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CORDIC kısaltması "rotation digital computer is an algorithm" cümlesi için 

kullanılan 1959 yılında Jack. E. Volder tarafından bulunan bir algoritmanın ismid ir.  

CORDIC algoritmasının icadından sonra bu algoritmanın ilerletilmesine yönelik çok 

sayıda çalışma yapılmıştır. CORDIC algoritması ilk olarak trigonometr ik 

fonksiyonların hesaplanması, çarpma ve bölme işlemlerinin yapılması amacı ile 

kullanılmıştır. Daha sonra bu algoritma diğer matematik fonksiyonlar ının 

hesaplanması içine de kullanılmıştır. Bu fonksiyonlara örnek olarak logaritma, üstel, 

karekök fonksiyonları örnek olarak verilebilir. CORDIC algoritması robotik, sinyal 

işleme, grafik ve animasyon, sayısal iletişim ve görüntü işleme gibi bir çok alanda 

kullanılmaktadır. CORDIC algoritması matematik fonksiyonlarının donanım 

cihazlarında gerçekleşmesi amacı ile geliştirilmiştir ve de hesap makineleri tarafından 

kullanılmaktadır. Matematiksel bir fonksiyonun donanım gerçekleştirimi için gerekli 

olan cihazın büyüklüğü ve fiyatı matematiksek fonksiyonun hesaplanması için gerekli 

işlem miktarına bağlı olarak değişir. Zaman içerisinde daha hızlı yakınsayan ve daha 

doğru sonuçlar veren CORDIC algoritmaları araştırmacılar tarafından önerilmiştir. Bu 

tez çalışmasında radix-2, radix-4, angle recoding, and extended angle recoding 
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CORDIC algoritmaları çalışılmıştır. Bu algoritmalar bilgisayar programları ile 

yazılmış ve bilgisayar benzetimleri yapılarak birbirleri ile kıyaslanmıştır. Bu 

kıyaslamalar sonucunda radix-4, angle recoding, and extended angle algoritmalar ının 

radix-2 algoritmasına göre daha aynı doğruluk kıstasına ulaşmak için daha az sayıda 

yineleme gerektirdiği görülmüştür. 

Anahtar kelimeler: CORDIC, radix-2, radix-4, extended angle recording, 

trigonometrik fonksiyonların hesabı. 
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ABSTRACT 

CALCULATION OF TRIGONOMETRIC FUNCTIONS USING CORDIC 

ALGORITHM 

ALNAFUTCHY, Ameen Mustafa Mohammed 

M.Sc., Department of Electronics and Communication Engineering 

Supervisor: Assoc. Prof. Dr. Orhan GAZİ 

 

July 2018 

CORDIC which is the abbreviation of coordinate rotation digital computer is 

an algorithm proposed in 1959 by Jack. E. Volder. Since its introduction, numerous 

studies are performed for improved versions of the CORDIC algorithm. CORDIC 

algorