 휂(𝑡)(𝑡 − 𝑠)𝛽−1𝑑𝑡

𝑏

𝑟

)
𝑟

𝑎

𝑑𝑠 .                                                                  (2.15) 

 If e ∈ 𝐼𝑏
𝛽(𝐿𝑤) and 𝑓 ∈ 𝑎𝐼𝛽(𝐿𝑧), then 

∫ 𝑒(𝑠)(𝑎𝐷
𝛽𝑓)(𝑠)

𝑏

𝑟

𝑑𝑠 = ∫ 𝑓(𝑠)(𝐷𝑏
𝛽
𝑒)(𝑠)𝑑𝑠

𝑏

𝑟

− 

1

Γ(𝛽)
∫ (𝑎𝐷𝛽𝑓)(𝑠) (∫ (𝐷𝑏

𝛽
𝑒)(𝑡)(𝑡 − 𝑠)𝛽−1𝑑𝑡

𝑏

𝑟

)
𝑟

𝑎

𝑑𝑠.                                           (2.16) 

so 

∫ 𝑒(𝑠)(𝑎𝐷
𝛽𝑓)(𝑠)

𝑏

𝑟

𝑑𝑠 = ∫ 𝑓(𝑠)(𝐷𝑏
𝛽
𝑒)(𝑠)𝑑𝑠

𝑏

𝑟

− 

1

Γ(𝛽)
∫ 𝑓(𝑠)𝐷𝑟

𝛽
(∫ (𝐷𝑏

𝛽
𝑒)(𝑡)(𝑡 − 𝑠)𝛽−1

𝑏

𝑟

𝑑𝑡)
𝑟

𝑎

𝑑𝑠.                                                   (2.17) 

 

Lemma 2.1.3 [1-7] 

Let 𝛽 > 0,𝑤, 𝑧 ≥ 1, 𝑟 ∈ (𝑎, 𝑏) and 
1

𝑤
+

1

𝑧
≤ 1 + 𝛽,𝑤 ≠ 1  𝑧 ≠ 1  and  

1

𝑤
+

1

𝑧
= 1 +

𝛽 If 휂 ∈ 𝐿𝑤(𝑎, 𝑏) and  𝜒 ∈ 𝐿𝑧(𝑎, 𝑏), then 
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∫ 휂(𝑠)(𝐼𝑏
𝛽
𝜒)(𝑠)

𝑏

𝑟

𝑑𝑠 = ∫ 𝜒(𝑠)(𝑟𝐼
𝛽𝜒)(𝑠)

𝑏

𝑟

𝑑𝑠(2.18) 

and thus if 𝑒 ∈  𝑟𝐼
𝛽(𝐿𝑤) and 𝑓 ∈ 𝐼𝑏

𝛽(𝐿𝑧), then 

∫ 𝑒(𝑠)(𝐷𝑏
𝛽
𝑓)(𝑠)

𝑏

𝑟

𝑑𝑠  = ∫ 𝑓(𝑠)(𝑟𝐷
𝛽𝑒)(𝑠)

𝑏

𝑟

𝑑𝑠                                                  (2.19) 

(a) If 휂 ∈ 𝐿𝑤(𝑎, 𝑏) and 𝜒 ∈ 𝐿𝑧(𝑎, 𝑏) , then 

∫ 휂(𝑠)(𝑏𝐼
𝛽𝜒)(𝑠)

𝑟

𝑎

𝑑𝑠 = ∫ 𝜒(𝑠)(𝐼𝑎
𝛽
휂)(𝑠)

𝑟

𝑎

𝑑𝑠 + 

1

Γ(𝛽)
∫ 𝜒(𝑠)(∫ 휂(𝑡)(𝑠 − 𝑡)𝛽−1𝑟

𝑎
𝑑𝑡)

𝑏

𝑟
𝑑𝑠.                                                                 (2.20)  

and hence if 𝑒 ∈ 𝑎𝐼𝛽(𝐿𝑤) and 𝑓 ∈ 𝐼𝑏
𝛽(𝐿𝑧), then 

∫ 𝑒(𝑠)(𝐷𝑏
𝛽
𝑓)(𝑠)

𝑟

𝑎

𝑑𝑠 = ∫ 𝑓(𝑠)(𝑎𝐷𝛽𝑒)(𝑠)𝑑𝑠
𝑟

𝑎

− 

1

Γ(𝛽)
∫ (𝐷𝑏

𝛽
𝑓)(𝑠)(∫ (𝑎𝐷𝛽𝑒)(𝑡)(𝑠 − 𝑡)𝛽−1𝑟

𝑎
𝑑𝑡)

𝑏

𝑟
𝑑𝑠.                                             (2.21)  

So, we have 

∫ 𝑒(𝑠)(𝐷𝑏
𝛽
𝑓)(𝑠)

𝑟

𝑎
𝑑𝑠 = ∫ 𝑓(𝑠)( 𝐷𝛽𝑒𝑎 )(𝑠)𝑑𝑠

𝑟

𝑎
−

1

Γ(𝛼)
∫ 𝑓(𝑠) 𝐷𝛽

𝑟 (∫ (𝑎𝐷𝛽𝑒)(𝑠)(𝑠 − 𝑡)𝛽−1𝑟

𝑎
𝑑𝑡)

𝑏

𝑟
𝑑𝑠.                                            (2.22)  

2.2 The Grünwald-Letnikov Approximation 

The Grünwald-Letnikov approximation of fractional derivatives defined as [1 − 14] 

0𝐷𝑠
𝛼𝑦(𝑠𝑙−1/2) ≅

1

ℎ𝛼
∑𝑤𝑗

(𝛼)
𝑦𝑙−𝑗

𝑙

𝑗=0

,      𝑙 = 1,… ,𝑚,                                               (2.23) 

sD1
α𝑟(𝑠𝑙+1/2) ≅

1

ℎ𝛼
∑ 𝑤𝑗

(𝛼)
𝑟𝑙+𝑗

𝑚−𝑙

𝑗=0

,                 𝑙 = 𝑚 − 1,𝑚 − 2,… . . ,0,            (2.24) 

where 𝑤𝑗
(𝛼)

, j= 0, 1,..,m are the transactions. A recursive method for computing 𝑤𝑗
(𝛼)

 

is given by  

𝑤0
(𝛼)

= 1,    𝑤𝑗
(𝛼)

= (1 −
𝛼 + 1

𝑗
)𝑤𝑗−1

(𝛼)
,                           𝑗 = 1,… ,𝑚. 

It could be shown that for α = 1, Eqs. (2.23) and (2.24) became  [1-14]. 
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𝑑𝑦(𝑠𝑙−1 2⁄ )

𝑑𝑠
=  

𝑦𝑙 − 𝑦𝑙−1

ℎ
 ,

−𝑑𝑦(𝑠𝑙+1 2⁄ )

𝑑𝑠
=  

𝑦𝑙 − 𝑦𝑙+1

ℎ
. 

To build up a numerical technique the time space [0, 1] is divided into n equal parts 

and the fractional derivative𝑠 0𝐷𝑠
𝛼𝑦  an𝑑𝑠𝐷1

𝛼𝜆  are approximated at the midpoint 

from every subinterval through these approximations.  

Additionally take y (𝑠𝑙−1 2⁄ ) as an average of the two end values of the subinterval. 

Therefore, y(𝑠𝑙−1/2) = (𝑦𝑙−1 + 𝑦𝑖)/2. It makes the same approximations for 

λ(𝑠𝑙−1 2⁄ ), y (𝑠𝑙−1 2⁄ ), and λ(𝑠𝑙+1 2⁄ ). Substituting these approximations into Euler –

Lagrange equations (0𝐷𝑠
𝛼𝑦 = 𝑎(𝑠)𝑦 − 𝑟−1(𝑠)𝑏2(𝑠)𝜆,𝑠 𝐷1

𝛼𝜆 = 𝑞(𝑠)𝑦 + 𝑎(𝑠)𝜆) it 

gets [1-14] 

1

ℎ𝛼
∑𝑤𝑗

(𝛼)
𝑦𝑙−𝑗

𝑙

𝑗=0

=
1

2
𝑎(𝑙1ℎ)(𝑦𝑙−1 + 𝑦𝑙) −

1

2
𝑟−1(𝑙1ℎ)𝑏2(𝑙1ℎ)(𝜆𝑙−1 + 𝜆𝑙) 

(l=1,…,m),                                                                                                     (2.25) 

1

hα
∑ wj

(α)
λl+j

m−l

j=0

=
1

2
𝑞(𝑙2ℎ)(𝑦𝑙+1 + 𝑦𝑙) +

1

2
𝑎(𝑙2ℎ)(𝜆𝑙−1 + 𝜆𝑙),       

(l= m-1,…, 0).                                                                                                (2.26)                            

Here 𝑙1 = 𝑙 −
1

2 
,𝑙2 = 𝑙 +

1

2
  equations (2.25) and (2.26) produce linear equations in 

2m unknowns. One can also develop an iterative plan in that one can march forward 

to compute 𝑦𝑖 's and in backward to compute 𝜆𝑖 's to save storage space and perhaps 

computational time [1 − 14].
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CHAPTER 3 

THE FUNDAMENTALS OF FRACTIONAL OPTIMAL CONTROL 

 

3.1 The Fractional Euler-Lagrange Equations 

In this section, we briefly study the fractional Euler–Lagrange equations (FELE) 

introduced in [10]. Among all functions x(s), the function 𝑥∗(𝑠)  minimizes the 

functional  

𝐽[𝑥] = ∫ 𝐹(𝑠, 𝑥,𝑎 𝐷𝑠
𝛽
𝑥)

𝑏

𝑎

𝑑𝑠                                                                                              (3.1) 

and satisfies the boundary conditions [10] 

𝑥(𝑎) = 𝑥𝑎 and   𝑥(𝑏) = 𝑥𝑏 .                                                                                            (3.2) 

At this poin𝑡 𝑎𝐷𝑠
𝛽
𝑥 be the 𝛽 order left Riemann-Liouville fractional derivative which 

can be defined as [10] 

𝑎𝐷𝑠
𝛽
𝑥(𝑠) =

1

Γ(𝑚 − 𝛽)
(

𝑑

𝑑𝑠
)

𝑚

∫ (𝑠 − 𝜗)𝑚−𝛽−1𝑥(𝜗)
𝑠

𝑎

𝑑𝜗,                                      (3.3) 

where m-1< 𝛽 < 𝑚 .The fractional derivative reaches to an ordinary derivative in 

case 𝛽 be an integer. It is exhibited in [10 ] that the solution of the problem which 

was stated above must satisfy 

𝜕𝐹

𝜕𝑥
+𝑠𝐷𝑏

𝛽 𝜕𝐹

𝜕𝑎𝐷𝑠
𝛽
𝑥

= 0,                                                                                                        (3.4) 

wher𝑒 𝑠𝐷𝑏
𝛽
𝑥 is the right Riemann –Liouville fractional derivative (RRLFD) of order 

𝛽 define as [14] 

𝑠𝐷𝑏
𝛽
𝑥(𝑠) =

1

Γ(𝑚 − 𝛽)
(−

𝑑

𝑑𝑠
)
𝑚

∫ (𝜗 − 𝑠)𝑚−𝛽−1𝑥(𝜗)
𝑏

𝑎

𝑑𝜗.                                 (3.5) 

Equation (3.5) is going to played an impotant role in the formulation for fractional 

control optimal problems [14]. 

3.2 The Formulation of Fractional Optimal Control Problems 

The problem here is to find the optimal control r(s) for a fractional derivative 

schemes that minimizes the performance index [14] 



8 
 

𝑓(𝑟) = ∫ 𝑗(𝑦, 𝑟, 𝑠)𝑑𝑠
1

0

                                                                                                       (3.6) 

and also, fulfills the dynamical constraints 

0𝐷𝑠
𝛼𝑦 = 𝑔(𝑦, 𝑟, 𝑠)                                                                                                            (3.7) 

with the initial condition 

𝑦(0) = 𝑦0 .                                                                                                                            (3.8) 

Here y(s) is the state variable, s is for the time, j and g stand for arbitrary functions. 

Not that order of the fractional derivative 0 < 𝛼 < 1 and the upper limit of 

integration is 1. Additionally; it is consider that y(s), r(s) and g(y, r, s) are all scalar 

functions. The similar technique could be considered if the upper limit from 

integration and α is bigger than 1, y(s), r(s) and g(y, r, s) are vector functions. 

The performance index is modified as follows to get the optimal control [14] 

𝑓(̅𝑟) = ∫ [𝐻(𝑦, 𝑟, 𝑠) − 𝜆0𝐷𝑠
𝛼𝑦]

1

0

𝑑𝑠,                                                                                (3.9) 

where H (y, r, λ, s) is the Hamiltonian of the system defined via [14] 

𝐻(𝑦, 𝑟, 𝜆, 𝑠) = 𝑗(𝑦, 𝑟, 𝑠) + 𝜆𝑔(𝑦, 𝑟, 𝑠).                                                                         (3.10) 

Also, λ represents the Lagrange multiplier. Applying the necessary conditions in 

terms of Hamiltonian Eq. (3.4) result that [14] 

 𝑠𝐷1
𝛼𝜆 =

𝜕𝐻

𝜕𝑦
,                                                                                                                  (3.11) 

  
𝜕𝐻

𝜕𝑟
= 0,                                                                                                                             (3.12) 

0𝐷𝑠
𝛼𝑦 =

𝜕𝐻

𝜕𝜆
.                                                                                                                   (3.13) 

According to the approach given in [11], the following condition is imposed  

𝜆(1) = 0.                                                                                                                            (3.14) 
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Here, the time derivative of the Hamiltonian does not zero along the optimal 

trajectory even when j and g are not directly depend on s, which is a derivative of the 

integer order optimal control theory. The following quadratic performance index can 

be considered [14] as an example 

𝑓(𝑟)=
1

2
∫ [𝑞(𝑠)𝑦2(𝑠) + 𝑢(𝑠)𝑟2]

1

0
𝑑𝑠,                                                                            (3.15) 

where q(s) ≥ 0 and u(s) > 0, and the system whose dynamics is described by the  

linear FDE 

0𝐷𝑠
𝛼𝑦 = 𝑎(𝑠)𝑦 + 𝑏(𝑠)𝑟.                                                                                              (3.16) 

Utilizing Eqs. (3.11) to (3.13), the essential Euler-Lagrange equations for the same 

system obtained as [11] 

0𝐷𝑠
𝛼𝑦 = 𝑎(𝑠)𝑦 − 𝑢−1(𝑠)𝑏2(𝑠)𝜆,                                                                               (3.17) 

𝑠𝐷1
𝛼𝜆 = 𝑞(𝑠)𝑦 + 𝑎(𝑠)𝜆,                                                                                              (3.18) 

and 

r = -𝑢−1(𝑠)𝑏(𝑠)𝜆,                                                                                                              (3.19) 

where they are all going to be used to build up a direct numerical method for a 

fractional  optimal control problem. 

3.2.1 An Example in 2D 

Considering the minimization problem of the performance index [14] 

𝐽 =
1

2
∫ [0𝐷𝑠

𝛼
0
𝐷𝑠

𝛼휃]2𝑑𝑠,
2

0

                                                                                                (3.20) 

subjected to the next dynamic condition, 0 𝐷𝑠
𝛼

0
𝐷𝑠

𝛼휃(𝑠)= r(s). Taking  a= 0 and b= 2, 

an𝑑 0𝐷𝑠
𝛼

0
𝐷𝑠

𝛼휃(𝑠) is the successive derivative of 휃. Using 휃(𝑠) =𝑦1(𝑠), 

0𝐷𝑠
𝛼휃(𝑠) = 𝑦2(𝑠). 

 The modified performance index in (3.20) becomes [14] 

𝐽 = ∫ [𝐻(𝑦, 𝑟, 𝜆) − 𝜆𝑇
0𝐷𝑠

𝛼𝑢(𝑠)]
2

0

𝑑𝑠,                                                                            (3.21) 

where 
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𝐻(𝑦, 𝑟, 𝜆) =
1

2
𝑟2(𝑠) + 𝜆𝑇(𝐴𝑦(𝑠) + 𝑏𝑟(𝑠))                                                                (3.22) 

is the Hamiltonian of the system and [14] 

𝑦(𝑠) = (
𝑦1(𝑠)

𝑦2(𝑠)
) , 𝜆(𝑠) = (

𝜆1(𝑠)

𝜆2(𝑠)
), 

𝑏(𝑠) = (
0
1
) ,    𝐴 = (

0 1
0 0

) .                                                                                          (3.23) 

Applying (3.7)-(3.9) the following system of equations are obtained [14] 

𝑠𝐷2
𝛼𝜆1 = 0 ,𝑠 𝐷2

𝛼𝜆2 − 𝜆1 = 0, 𝑟 + 𝜆2 = 0 ,0 𝐷𝑠
𝛼𝑢1 − 𝑢2 = 0,0 𝐷𝑠

𝛼𝑢2 − 𝑟

= 0.                                                                                                 (3.24) 

Take note of that variable 𝑟 from the above equations could be eliminated by the 

third equality introduction in (3.24). In addition to the above equations, 

휃(0) =0 𝐷𝑠
𝛼휃(0) = 0   and     휃(2) =0 𝐷𝑠

𝛼휃(2) = 1                                  

 which translate into  𝑦1(0) = 𝑦2(0) = 0     and 𝑦1(2) = 𝑦2(2) = 1 . 

The presentation of the numerical strategy which is utilized to solve the cores 

pending equations in (3.24) is shown below. This technique utilizes Gr�̈�nwald-

Letnikov approximation, quickly, the schemes is given as [14]: 

(1)  Split the time area into N sub-spaces, where N is an integer. 

(2) Estimate the fractional derivatives in (3.24) at every grid point the 

Grünwald- Letnikov definitions given in (3.11). 

(3) Impose the terminal conditions. 

(4) Solve  the concluding equations.
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CHAPTER 4 

 

BERNSTEIN AND SHIFTED LEGENDRE ORTHONORMAL 

POLYNOMIALS 

 

4.1 Bernstein Polynomials and Their Properties 

The Bernstein polynomials (BPs) of zth-degree are characterized on the 

interval [0,1] as [24 − 25] 

𝐴𝑖,𝑧(𝑢) = (
𝑧
𝑖
) 𝑢𝑖(1 − 𝑢)𝑧−𝑖, 𝑖 = 0,1, … , 𝑧.                                                                     (4.1) 

Corollary 4.1.1 [24-25] 

The set {𝐴0,𝑧(𝑢), 𝐴1,𝑧(𝑢),… , 𝐴𝑧,𝑧(𝑢)} is a full basis in the Hilbert space  𝐿2[0, 1] and 

polynomials from degree z; they are expanded by the linear combination from 

𝐴𝑖,𝑧(𝑢)(𝑖 = 0,1, … , 𝑧) as: 

𝑝(𝑢) = ∑𝑐𝑖𝐴𝑖,𝑧(𝑢)

𝑧

𝑖=0

.                                                                                                         (4.2) 

 

Lemma 4.1.2 [24-25] 

We can write 𝜙𝑧(𝑢) = 𝐵𝑇𝑧(𝑢) such that B is an upper triangular matrix 𝑇𝑧(𝑢) =

[1, 𝑢, … , 𝑢𝑧]𝑇𝑎𝑛𝑑 𝜙𝑧(𝑢) = [𝐴0(𝑢), 𝐴2(𝑢), … , 𝐴𝑧(𝑢)]𝑇 . 

Proof [24 − 25] Using binomial increase of (1 − 𝑢)𝑧−𝑖 we  

𝐴𝑖,𝑧(𝑢) = (
𝑧
𝑖
) 𝑢𝑖(1 − 𝑢)𝑧−𝑖 

= (
𝑧
𝑖
) 𝑢𝑖 (∑(−1)𝑗 (

𝑧
𝑖
) (

𝑧 − 𝑖
𝑗

) 𝑢𝑗

𝑧−𝑖

𝑗=0

) = ∑(−1)𝑗 (
𝑧
𝑖
) (

𝑧 − 𝑖
𝑗

) 𝑢𝑖+𝑗

𝑧−𝑖

𝑗=0

, 𝑖 = 0, . . , 𝑧 

 

In this way can be writing [24 − 25] 

𝜙𝑧(𝑢) = 𝐵𝑇𝑧(𝑢),                                                                                                                 (4.3) 

where [24 − 25] 

𝐵 = (𝑎𝑖,𝑝)
𝑖,𝑝=1

𝑧+1
and  𝑎𝑖+1,𝑝+1 
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= {
(−1)𝑝−𝑖 (

𝑧
𝑖
) (

𝑧 − 𝑖
𝑝 − 𝑖

) 𝑖 ≤ 𝑝

0                           𝑖 > 𝑝,
𝑖, 𝑝 = 0,1, . . , 𝑧. 

Lemma 4.1.3 [26] 

Let 𝐿2[0,1] be a Hilbert space with the inside product < 𝑘, 𝑟 >=

∫ 𝑘(𝑢)𝑟(𝑢)
1

0
𝑑𝑦, and 𝑥 ∈ 𝐿2[0,1]. After that, the single vector c=[𝑐1, 𝑐2, … , 𝑐𝑧]

𝑇can 

be taken such that 

𝑥(𝑢) ≈ ∑𝑐𝑖𝐴𝑖,𝑧(𝑢) = 𝑐𝑇𝜙𝑧(𝑢)

𝑧

𝑖=0

.                                                                                   (4.4) 

For Lemma 4.1.3 gets 𝑐𝑇 =< 𝑘, 𝜙𝑧 > 𝜚−1, such that 

< 𝑘,𝜙𝑧 > ∫ 𝑘(𝑢)𝜙𝑧(𝑢)𝑇
1

0

𝑑𝑢 = [< 𝑘, 𝐴0,𝑧 >,< 𝑘, 𝐴1,𝑧 >,… ,< 𝑘, 𝐴𝑧,𝑧 >] 

and 

𝜚 = (𝜚𝑖,𝑝)
𝑖,𝑝=1

𝑧+1
 

as follows 

𝜚𝑖+1,𝑝+1 = ∫ 𝐴𝑖,𝑧(𝑢)𝐴𝑝,𝑧(𝑢)
1

0

𝑑𝑢 =
(
𝑧
𝑖
) (

𝑧
𝑝)

(2𝑧 + 1) (
2𝑧

𝑖 + 𝑝
)
, 𝑖, 𝑝 =   0,1, … , 𝑧.               (4.5) 

 

Lemma 4.1.5 [26] 

Assume 𝐶(𝑧+1)×1 is a random vector. The operational matrix of the product 

𝐶^
(𝑧+1)×(𝑧+1)using BPs can give the following: 

𝑐𝑇𝜙𝑧(𝑢)𝜙𝑧(𝑢)𝑇 ≈ 𝜙𝑧(𝑢)𝑇𝑐.                                                                                                                        (4.6) 

Proof [26] 

By equation (4.6) we have 

𝑐𝑇𝜙𝑧(𝑢)𝜙𝑧(𝑢)𝑇 = 𝑐𝑇𝜙𝑧(𝑢)(𝑇𝑧(𝑢)𝑇𝐵𝑇) 

= [𝑐𝑇𝜙𝑧(𝑢), 𝑢(𝑐𝑇𝜙𝑧(𝑢)), … , 𝑢𝑧(𝑐𝑇𝜙𝑧(𝑢))]𝐵𝑇 

= [∑𝑐𝑖𝐴𝑖,𝑧(𝑢),∑𝑐𝑖𝑢𝐴𝑖,𝑧(𝑢),… , ∑𝑐𝑖𝑢
𝑧𝐴𝑖,𝑧(𝑢)

𝑧

𝑖=0

𝑧

𝑖=0

𝑧

𝑖=0

]𝐵.𝑇 

This time,  𝑢𝑗𝐴𝑖,𝑧(𝑢) is used to approximate all functions 𝜙𝑧(𝑢). So we 

characterize 𝑒𝑗,𝑖 = [𝑒𝑗,𝑖
0 , 𝑒𝑗,𝑖

1 , … , 𝑒𝑗,𝑖
𝑧 ]

𝑇
, and by equation (4.46) it is written as: 
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𝑢𝑗𝐴𝑖,𝑍(𝑢) ≈ 𝑒𝑗,𝑖𝜙𝑧(𝑢), 𝑖, 𝑗 = 0,1, … . . 𝑧 [26]. 

So,  

𝑒𝑗,𝑖 = 𝜚−1 (∫ 𝑢𝑗𝐴𝑖,𝑧(𝑢)𝜙𝑧(𝑢)𝑑𝑢
1

0

) 

= 𝜚−1 [∫ 𝑢𝑗𝐴𝑖,𝑧(𝑢)𝐴0,𝑧(𝑢)𝑑𝑢
1

0

,× ∫ 𝑢𝑗𝐴𝑖,𝑧(𝑢)𝐴1,𝑧(𝑢)𝑑𝑢
1

0

, … ,

× ∫ 𝑢𝑗𝐴𝑖,𝑧(𝑢)𝐴𝑧,𝑧(𝑢)𝑑𝑢
1

0

]

𝑇

 

=
𝜚−1(

𝑧
𝑖
)

2𝑧+𝑗+1
[

(
𝑧
0
)

(
2𝑧+𝑗
𝑖+𝑗

)
,

(
𝑧
1
)

(
2𝑧+𝑗
𝑖+𝑗+1

)
, … ,

(
𝑧
𝑧
)

(
2𝑧+𝑗
𝑖+𝑗+𝑧

)
]

𝑇

𝑖, 𝑗 = 0,1, … 𝑧. 

We have [26] 

∑𝑐𝑖𝑢
𝑗𝐴𝑖,𝑧(𝑢)

𝑧

𝑖=0

≈ ∑𝑐𝑖 (∑ 𝑒𝑗,𝑖
𝑝 𝐴𝑝,𝑧(𝑢)

𝑧

𝑝=0

)

𝑧

𝑖=0

 

= ∑𝐴𝑝,𝑧(𝑢)(∑𝑐𝑖𝑒𝑗,𝑖
𝑝

𝑧

𝑖=0

)

𝑧

𝑖=0

 

= 𝜙𝑧(𝑢)𝑇 [∑𝑐𝑖𝑒𝑗,𝑖
0

𝑧

𝑖=0

,∑𝑐𝑖𝑒𝑗,𝑖
1

𝑧

𝑖=0

, … . ,∑𝑐𝑖𝑒𝑗,𝑖
𝑧

𝑧

𝑖=0

]

𝑇

 

= 𝜙𝑧(𝑢)𝑇[𝑒𝑗,0, 𝑒𝑗,1, … , 𝑒𝑗,𝑧]𝑐 = 𝜙𝑧(𝑢)𝑇𝑉𝑗+1𝑐  , 

where 𝑉𝑗+1(𝑗 = 0,1, … , 𝑧) is matrix of (z+1) × (z+1) and each column has vector 

𝑒𝑗,𝑖(𝑖 = 0,1, … , 𝑧). If it defines  𝐶̅ = [𝑉1𝑐 , 𝑉2𝑐 ,… , 𝑉𝑧𝑧𝑐 ], then get  

𝐶𝑇𝜙𝑧(𝑢)𝜙𝑧(𝑢)𝑇 ≈ 𝜙𝑧(𝑢)𝑇𝐶̅𝐵𝑇 .                                                                                      (4.7) 

Then it obtains the operational matrix of product  �̂� = 𝐶̅𝐵𝑇 .  

Corollary 4.1.6 [26] 

Let  𝑦(𝑠) ≈ 𝑐𝑇𝜙𝑧(𝑠) , 𝑢(𝑠) ≈ 𝑑𝑇𝜙𝑧(𝑠),𝑦(𝑠) ≈ 𝑑𝑇𝜙𝑧(𝑠) and �̂�(𝑧+1)×(𝑧+1) be the 

operational matrix of the product using BPs for vector c. it is obtained that the 

approximate function for u(s) y(s) using BPs as : 

𝑦(𝑠)𝑢(𝑠) ≈ 𝜙𝑧(𝑠)
𝑇�̂�𝑑.                                                                                                     (4.8) 

Proof [26] it can be proved by using Lemma 4.1.5. 

Corollary 4.1.7 
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Assume that  𝑦(𝑠) ≈ 𝑐𝑇𝜙𝑧(𝑠) and �̂�(𝑧+1)×(𝑧+1) are the operational matrix of a vector 

c using the product of BPs. Then can get an approximate function of  𝑦𝑗(𝑠)(𝑗 ∈ 𝑁) , 

using  the BPs as [26] 

𝑦𝑗(𝑠) ≈ 𝜙𝑧(𝑠)
𝑇�̃�𝑗,                                                                                                        (4.9) 

where �̃�𝑗 = �̂�𝑗−1𝑐 . 

Proof [26] 

By using induction, get an approximate value of 𝑦𝑗(𝑠), (𝑗 ∈ 𝑁) as: 

 for j=1 by (4.4) 𝑦(𝑠) ≈ 𝑐𝑇𝜙𝑧(𝑠) and, for j=2 by Lemma 4.1.5 it  gets 

𝑦2(𝑠) ≈ 𝑐𝑇𝜙𝑧(𝑠)𝜙𝑧(𝑠)
𝑇 ≈ 𝜙𝑧(𝑠)

𝑇�̂�𝑐. 

For j=3 it is obtained 𝑦3(𝑠) ≈ 𝑐𝑇𝜙𝑧(𝑠)𝜙𝑧(𝑠)
𝑇𝐶^𝑐 ≈ 𝜙𝑧(𝑠)

𝑇�̂�2𝑐 . 

So, by induction  write it as [26] 

𝑦𝑗(𝑠) ≈ 𝑐𝑇𝜙𝑧(𝑠)𝜙𝑧(𝑠)
𝑇�̂�𝑗−2 ≈ 𝜙𝑧(𝑠)

𝑇�̃�𝑗, where �̃�𝑗 = �̂�𝑗−1𝑐. 

4.2 Shifted Legendre Orthonormal Polynomials 

 The Legendre polynomial of degree j is noted by 𝑃𝑗(𝑤) and it is characterized on  

 the interval  (–1, 1). 𝑃𝑗(𝑤) might be created by the repeating the formula [27 − 30] 

𝑃𝑗+1(𝑤) =
2𝑗 + 1

𝑗 + 1 𝑤𝑃𝑗(𝑤) −
𝑗

𝑗 + 1
𝑃𝑗−1(𝑤)                      1 ≤ 𝑗, 

𝑃0(𝑤) = 1,                      𝑃1(𝑤) = 𝑤. 

Presenting 𝑤= 2s −1, the Legendre polynomials are characterized on the 

interval(0,1) which might be called shifted Legendre polynomials 𝑃𝑗
∗(𝑠) and are 

produced by utilizing the iterative formulae [27 − 30] 

𝑃𝑗+1
∗ (𝑠) =

2𝑗 + 1

𝑗 + 1
(2𝑠 − 1)𝑃𝑗

∗(𝑠) −
𝑗

𝑗 + 1
𝑃𝐽−1

∗ (𝑠),    1 ≤ 𝑗, 

𝑃0
∗(𝑠) = 1,                𝑃1

∗(𝑠) = 2𝑠 − 1. 

The orthogonality relation is [27 − 30] 

∫ 𝑃𝑝
∗(𝑠)𝑑𝑠

1

0

= {

1

2𝑗 + 1
for              p = j,

0          for                       p ≠ j.  

                                                           (4.10) 

The analytical type of shifted Legendre polynomial 𝑃𝑗
∗(𝑠) of degree j might be 

composed as [27 − 30] for 
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∫ 𝑃𝑝
∗(𝑠)𝑃𝑗

∗(𝑠)𝑑𝑠
1

0

= {

1

2𝑗 + 1
            for   𝑝 = 𝑗,

0                    for     p ≠ j .

                                                         (4.11) 

Presenting the shifted Legendre orthonormal polynomials for 

𝑃𝑗
�̇�(𝑠); 𝑃𝑗

�̇�(𝑠) ≡ √2𝑗 + 1𝑃𝑗
∗(𝑠) we have [27 − 30] 

∫ 𝑃𝑝
�̇�(𝑠)𝑃𝑝

�̇�(𝑠)𝑑𝑠
1

0

= {
1    for      p = j,
0   for      p ≠ j,

                                                                         (4.12) 

and 

𝑃𝑗
�̇�(𝑠) = √2𝑗 + 1∑(−1)𝑗+𝑖

(𝑗 + 𝑖)!

(𝑗 − 𝑖)! (𝑖!)2
𝑠𝑖

𝑗

𝑖=0

.                                                          (4.13) 

Any squared integrable function 𝑥𝑗 characterized on the interival (0, 1), can be 

represented by a shifted Legendre orthonormal polynomials 𝑃𝑗
�̇�(𝑠) as[27 − 30] 

𝑥(𝑠) = ∑𝑥𝑗𝑃𝑗
�̇�(𝑠)

∞

𝑗=0

. 

From that the coefficients, 𝑥𝑗  are given by 

𝑥𝑗 = ∫ 𝑥(𝑠)𝑃𝑗
�̇�(𝑠)

1

0

𝑑𝑠,    0 ≤ 𝑗,                                                                                      (4.14) 

if 𝑥(𝑠) approximates by firstly (H+1) –terms ,it can write [27 − 30] 

𝑥𝐻(𝑠) = ∑𝑥𝑗𝑃𝑗
�̇�(𝑠)

𝐻

𝑗=0

.                                                                                                      (4.15) 

which alternatively  can be written in the matrix form[27 − 30]: 

𝑥𝐻(𝑠) = 𝑋𝑇∆𝐻(𝑠)                                                                                                             (4.16) 

with 

𝑋 = [

𝑥0

𝑥1

⋮
𝑥𝑁

],    ∆𝐻(𝑠)

[
 
 
 
𝑃0

�̇�(𝑠)

𝑃1
�̇�(𝑠)
⋮

𝑃𝑁
�̇�(𝑠)]

 
 
 

 .                                                                                          (4.17) 

4.3 Shifted Jacobi Orthonormal Polynomials 

The Jacobi polynomials of degree j, indicated by 𝑃𝑗
(𝜁,𝜌)

(𝑤); 휁 ≥ −1, 𝜌 ≥ −1 

characterized on the interval [−1,1], constitutes an orthogonal system regarding the 

weight function [31 − 38] 
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𝑧(𝜁,𝜌)(𝑤) = (1 − 𝑤)𝜁(1 + 𝑤)𝜌, 𝑖, 𝑒, 

∫ 𝑃𝑗
(𝜁,𝜌)

(𝑤)𝑃ℎ
(𝜁,𝜌)

(𝑤)𝑧(𝜁,𝜌)(𝑤)
1

−1

𝑑𝑤 = 𝛿𝑝ℎ𝜑ℎ
(𝜁,𝜌)

,                                                 (4.18) 

where 𝛿𝑗ℎ  is the Kronecker function and [31 − 38] 

𝜑ℎ
(𝜁,𝜌)

=
2𝜁+𝜌+1Γ(ℎ + 휁 + 1)Ω(ℎ + 𝜌 + 1)

(2ℎ + 휁 + 𝜌 + 1)ℎ! Γ(ℎ + 휁 + 𝜌 + 1)
. 

A shifted Jacobi polynomial with degree j, that is represented by 𝑃𝑇,𝑗
(𝜁,𝜌)

(𝑠); 휁 ≥

−1, 𝜌 ≥ −1 and characterized at interval [0, T]. It is created by the change of 

variable w=
2𝑠

𝑇
− 1, 𝑖. 𝑒. , 𝑃𝑗

(𝜁,𝜌)
(
2𝑠

𝑇
− 1) ≡ 𝑃𝑇,𝑗

(𝜁,𝜌)
(𝑠). At that point the shifted Jacobi 

polynomials form an orthogonal system with respect to weight function 

𝑤𝑇
(𝜁,𝜌)

(𝑠) = 𝑠𝜌(𝑇 − 𝑠)𝜁  with the orthogonality property [31 − 37] 

∫ 𝑃𝑇,𝑝
(𝜁,𝜌)

(𝑠)𝑃𝑇,ℎ
(𝜁,𝜌)

(𝑠)𝑤𝑇
(𝜁,𝜌)

(𝑠)
𝑇

0

𝑑𝑠 = 𝐿𝑇,ℎ
(𝜁,𝜌)

𝛿𝑗ℎ,                                                            (4.19) 

where [31 − 37] 

𝐿𝑇,ℎ
(𝜁,𝜌)

= (
𝑇

2
)
𝜁+𝜌+1

𝜑𝑗
(𝜁,𝜌)

=
𝑇𝜁+𝜌+1Γ(ℎ + 휁 + 1)Γ(ℎ + 𝜌 + 1)

(2ℎ + 휁 + 𝜌 + 1)ℎ! Γ(ℎ + 휁 + 𝜌 + 1)
. 

Presenting the shifted Jacobi orthonormal polynomials 𝑃𝑇,ℎ
(𝜁,𝜌)

(𝑠), where [31 − 37] 

�̀�𝑇,ℎ
(𝜁,𝜌)

(𝑠) =
1

√𝐿𝑇,ℎ

(𝜁,𝜌)
𝑃𝑇,ℎ

(𝜁,𝜌)
(𝑠).                                                                                    (4.20) 

Thus, it has 

∫ �̀�𝑇,𝑗
(𝜁,𝜌)

(𝑠)�̀�𝑇,ℎ
(𝜁,𝜌)

(𝑠)𝑧𝑇
(𝜁,𝜌)

(𝑠)
𝑇

0

𝑑𝑠 = 𝛿𝑗ℎ.                                                                 (4.21) 

The shifted Jacobi orthonormal polynomials are built up from the three-term iterative 

formula [31 − 37] 

�̀�𝑇,𝑗+1
(𝜁,𝜌)

(𝑠) = (𝜇𝑗𝑠 − 𝜉𝑗)�̀�𝑇,𝑗
(𝜁,𝜌)

(𝑠) − 𝜉𝑗�̀�𝑇,𝑗−1
(𝜁,𝜌)

(𝑠),   𝑗 ≥ 1,                                   (4.22) 

with 

�̀�𝑇,0
(𝜁,𝜌)

(𝑠) =
√Γ(휁 + 𝜌 + 2)

√𝑇𝜁+𝜌+1Γ(휁 + 1)Γ(𝜌 + 1)
, 

�̀�𝑇,1
(𝜁,𝜌)

(𝑠) =
√(휁 + 𝜌 + 3)Γ(휁 + 𝜌 + 2)

√𝑇𝜁+𝜌+3Γ(휁 + 2)Γ(𝜌 + 2)
((휁 + 𝜌 + 2)𝑠 − 𝑇(𝜌 + 1)),             (4.23) 



17 
 

where [31 − 37] 

𝜇𝑗 =
(2𝑗 + 휁 + 𝜌 + 2)√(2𝑗 + 휁 + 𝜌 + 3)(2𝑗 + 휁 + 𝜌 + 1)

𝑇√(𝑗 + 휁 + 1)(𝑗 + 𝜌 + 1)(𝑗 + 1)(𝑗 + 휁 + 𝜌 + 1)
, 

𝜉𝑗 =
(2𝑗2 + (1 + 𝜌)(휁 + 𝜌) + 2𝑗(휁 + 𝜌 + 1))√(2𝑗 + 휁 + 𝜌 + 3)(2𝑗 + 휁 + 𝜌 + 1)

(2𝑗 + 휁 + 𝜌)√(𝑗 + 휁 + 1)(𝑗 + 𝜌 + 1)(𝑗 + 1)(𝑗 + 휁 + 𝜌 + 1)
. 

𝜉𝑗 =
(2𝑗 + 휁 + 𝜌 + 2)√(2𝑗 + 휁 + 𝜌 + 3)𝑗(𝑗 + 휁 + 𝜌)(𝑗 + 휁)(𝑗 + 𝜌)

(2𝑗 + 휁 + 𝜌)√(2𝑗 + 휁 + 𝜌 − 1)(𝑗 + 휁 + 1)(𝑗 + 𝜌 + 1)(𝑗 + 1)(𝑗 + 휁 + 𝜌 + 1)
. 

From the shifted orthonormal Jacobi polynomials, �̀�𝑇,𝑗
(𝜁,𝜌)

(𝑠) of degree j are given 

by [31 − 37] 

�̀�𝑇,𝑗
(𝜁,𝜌)

(𝑠) = ∑
(−1)𝑗−ℎ√(2𝑗 + 휁 + 𝜌 + 1)𝑗! Γ(𝑗 + ℎ + 휁 + 𝜌 + 1)

√𝑇2ℎ+𝜁+𝜌+1Γ(𝑗 + 휁 + 𝜌 + 1)Γ(ℎ + 𝜌 + 1)(𝑗 − ℎ)ℎ!

𝑗

ℎ=0

𝑠𝑗 .         (4.24) 

Furthermore, this turn means [31 − 37] 

�̀�𝑇,𝑗
(𝜁,𝜌)

(0) =
(−1)𝑗√(2𝑗 + 𝜉 + 𝜌 + 1)Γ(𝑗 + 𝜌 + 1)Γ(𝑗 + 휁 + 𝜌 + 1)

√𝑇𝜁+𝜌+1Γ(𝑗 + 휁 + 1)𝑗! Γ(𝜌 + 1)
,                (4.25) 

𝐷𝑒�̀�𝑇,𝑗
(𝜁,𝜌)

(0)

=
(−1)𝑗−𝑒√(2𝑗 + 휁 + 𝜌 + 1)𝑝! Γ(𝑗 + 𝜌 + 1)Ω(𝑗 + 𝑒 + 휁 + 𝜌 + 1)

√𝑇2𝑒+𝜁+𝜌+1Γ(𝑗 + 휁 + 1)Γ(𝑗 + 휁 + 𝜌 + 1)Γ(𝑒 + 𝜌 + 1)(𝑗 − 𝑒)!
,                  (4.26) 

which is going to be of important later [31 − 37]. 

Assuming that x(s) is a square integralable function of the Jacobi weight function 

𝑧𝑇
(𝜁,𝜌)

(𝑠) in (0, T), then it can be expressed as shifted Jacobi orthonormal 

polynomials as [31 − 37] 

𝑥(𝑠) = ∑𝑥𝑗�̀�𝑇,𝑗
(𝜁,𝜌)

∞

𝑗=0

(𝑠). 

From that the coefficient 𝑥𝐽  presented by [31 − 37] 

𝑥𝑗 = ∫ 𝑧𝑇
(𝜁,𝜌)

(𝑠)𝑥(𝑠)�̀�𝑇,𝑗
(𝜁,𝜌)

(𝑠)
𝑇

0

𝑑𝑠,       𝑗 = 0,1, … ,.                                                   (4.27) 

If it approximates 𝑥𝐽 by the first (H+1) terms, then it can be composed 

𝑥𝐻(𝑠)−̃ ∑ 𝑥𝑝�̀�𝑇,𝐽
(𝜁,𝜌)

𝐻

𝑝=0

(𝑠).                                                                                                 (4.28) 

This on the other hand might be composed in a grid frame 
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𝑥𝐻(𝑠) ≈ 𝑋𝑇𝜓𝑇,𝐻(𝑠)                                                                                                          (4.29) 

with 

X=(

𝑥0

𝑥1

⋮
𝑥𝐻

),    𝜓𝑇,𝐻(𝑠) =

(

 
 

�̀�𝑇,0
(𝜁,𝜌)

(𝑠)

�̀�𝑇,1
(𝜁,𝜌)

(𝑠)

⋮

�̀�𝑇,𝐻
(𝜁,𝜌)

(𝑠))

 
 

.                                                                          (4.30)
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CHAPTER 5 

THE USE OF CHEBYSHEV POLYNOMIALS FOR NUMERICAL 

SOLUTIONS OF FRACTIONAL OPTIMAL CONTROL PROBLEMS 

 

5.1 Shifted Orthonormal Chebyshev Polynomial 

The classical orthogonal Chebyshev polynomial denoted by {𝑇𝑗(𝑧); 𝑗 = 0,1, … }, 

 and whose degree is j over the interval [-1, 1], constitutes an orthogonal weighted 

system [39] 

∫ 𝑇𝑗(𝑤)𝑇𝑘(𝑤)𝜔(𝑤)𝑑𝑤 = 𝛿𝑗𝑘ℎ𝑘,

1

−1

 

where 𝜔(𝑤) =
1

√1−𝑤2
, 𝛿𝑗𝑘 be the Kronecker function and 

ℎ𝑘 =
𝜖𝑘

2
𝜋,   휀0 = 2,        휀𝑘 = 1,         𝑘 ≥ 1. 

In order to use the orthogonal Chebyshev polynomials to solve the problem defined 

in [0,1], we assume the change of variable  𝑤 = 2𝑠 − 1 to propose the shifted 

Chebyshev polynomials, i.e. 𝑇𝑗(2𝑠 − 1) ≡ 𝑇𝑗
`(𝑠) .Then the Chebyshev polynomials 

form an orthogonal system with the Wight function 𝜔∗(𝑠) =
1

√𝑠−𝑠2
 which satisfy the 

orthogonality feature [39] 

∫ �̀�𝑘(𝑠)�̀�𝑗(𝑠)𝜔
∗(𝑠)𝑑𝑠 = 𝛿𝑗𝑘ℎ𝑘 .                                                                                   

1

0

(5.1) 

The transformation Chebyshev polynomials get the shape [37] 

�̀�𝑗+1(𝑠) = 2(2𝑠 − 1)�̀�𝑗 − �̀�𝑗−1(𝑠),               𝑗 ≥ 1 

with [39] 

�̀�0(𝑠) = 1,           �̀�1(𝑠) = 2𝑠 − 1. 

The clear format for analysis of �̀�𝑗(𝑠) with degree j is represented as [39] 
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�̀�𝑗(𝑠) = ∑(−1)𝑗−𝑘
𝑗(𝑗 + 𝑘 − 1)! 22𝑘

(𝑗 − 𝑘)! (2𝑘)!
𝑠𝑘.                                                                  

𝑗

𝑘=0

(5.2) 

Introducing the shifted orthonormal Chebyshev polynomials 

𝑇𝑗
∗(𝑠); 𝑇𝑗

∗(𝑠) ≡
1

√ℎ𝑗

�̀�𝑗(𝑠), 

∫ 𝑇𝑗
∗(𝑠)𝑇𝑘

∗(𝑠)𝜔∗(𝑠)𝑑𝑠 = 𝛿𝑗𝑘                                                                                            (5.3)
1

0

 

and 

𝑇𝑗
∗(𝑠) =

1

√ℎ𝑗

∑(−1)𝑗−𝑘
𝑗(𝑗 + 𝑘 − 1)! 22𝑘

(𝑗 − 𝑘)! (2𝑘)!
𝑠𝑘.                                                            (5.4)

𝑗

𝑘=0

 

Assuming that u(x) is a square-integrable function with regard to the shifted 

Chebyshev weight function 𝜔∗(𝑠) in [0,1], then it can be shifted orthonormal 

Chebyshev polynomials 𝑇𝑘
∗(𝑠) as 

𝑢(𝑠) = ∑ 𝑢𝑘𝑇𝑘
∗(𝑠)

∞

𝑘=0

. 

From that the transactions  𝑢𝑘 are given by [39] 

𝑢𝑘 = ∫ 𝑢(𝑠)𝑇𝑘
∗(𝑠)𝜔∗(𝑠)𝑑𝑠

1

0

,    0 ≤ 𝑘.                                                                            (5.5) 

Approximate u(x) by means of the shifted orthonormal Chebyshev polynomials 

yields [39] 

𝑢𝑁(𝑠) = ∑ 𝑢𝑘𝑇𝑘
∗(𝑠)

𝑁

𝑘=0

.                                                                                                    (5.6) 

That can be expressed in terms of the matrix shape [39] 

𝑢𝑁(𝑠)−̃𝑈𝑇ℶ𝑁(𝑠),                                                                                                               (5.7) 

with 
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𝑈 =

(

 

𝑢0

𝑢1
𝑢2

⋮
𝑢𝑁)

 ,          ℶ𝑁(𝑠) =

(

 
 

𝑇0
∗(𝑠)

𝑇1
∗(𝑠)

𝑇2
∗(𝑠)
⋮

𝑇𝑁
∗(𝑠))

 
 

.                                                                           (5.8) 

5.2 The Numerical Technique 

The shifted orthonormal Chebyshev polynomials are basis functions of the 

operational matrix of fractional derivatives for approximating the solution of the 

fractional optimal control problem [39]: 

Minimize. 𝐽 = ∫ 𝑝(𝑥(𝑠), 𝑢(𝑠), 𝑠)𝑑𝑠
𝑠1

𝑠0
,                                                                         (5.9) 

such that 

𝑎�̇�(𝑠) + 𝑏𝐷𝛾𝑥(𝑠) = 𝑒(𝑠)𝑥(𝑠) + 𝑓(𝑠)𝑢(𝑠) + 𝑔(𝑠).                                                 (5.10) 

According to boundary conditions [39] 

𝑥(𝑠0) = 𝑐,         𝑥(𝑠1) = 𝑑,                                                                                              (5.11) 

where  

𝑎, 𝑏 ≠ 0, 𝑠0 ≤ 𝑠 ≤ 𝑠1, 0 ≤ 𝛾 ≤ 1. 

5.2.1 Shifted Orthonormal Chebyshev Approximation 

The shifted –based orthonormal Chebyshev polynomials 𝑇𝑘
∗(𝑥) approximate  x(s) 

and u(s) as [39] 

𝑥(𝑠)−̃𝑋𝑇ℶ𝑁(𝑠),      𝑢(𝑠)−̃𝑈𝑇ℶ𝑁(𝑠),                                                                               (5.12) 

where series X and series U given  [39] 

𝑋 = (

𝑥0

⋮
𝑥𝑁

) ,           𝑈 = (

𝑢0

⋮
𝑢𝑁

). 

Also, we expand e(s), f(s) and g(s) as [39] 

𝑒(𝑠)−̃𝐸𝑇ℶ𝑁(𝑠), 𝑓(𝑠)−̃𝐹𝑇ℶ𝑁(𝑠),    𝑔(𝑠)−̃𝐺𝑇ℶ𝑁(𝑠),                                          (5.13) 

where E, F and G are be written as [39] 
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𝐸 = (

𝑒0

⋮
𝑒𝑁

) , 𝐹 = (
𝑓0
⋮
𝑓𝑁

) ,   𝐺 = (

𝑔0

⋮
𝑔𝑁

), 

and 

𝑒𝑖 = ∫ 𝑒(𝑠)𝑇𝑖
∗(𝑠)𝜔∗(𝑠)𝑑𝑠

1

0

,               𝑖 = 0,1, … . , 𝑁, 

𝑓i = ∫ f(s)Ti
∗(s)ω∗(s)ds,

1

0

                   i = 0,1, … , N,                     

𝑔i = ∫ g(s)Ti
∗(s)ω∗(s)ds,                   i = 0,1, … , N.                                                

1

0

(5.14) 

Using the relations (5.12) and (5.13), the dynamic constraint (5.10) is able to be 

approximated as [39] 

𝑎𝐷(𝑋𝑇ℶ𝑁(𝑠)) + 𝑏𝐷𝛾(𝑈𝑇ℶ𝑁(𝑠))

= (𝐸𝑇ℶ𝑁(𝑠))(𝑋𝑇ℶ𝑁(𝑠)) + (𝐹𝑇ℶ𝑁(𝑠))(𝑈𝑇ℶ𝑁(𝑠)) + (𝐺𝑇ℶ𝑁(𝑠)). 

That can be reduced using relation the Caputo fractional derivative of order the 

shifted orthonormal Chebyshev polynomials vector writes as 

with the matrix operations inside  𝐷𝛾ℶ𝑁(𝑠) = 𝐷(𝛾)ℶ𝑁(𝑠) 

𝑎𝑋𝑇𝐷(1)ℶ𝑁(𝑠) + 𝑏𝑋𝑇𝐷(𝛾)ℶ𝑁(𝑠)

= 𝐸𝑇ℶ𝑁(𝑠)ℶ𝑁
𝑇 (𝑠)𝑋 + 𝐹𝑇ℶ𝑁(𝑠)ℶ𝑁

𝑇 (𝑠)𝑈 + 𝐺𝑇ℶ𝑁(𝑠).                     (5.15) 

Let that [39] 

𝐸𝑇ℶ𝑁(𝑠)ℶ𝑁
𝑇 (𝑆)−̃ℶ𝑁

𝑇 (𝑠)𝑅𝑇, 𝐹𝑇ℶ𝑁(𝑠)∆𝑁
𝑇 (𝑠)−̃ℶ𝑁

𝑇 (𝑠)𝐿𝑇 ,                                        (5.16) 

where R and L are N× N matrices. For illustrating R and L, it might rewrite equation 

(5.16) as [39] 

∑ 𝑒𝑘𝑇𝑘
∗(𝑠)𝑇𝑗

∗(𝑠)

𝑁

𝑘=0

= ∑ 𝑅𝑘𝑗𝑇𝑘
∗(𝑠)

𝑁

𝑘=0

, 
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∑ 𝑓𝑘𝑇𝑘
∗(𝑠)𝑇𝑗

∗(𝑠)

𝑁

𝑘=0

= ∑ 𝐿𝑘𝑗𝑇𝑘
∗(𝑠),

𝑁

𝑘=0

𝑗 = 1,2, … ,𝑁.                                                      (5.17) 

Multiplying both sides of equation (5.17) by 𝑇𝑖
∗(𝑠)𝜔∗(𝑠) and integrating from 0 to 1 

yield 

∑ 𝑒𝑘 ∫ 𝑇𝑘
∗(𝑠)𝑇𝑗

∗(𝑠)𝑇𝑖
∗(𝑠)𝜔∗

1

0

(𝑠)𝑑𝑠

𝑁

𝑘=0

= ∑ 𝑅𝑘𝑗 ∫ 𝑇𝑘
∗(𝑠)𝑇𝑖

∗(𝑠)𝜔∗(𝑠)
1

0

𝑑𝑠,

𝑁

𝑘=0

 

∑ 𝑓𝑘 ∫ 𝑇𝑘
∗(𝑠)𝑇𝑗

∗(𝑠)𝑇𝑖
∗(𝑠)𝜔∗(𝑠)

1

0

𝑑𝑠 =

𝑁

𝑘=0

 

∑ Lkj ∫ Tk
∗(s)Ti

∗(s)ω∗(s)ds,            i, j = 1,… , N.                                                   (5.18)
1

0

N

k=0

 

So, using (5.3) are given [39] 

𝑅𝑘𝑗 = ∑ 𝑒𝑘 ∫ 𝑇𝑘
∗(𝑠)𝑇𝑗

∗(𝑠)𝑇𝑖
∗(𝑠)𝑑𝑠,

1

0

𝑁

𝑘=0

 

𝐿kj = ∑ fk ∫ Tk
∗(s)Tj

∗(s)Ti
∗(s)ds,    i, j = 1,… , N.                                                  (5.19)

1

0

N

k=0

 

 By equation (5.16), rewrite equation (5.15) as [39] 

𝑎𝑋𝑇𝐷(1)ℶ𝑁(𝑠) + 𝑏𝑋𝑇𝐷(𝛾)ℶ𝑁(𝑠) − ℶ𝑁
𝑇 (𝑠)𝑅𝑇𝑋 − ℶ𝑁

𝑇 (𝑠)𝐿𝑇𝑈 − 𝐺𝑇ℶ𝑁(𝑠) = 0, 

(𝑎𝑋𝑇𝐷(1) + 𝑏𝑋𝑇𝐷(𝛾) − 𝑅𝑇𝑋 − 𝐿𝑇𝑈 − 𝐺𝑇)ℶ𝑁(𝑠) = 0.                                           (5.20) 

The Caputo fractional derivative for the function f(s) is written as [39] 

𝐷𝛾(𝜆𝑓(𝑠) + 𝜇𝑔(𝑠)) = 𝜆𝐷𝛾𝑓(𝑠) + 𝜇𝐷𝛾𝑔(𝑠).                                                            (5.21) 

Using equation (5.20), the dynamical system (5.21) is reduced into a linear system of 

algebraic equations [39] 

𝑎𝑋𝑇𝐷(1) + 𝑏𝑋𝑇𝐷(𝛾) − 𝑅𝑇𝑋 − 𝐿𝑇𝑈 − 𝐺𝑇 = 0.                                                          (5.22) 
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In addition, it can be approximated the boundary conditions [39] 

𝑥(𝑠0) = 𝑐,   𝑥(𝑠1) = 𝑑,     𝑤ℎ𝑒𝑟𝑒𝑎, 𝑏 ≠ 0, 𝑠0 ≤ 𝑠 ≤ 𝑠1, 0 ≤ 𝛾 ≤ 1, 

as 

𝑥(𝑠0)−̃𝑋𝑇ℶ𝑁(𝑠0),         𝑥(𝑠1)−̃𝑋𝑇ℶ𝑁(𝑠1)                                                                    (5.23) 

 or                                                                                                                                    

𝑐 − 𝑋𝑇ℶ𝑁(𝑠0)−̃0,           𝑑 − 𝑋𝑇ℶ𝑁(𝑠1)−̃0.                                                                  (5.24) 

5.2.2 Legendre -Gauss Quadrature Method 

This time, using Equation (5.12) for approximating the performance index [39] 

as  J ≡ J[C, U] 

𝐽[𝑋, 𝑈]−̃∫ 𝑝 ((𝑋𝑇ℶ𝑁(𝑠)), (𝑈𝑇ℶ𝑁(𝑠)), 𝑠) 𝑑𝑠.                                                      
𝑠1

𝑠0

  (5.25) 

In general, the previous integral cannot be computed exactly, in this case, it can use 

the Legendre-Gauss quadrature formula [39] 

first, we suppose the change of variable 

𝑠 =
𝑠1 − 𝑠0

2
�̀� +

𝑠1 + 𝑠0

2
.                                                                                                  (5.26) 

That will be used for transforming the integration in the performance index (5.25) 

into another one in the [−1,1] interval .Then, the equation (5.25) is equivalent to 

𝐽[𝑋, 𝑈]−̃ (
𝑠1 − 𝑠0

2
)∫ �̀�(�̀�)𝑑�̀�

1

−1

,                                                                                       (5.27) 

where 

�̀�(�̀�) = 𝑝 ((𝑋𝑇ℶ̀𝑁(�̀�)) , (𝑈𝑇ℶ̀𝑁(�̀�)) , �̀�), 

with 

ℶ̀𝑁(�̀�) = ℶ𝑁 (
𝑠1 − 𝑠0

2
𝑠` +

𝑠0 + 𝑠1

2
). 
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Also, one can compute the integration in equation (5.27) by employing the Legendre-

Gauss quadrature rule as [39] 

𝐽[𝑋, 𝑈]−̃ (
𝑠1 − 𝑠0

2
)∑�̀�(�̀�𝑁,𝑟)𝜛𝑁,𝑟,

,                                                                      

𝑁

𝑟=0

(5.28) 

where 𝜛𝑁,𝑟0 ≤ 𝑟 ≤ 𝑁, and 𝑠𝑁,𝑟 , 0 ≤ 𝑟 ≤ 𝑁 , are the Christoffel numbers and zeros 

of Legendre-Gauss quadrature respectively. 

5.2.3 Lagrange Multiplier Technique 

Here, there is a need to merge the linear algebraic equations derived as of the 

dynamical system (5.22) with the boundary conditions (5.24) inside the performance 

index at Legendre-Gauss quadrature rule as 

𝐽[𝑋, 𝑈] ≅ (
𝑠1 − 𝑠2

2
)∑�̀�(�̀�)𝜛𝑁,𝑟

𝑁

𝑟=0

 

therefore, the Lagrange multiplier method can be applied. Let  [39] 

𝐽∗[𝑋, 𝑈, 𝜇1, 𝜇2, 𝜇3]

= 𝐽[𝑋, 𝑈] + (𝑎𝑋𝑇𝐷(1) + 𝑏𝑋𝑇𝐷(𝛾) − 𝑅𝑇𝑋 − 𝐿𝑇𝑈 − 𝐺𝑇)𝜇1 + 𝑌𝑇𝜇2

+ 𝑍𝑇𝜇3.                                                                                                     (5.29) 

Here 

𝑌𝑇 = [𝑥0 − 𝑋𝑇ℶ𝑁(𝑠0), 0, … ,0], 

ZT = [x1 − XTℶN(s1), 0, …0],                                                                                        (5.30) 

and  𝜇1, 𝜇2, 𝜇3 denote the unknown Lagrange multipliers that are able to be expressed 

as [39] 

𝜇1 =

(

 

𝜇10
𝜇11

𝜇12

⋮
𝜇1𝑁)

 ,     𝜇2 =

(

 

𝜇20
𝜇21

𝜇22

⋮
𝜇2𝑁)

 ,       𝜇3 =

(

 

𝜇30
𝜇31

𝜇32

⋮
𝜇3𝑁)

 .                                                     (5.31) 

The important conditions for the optimality of the performance index (5.9) subject to 

dynamic constraints (5.10) and (5.11) are 
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𝜕𝐽∗

𝜕𝑋
= 0,

𝜕𝐽∗

𝜕𝑈
= 0,

𝜕𝐽∗

𝜕𝜇1
= 0,        

𝜕𝐽∗

𝜕𝜇2
= 0,     

𝜕𝐽∗

𝜕𝜇3
= 0.                             (5.32) 

Here, 
𝜕𝐽∗

𝜕𝑋
= 0 represents the system 

𝜕𝐽∗

𝜕𝑥𝑖
= 0, 𝑖 = 0,1, … ,𝑁. The above-mentioned 

system is able to be solved for X, U, 𝜇1,  𝜇2,  𝜇3 using every standard iterative 

technique .Thus, X, U, 𝜇1,  𝜇2 and 𝜇3  given in (5.12) and (5.31) can be calculated.
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CHAPTER 6 

THE USE OF LEGENDRE POLYNOMIALS FOR NUMERICAL 

SOLUTIONS OF FRACTIONAL OPTIMAL CONTROL PROBLEMS 

 

A fractional differential equation can be solved numerically for example, by using 

the finite difference method, and discretization technique [41]. The first order 

derivative of a continuous function  f(t) can be approximated by using the forward 

finite difference method as following [41] 

 𝑓̇(t) =
𝑓(t + h) − 𝑓(t)

h
+ O(h), 

where h is a small increment of the variable t. The left side Caputo fractional 

derivative of f(t) is defined by [41] 

𝐷𝑡
𝛾

𝑎
𝐶 𝑓(𝑡) =

1

𝛤(𝑚 − 𝛾)
∫ (𝑡 − 𝑧)𝑚−𝛾−1

𝑡

𝑎

𝑑𝑚

𝑑𝑧𝑚
𝑓(𝑧)𝑑𝑧, 

where the fractional derivative order is  𝛾 ∈ 𝑅 and given within the range 

𝑚 − 1 < 𝛾 ≤ 𝑚, 𝑚 ∈ 𝑁. 

 For a=0 and m=1, the left side Caputo fractional derivative is [41] 

𝐷𝑡
𝛾

0
𝐶 𝑓(𝑡) =

1

𝛤(1 − 𝛾)
∫ (𝑡 − 𝑧)−𝛾

𝑡

0

𝑑

𝑑𝑧
𝑓(𝑧)𝑑𝑧. 

The variable t is discrtized time such that the time increment  ℎ =
𝑡𝑁

𝑁
 , where 𝑡𝑁 is the 

upper limit of the variable t and N is the number of discrete points of vector 𝑡𝑛. (for 

more details refer to [41] ) . 

6.1 Operational Matrix for Fractional Derivatives 

Theorem 6.1.1 [27 − 30] The fractional derivative of order ν from shifted Legendre 

orthonormal polynomial vector ∆𝐻(𝑠) given by [27 − 30] 

𝐷𝑣∆𝐻(𝑠) = 𝐷(𝑣)∆𝐻(𝑠),                                                                                                      (6.1) 

where 

𝐷𝑣𝑓(𝑦) =
1

Γ(ℎ−𝑣)
∫ (𝑦 − 𝑠)ℎ−𝑣−1𝑓(ℎ)(𝑠)

𝑦

0
𝑑𝑠, ℎ − 1 < 𝑣 ≤ ℎ.                                  (6.2)  
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The function 𝑓(𝑦) in the Caputo logic, while 𝐷(𝑣) is the (𝐻 + 1) × (𝐻 + 1) 

operational matrix of fractional derivative of order 𝑣 and is defined by 

𝐷(𝑣) =

[
 
 
 
 
 
 
 

0 0 0
⋮
0

⋮
0

⋮
0

ψ
𝑣
(ℎ, 0)

⋮
ψ

𝑣
(𝑖, 0)

⋮
ψ

𝑣
(𝐻, 0)

ψ
𝑣
(ℎ, 1)

⋮
ψ

𝑣
(𝑖, 1)

⋮
ψ

𝑣
(𝐻, 1)

ψ
𝑣
(ℎ, 2)

⋮
ψ

𝑣
(𝑖, 2)

⋮
ψ

𝑣
(𝐻, 2)

0
⋮
0

ψ
𝑣
(ℎ, 𝐻)

⋮
ψ

𝑣
(𝑖, 𝐻)

⋮
ψ

𝑣
(𝐻,𝐻)]

 
 
 
 
 
 
 

, 

where 

ψ
𝑣
(𝑖, 𝑝, 𝑗)

= √(2𝑝 + 1)(2𝑖 + 1)∑ ∑
(−1)𝑖+𝑝+𝑗+1(𝑖 + 𝑗)! (𝑙 + 𝑝)!

(𝑖 − 𝑗)! 𝑗! Γ(j − v + 1)(p − l)! (l!)2(j + l − v + 1)

𝑝

𝑖=0

𝑖

𝑗=𝑛

 .  (6.3) 

Proof [27-30] Utilizing (4.13) and (6.2), the fractional derivative of order ν is shifted 

Legendre orthonormal polynomials 𝑃𝑖
�̇�(𝑠) is given by [27 − 30] 

𝐷𝑣𝑃𝑖
�̇�(𝑠) = √2𝑖 + 1∑(−1)𝑖+𝑗

(𝑖 + 𝑗)!

(𝑖 − 𝑗)! (𝑗!)2
𝐷𝑣𝑠𝑗

𝑖

𝑗=0

 

= √2𝑖 + 1∑(−1)𝑖+𝑗
(𝑖 + 𝑗)!

(𝑖 − 𝑗)! 𝑗! Γ(𝑗 − 𝑣 + 1)
𝑠𝑗−𝑣

𝑖

𝑗=ℎ

                                                   (6.4) 

 approximated 𝑠𝑗−𝑣 by H+1 terms of shifted Legendre orthonormal polynomials 

𝑃𝑝
�̇�(𝑠) as [27 − 30]: 

𝑠𝑗−𝑣 = ∑ 𝜇𝑗𝑝𝑃𝑝
�̇�(𝑠),                                                                                                          (6.5)

𝐻

𝑝=0

 

where 𝜇𝑗𝑝 is given like in Eq. (6.3) with 𝑦(𝑠) = 𝑠𝑗−𝑣 , then [27 − 30] 

𝜇𝑗𝑝 = ∫ 𝑠𝑗−𝑣𝑃𝑝
�̇�(𝑠)𝑑𝑠

1

0

= 

      = √2𝑝 + 1∑(−1)𝑝+1
(𝑝 + 𝑙)!

(𝑝 − 𝑙)! (𝑙!)2
∫ 𝑠𝑙+𝑗−𝑣

1

0

𝑑𝑠

𝑝

𝑙=0

 

=√2𝑝 + 1∑ (−1)𝑝+1 (𝑝+𝑙)!

(𝑝−𝑙)!(𝑙!)2(𝑗−𝑣+𝑙+1)
.  𝑝

𝑙=0                                                              (6.6) 

Employing Eqs.(6.5)-(6.6) 
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𝐷𝑣𝑃𝑖
�̇�(𝑠) = √2𝑖 + 1∑ ∑(−1)𝑖+𝑗

𝐻

𝑝=0

𝑖

𝑗=𝑛

(𝑖 + 𝑗)!

(𝑖 − 𝑗)! 𝑗! Γ(𝑗 − 𝑣 + 1)
𝜇𝑗𝑝𝑃𝑝

�̇�(𝑠)    

= ∑ 𝜓𝑣

𝐻

𝑝=0

(𝑖, 𝑝)𝑃𝑝
�̇�(𝑠),                                                                                                            (6.7) 

where  𝜓(𝑖, 𝑝)is given by Eq.(6.3). In the end, one can rewrite Eq.(6.7) in a vector 

form as 

𝐷𝑣𝑃𝑖
�̇�(𝑠) = [ψ

𝑣
(𝑖, 0), ψ

𝑣
(𝑖, 1), … , ψ

𝑣
(𝑖, 𝑝), … , ψ

𝑣
(𝑖, 𝐻)]Δ𝐻(𝑠).                              (6.8) 

Equation (6.8) completes the proof. 

6.2 The Studied Model 

Consider the dynamic system that is analytically studied in [40] 

�̇�(t) + Dγx(t) = u(t) + t2.                                                                                               (6.9) 

 The response x(t) of the fractional order system in Eq. (6.9) can be obtained 

numerically for a given input u(t). This can be accomplished by applying the 

discretization technique that is described in the previous section. The first term of the 

left hand side of Eq. (6.9) can be expressed by means of the forward finite difference 

method as follows [39] 

�̇�(t) =
𝑥(t + h) − 𝑥(t)

h
+ O(h).                                                                                    (6.10) 

 

Applying the aforementioned discretization of the variable t, expressed as 

follows [41] 

𝐷𝑡
𝛾

0
𝐶 𝑥(𝑡) =

1

𝛤(1 − 𝛾)
∑ ∫ (𝑡 − 𝑧)−𝛾

𝑡𝑗+1

𝑡𝑗

𝑑

𝑑𝑧
𝑥(𝑧)𝑑𝑧.

𝑛−1

𝑗=0

                                             (6.11)  

 

The forward finite difference is utilized to express the first derivative in Eq. (6.11) 

generate the following [41] 

𝐷𝑡
𝛾

0
𝐶 𝑥(𝑡) =

1

𝛤(1 − 𝛾)
∑ ∫ (𝑡 − 𝑧)−𝛾

𝑡𝑗+1

𝑡𝑗

[
𝑥(𝑡𝑗+1) − 𝑥(𝑡𝑗)

ℎ
] 𝑑𝑧.                            (6.12)

𝑛−1

𝑗=0

 

 Solving the integral in Eq. (6.12) gives 
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𝐷𝑡
𝛾

0
𝐶 𝑥(𝑡) =

1

𝛤(1 − 𝛾)
∑

𝑥(𝑡𝑗+1) − 𝑥(𝑡𝑗)

ℎ
{− [(𝑡𝑛 − 𝑡𝑗+1)

1−𝛾
𝑛−1

𝑗=0

− (𝑡𝑛 − 𝑡𝑗)
1−𝛾

]}.                                                                                   (6.13) 

Equation (6.13) can be rewritten as [41] 

𝐷𝑡
𝛾

0
𝐶 𝑥(𝑡) =

ℎ−𝛾

𝛤(2 − 𝛾)
∑[(𝑛 − 𝑗)1−𝛾 − (𝑛 − 𝑗 − 1)1−𝛾][𝑥(𝑡𝑗+1) − 𝑥(𝑡𝑗)].       (6.14)

𝑛−1

𝑗=0

 

Substitute Eq. (6.13) and Eq. (6.14) into Eq. (6.9) to obtain  

𝑥(𝑡𝑛+1) − 𝑥(𝑡𝑛)

ℎ
+

ℎ−𝛾

𝛤(2 − 𝛾)
∑[(𝑛 − 𝑗)1−𝛾 − (𝑛 − 𝑗 − 1)1−𝛾][𝑥(𝑡𝑗+1) − 𝑥(𝑡𝑗)]

𝑛−1

𝑗=0

      

= 𝑢(𝑡𝑛) + 𝑡𝑛
2.                                                                                                                   (6.15)   

By applying the initial condition 𝑥(𝑡0) = 𝑥0 and for given input function u(t) the 

response of the system can be numerically obtained. 

6.2.1 Numerical Result 1 

The response of the dynamic system that given by Eq. (6.9) is obtained for different 

values of the fractional order 𝛾 and the given input 𝑢(𝑡) = 𝑡2𝑒𝑏𝑡;  where 𝑏 ∈

ℝ. Figure 1 shows the system responses for 𝛾 = 0.35 𝑎𝑛𝑑 𝛾 = 0.85 . The solution 

verification is also illustrated in Figure 1 by comparing the response of classic 

integer case with the fractional system response for 𝛾 = 1. 
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Figure 1: The solution verification and the responses of the system in Eq.(6.9) for  

γ= 0.35 and γ= 0.85. 

6.2.2 Numerical Result 2 

Consider the dynamic system that was studied in [40] 

1

2
�̇�(t) +

1

2
Dγ𝑥(t) = −𝑥(t) + u(t).                                                                            (6.16) 

The procedure that is used to obtain the response of case study 1 can be used to 

obtain the response x(t) of the fractional order system in Eq. (6.16) for a given input 

u (t). 

The response of the dynamic system that given by Eq. (6.16) is obtained for different 

values of the fractional order 𝛾, the given input 𝑢(𝑡) as [40] parabola, and initial 

value 𝑥(𝑡0) = 𝑥0.Figure 2 shows the system responses for 𝛾 = 0.15  through 

𝛾 = 0.75 . 
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Figure 2: The system in Eq.(6.16) responses for γ= 0.15 through γ= 0.75. 

6.3 Shifted Legendre Polynomials 

Assume that the Legendre polynomial of degree r is denoted by 𝐿𝑟(𝑤) (interval 

definition [-1, 1]).Then 𝐿𝑟(𝑤) can be generated by the recurrence formulae [40] 

𝐿𝑟+1(𝑤) =
2𝑟 + 1

𝑟 + 1
𝑤𝐿𝑟(𝑤) −

𝑟

𝑟 + 1
𝐿𝑟(𝑤),     1 ≤ 𝑟, 

𝐿0(𝑤) = 1  , 𝐿1(𝑤) = 𝑤. 

The shifted Legendre polynomials 𝐿𝑟
∗ (𝑠) is defined in the interval [0, 1] and is 

generated using the following recurrence formula [40] 

𝐿𝑟+1
∗ (𝑠) =

2𝑟 + 1

𝑟 + 1
(2𝑠 − 1)𝐿𝑟

∗ (𝑠) −
𝑟

𝑟 + 1
𝐿𝑟−1
∗ (𝑠), 1 ≤ 𝑟,          

𝐿0
∗ (𝑠) = 1,                                               𝐿1

∗ (𝑠) = 2𝑠 − 1.     

The orthogonality relation is [40] 

∫ 𝐿𝑗
∗(𝑠)𝐿𝑗

∗(𝑠)𝑑𝑠
1

0

= {

1

2𝑟 + 1
,       for𝑗 = 𝑟,

0,                   for𝑗 ≠ 𝑟.
                                                                  (6.17) 
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We can write the explicit analytical form of the k degree shifted Legendre 

polynomial 𝐿𝑟
∗ (𝑠) as [40] 

𝐿𝑟
∗ (𝑠) = ∑(−1)𝑟+𝑖

(𝑟 + 𝑖)!

(𝑟 − 𝑖)! (𝑖!)2
𝑠𝑖

𝑟

𝑖=0

.                                                                          (6.18) 

Introducing the shifted Legendre orthonormal polynomials 𝐿𝑟
∗ (𝑠), 𝐿𝑟

∗ (𝑠) ≡

√2𝑟 + 1𝐿𝑟
∗ (𝑠), we have [40] 

∫ 𝐿𝑗
∗(𝑠)𝐿𝑗

∗(𝑠)𝑑𝑠
1

0

= {
1, for𝑗 = 𝑟,
0,           for 𝑗 ≠ 𝑟.

                                                                        (6.19) 

and 

𝐿𝑟
∗ (𝑠) = √2𝑟 + 1∑(−1)𝑟+𝑖

(𝑟 + 𝑖)!

(𝑟 − 𝑖)! (𝑖!)2
𝑠𝑖.                                                          (6.20)

𝑟

𝑖=0

 

Let 

Ρ𝑁 = 𝑆𝑝𝑎𝑛 {𝐿0
∗ (𝑠), 𝐿1

∗ (𝑠), … , 𝐿𝑁
∗ (𝑠)} and q is an arbitrary element at 𝐿2 [0, 1]. 

Because Ρ𝑁 is a finite-dimensional vector space, q has the single best approximation 

out of Ρ𝑁like 𝑞𝑁 ∈ Ρ𝑁 such that [40] 

∀𝑔∈ Ρ𝑁 , ‖𝑞 − 𝑞𝑁‖2 ≤ ‖𝑞 − 𝑔‖2,  where   ‖𝑞‖2 = √〈𝑞, 𝑞〉. 

Every square integral function q(s) definite on the interval [0, 1] might be expressed 

in terms of shifted Legendre polynomials 𝐿𝑟
∗ (𝑠) as [40] 

𝑞(𝑠) = ∑𝑞𝑟𝐿𝑟
∗ (𝑠)

∞

𝑟=0

, 

and the coefficients 𝑞𝑟  give via [40] 

𝑞𝑟 = ∫ 𝑞(𝑠)𝐿𝑟
∗ (𝑠)𝑑𝑠         0 ≤ 𝑟.                                                                                 (6.21)

1

0

 

If we approximate q (s) by the firstly (N+1) terms, we can write 

𝑞𝑁(𝑠) = ∑𝑞𝑟𝐿𝑟
∗ (𝑠),                                                                                                      (6.22)

𝑀

𝑟=0

 

that alternatively might be written in the matrix shape [40] 

𝑞𝑁(𝑠)−̃𝑄𝑇Ω𝑁(𝑠)                                                                                                              (6.23) 

by means of 
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𝑄 = (

𝑓0
𝑓1
⋮
𝑓𝑁

)  , Ω𝑁(𝑠) = (

𝐿0
∗ (𝑠)

𝐿1
∗ (𝑠)
⋮

𝐿𝑁
∗ (𝑠)

).                                                                               (6.24) 

the fractional derivative of Ω𝑁(𝑠)of order 𝜐as can be written as  

𝐷𝜐Ω𝑁(𝑠)−̃𝐷(𝜐)Ω𝑁(𝑠),                                                                                                     (6.25) 

where 𝐷(𝜐) is the(𝑁 + 1) × (𝑁 + 1) operational matrix of fractional derivatives of 

order 𝜐 and is defined by Lotfi et al [40]  

𝐷(𝜐) =

(

 

𝐷11 𝐷12 𝐷13

𝐷21 𝐷22 𝐷23

⋮
𝐷(𝑁+1)1

⋮
𝐷(𝑁+1)2

⋮
𝐷(𝑁+1)3

… 𝐷1(𝑁+1)

… 𝐷2(𝑁+1)

⋱
…

⋮
𝐷(𝑁+1)(𝑁+1))

  ,                                    (6.26) 

where 

𝐷𝑖𝑗 = �̂�𝑖−1𝑗−1,            1 ≤ 𝑖, 𝑗 ≤ 𝑁 + 1. 

and 

�̂�𝑖𝑗 = √(2𝑖 + 1)(2𝑗 + 1), 

∑∑
(−1)𝑖+𝑗+𝑟+1(𝑖 + 𝑟)! (𝑙 + 𝑗)!

(𝑖 − 𝑟)! 𝑟! Γ(𝑟 − 𝜐 + 1)(𝑗 − 𝑙)! (𝑙!)2(𝑟 + 𝑙 − 𝜐 + 1)

𝑗

𝑙=0

𝑖

𝑟=1

. 

6.4 The Numerical Technique 

In this section, we use the operational matrix of the fractional derivatives to solve the 

following problems by means of the properties of the shifted Legendre orthogonal 

polynomials [40]. 

min 𝐽 =
1

2
∫ (𝑞(𝑠)𝑥2(𝑠) + 𝑟(𝑠)𝑢2(𝑠))𝑑𝑠

𝑠1

𝑠0

,                                                              (6.27) 

Limited by the dynamical system [40] 

𝑛1�̇�(𝑠) + 𝑛2𝐷
𝜐𝑥(𝑠) = 𝑎(𝑠)𝑥(𝑠) + 𝑏(𝑠)𝑢(𝑠).                                                           (6.28) 

𝑥(𝑠0) = 𝑥0,              𝑥(𝑠1) = 𝑥1,                                                                                      (6.29) 

where 𝑛1, 𝑛 ≠ 0, 𝑠0 ≤ 𝑠 ≤ 𝑠1 , 0 ≤ 𝜈 ≤ 1. 

6.4.1 Shifted  Orthonormal Legendre Approximation 

Now, we approximate x(s) and u(s) by the shifted Legendre orthonormal 

polynomials 𝐿𝑘
∗ (𝑠) as [39] 

𝑥(𝑠)−̃𝑃𝑇Ω𝑁(𝑠),               𝑢(𝑠)−̃𝑌𝑇Ω𝑁(𝑠),                                                                     (6.30) 

where P and Y are indefinite coefficient matrices that are able to be written as [40] 
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𝑃 = (

𝑝0
𝑝1

⋮
𝑝𝑁

) ,    𝑌 = (

𝑦0
𝑦1

⋮
𝑦𝑁

), 

due to (6.30), approximate the performance index W≡W[P,Y] as 

𝑊[𝑃, 𝑌]−̃
1

2
∫ (𝑞(𝑠)(𝑃𝑇Ω𝑁(𝑠))

2
+ 𝑟(𝑠)(𝑌𝑇Ω𝑁(𝑠))

2
)𝑑𝑠.                                 (6.31)

𝑠1

𝑠0

 

Consequentially,  

𝑎(𝑠)−̃𝐴𝑇Ω𝑁(𝑠),            𝑏(𝑠)−̃𝐵𝑇Ω𝑁(𝑠),                                                                       (6.32) 

where A and B are famous coefficients matrices that might be written as [39] 

𝐴 = (

𝑎0
𝑎1

⋮
𝑎𝑁

) ,        𝐵 = (

𝑏0

𝑏1

⋮
𝑏𝑁

), 

and  

𝑎𝑖 = ∫ 𝑎(𝑠)𝐿𝑖
∗(𝑠)𝑑𝑠,          𝑖 = 0,1, … ,𝑁,

1

0

 

𝑏𝑖 = ∫ 𝑏(𝑠)𝐿𝑖
∗(𝑠)𝑑𝑠,         𝑖 = 0,1, … ,𝑁.                                                                    

1

0

(6.33) 

For general functions a(s) and b(s), it is hard to calculate the earlier integrals 

precisely. Using the Legendre–Gauss quadrature formula, approximate the 

coefficients 𝑎𝑖and 𝑏𝑖 as [40] 

𝑎𝑖 = ∑𝑎𝑖(𝑠𝑁,𝜖)𝐿𝑘
∗ (𝑠𝑁,𝜖)𝜛𝑁,𝜖 ,          𝑖 = 0,1, … ,𝑁

𝑁

𝜖=0

, 

𝑏𝑖 = ∑𝑏𝑖(𝑠𝑁,𝜖)𝐿𝑘
∗ (𝑠𝑁,𝜖)𝜛𝑁,𝜖 ,

𝑁

𝜖=0

𝑖 = 0,1, … , 𝑁, 

where 𝑠𝑁,𝜖 , 0 ≤ 𝜖 ≤ 𝑁, are the zeros of the Legendre Gauss quadrature in the interval 

(0,1), with 𝑠𝑁,𝜖 , 0 ≤ 𝜖 ≤ 𝑁 being corresponding Christoffel numbers. Due to (6.25), 

(6.30) and (6.31), the dynamic constraint (6.28) be able to be approximated like [40] 

𝑛1𝑃
𝑇𝐷(1)Ω𝑛(𝑠) + 𝑛2𝑃

𝑇𝐷(𝜐)Ω𝑁(𝑠) 

=(𝐴𝑇Ω𝑁(𝑠)(𝑃𝑇Ω𝑁(𝑠))) + (𝐵𝑇Ω𝑁(𝑠)(𝑌𝑇Ω𝑁(𝑠))) 

𝑛𝑃𝑇𝐷(1)Ω𝑁(𝑠) + 𝑛2𝑃
𝑇𝐷(𝜐)Ω𝑁(𝑠) − 𝐴𝑇Ω𝑁(𝑠)Ω𝑁

𝑇 (𝑠)𝑃 − 𝐵𝑇Ω𝑁(𝑠)Ω𝑁
𝑇 (𝑠)𝑌

= 0                                                                                                                                       (6.34) 

Assume 𝐴𝑇Ω𝑁(𝑠)Ω𝑁
𝑇 (𝑠) and 𝐵𝑇Ω𝑁(𝑠)Ω𝑁

𝑇 (𝑠)are written in vector forms like [40] 
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𝐴𝑇Ω𝑁(𝑠)Ω𝑁
𝑇 (𝑠) = [𝑓0(𝑠), 𝑓1(𝑠), … , 𝑓𝑁(𝑠)] 

𝐵𝑇Ω𝑁(𝑠)Ω𝑁
𝑇 (𝑠) = [𝑛0(𝑠), 𝑛1(𝑠), … , 𝑛𝑁(𝑠)],                                                              (6.35) 

where 

𝑓𝑖(𝑠) = 𝑓�̅�0𝐿0
∗ (𝑠) + 𝑓�̅�1𝐿𝑖1

∗ (𝑠) + ⋯+ 𝑓�̅�𝑁𝐿𝑁
∗ (𝑠) 

ℎ𝑖(𝑠) = ℎ̅𝑖0𝐿0
∗ (𝑠) + ℎ𝐿𝑖1

∗ (𝑠) + ⋯+ ℎ̅𝑖𝑁𝐿𝑁
∗ (𝑠),            0 ≤ 𝑖 ≤ 𝑁,                          (6.36) 

and [40] 

𝑓�̅�𝑗 = ∫ 𝑓𝑖(𝑠)𝐿𝑗
∗(𝑠)𝑑𝑠

1

0

, 

ℎ̅𝑖𝑗 = ∫ ℎ𝑖(𝑠)𝐿𝑗
∗(𝑠)𝑑𝑠

1

0

,            0 ≤ 𝑖, 𝑗 ≤ 𝑁.                                                                (6.37) 

So, we are able to write  

𝐴𝑇Ω𝑁(𝑠)Ω𝑁
𝑇 (𝑠)−̃Ω𝑁

𝑇 (𝑠)�̅�𝑇 , 

𝐵𝑇Ω𝑁(𝑠)Ω𝑁
𝑇 (𝑠)−̃Ω𝑁

𝑇 (𝑠)�̅�𝑇 ,                                                                                          (6.38) 

where [40] 

𝐹 = [𝑓�̅�𝑗]0≤𝑖,𝑗≤𝑁
,   𝐻 = [ℎ̅𝑖𝑗]0≤𝑖,𝑗≤𝑁

  .                                                                             (6.39) 

Employing (6.38) in (6.34), one can 

𝑛1𝑃
𝑇𝐷(1)Ω𝑁(𝑠) + 𝑛2𝑃

𝑇𝐷(𝜐)Ω𝑁(𝑠) − 

Ω𝑁
𝑇 (𝑠)�̅�𝑇𝑃 − Ω𝑁

𝑇 (𝑠)�̅�𝑇𝑌 = 0 .                                                                                     (6.40) 

or 

(𝑛1𝑃
𝑇𝐷(1) + 𝑛2𝑃

𝑇𝐷(𝜐) − 𝑃𝑇�̅� − 𝑌𝑇�̅�)Ω𝑁(𝑠) = 0.                                                 (6.41) 

By virtue of (6.38), the dynamical system (6.28) is changed to the following linear 

system of algebraic equations: 

𝑛1𝑃
𝑇𝐷(1) + 𝑛2𝑃

𝑇𝐷(𝜐) − 𝑃𝑇�̅� − 𝑌𝑇�̅� = 0.                                                                 (6.42) 

Using (5.54), one can write 

𝑥(𝑠0)−̃𝑃𝑇Ω𝑁(𝑠0)  , 𝑥(𝑠1)−̃𝑃𝑇Ω𝑁(𝑠1)                                                                           (6.43) 

or 

𝑥0 − 𝑃𝑇Ω𝑁(𝑠0) = 0     ,  𝑥1 − 𝑃𝑇Ω𝑁(𝑠1) = 0.                                                            (6.44) 

 

 

 

 



37 
 

6.4.2 The Lagrange Multiplier Technique 

Let [40] 

𝐻∗[𝑃, 𝑌, 𝜆1, 𝜆2, 𝜆3]

= 𝐻[𝑃, 𝑌] + (𝑛1𝑃
𝑆𝐷(1) + 𝑛2𝑃

𝑆𝐷(𝜐)) × 𝜆1 + 𝑉𝑆𝜆2 + 𝑍𝑆𝜆3,      (6.45) 

where 

𝑉𝑆 = [𝑥0 − 𝑃𝑆Ω𝑁(𝑠0), 0… ,0], 

𝑍𝑆 = [𝑥1 − 𝑃Ω𝑁(𝑠1), 0… ,0],                                                                                         (6.46) 

and 𝜆1, 𝜆2, 𝜆3 are unknown Lagrange multipliers that can be expressed as [41] 

𝜆1
𝑆 = [𝜆10, 𝜆11, … , 𝜆1𝑁], 

𝜆2
𝑆 = [𝜆20, 𝜆21, … , 𝜆2𝑁], 

𝜆3
𝑆 = [𝜆30, 𝜆31, … , 𝜆3𝑁].                                                                                                    (6.47) 

The current extreme conditions are  

𝜕𝐻∗

𝜕𝑃
= 0,

𝜕𝐻∗

𝜕𝑌
= 0,

𝜕𝐻∗

𝜕𝜆1
= 0,

𝜕𝐻∗

𝜕𝜆2
= 0,

𝜕𝐻∗

𝜕𝜆3
= 0.                                                      (6.48) 

where  
𝜕𝐻∗

𝜕𝑝𝑖
= 0, is the system 

𝜕𝐻∗

𝜕𝑝𝑖
= 0, 𝑖 = 0,1, …𝑁.  All equations in this part can be 

solved for 𝑃, 𝑌, 𝜆1, 𝜆2, 𝜆3 using the Newton iterative method.Consequently, 

𝑃, 𝑌, 𝜆1, 𝜆2 and 𝜆3 given in (6.30) and (6.47) can be calculated. 
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CONCLUSION 

  
The fractional calculus techniques were given intensively to discuss the optimal 

control problems due to their huge applications in science and engineering. 

In this thesis we presented the basic definitions and theorems of fractional calculus. 

After that we discuss the fundamentals of fractional optimal control problems 

formulation. Also we discus the description of some orthonormal polynomials and 

more on properties of Chebyshev polynomials. Then, the numerical schemes based 

on the use of these special polynomials are presented for obtaining the approximate 

solutions of fractional optimal control problems. 

Finally, two original examples were discussed in details and results are simulated 

Figure 1 and Figure 2. 

We hope that this thesis will be utilized by researchers who would like to do research 

in the area of fractional optimal control with applications.
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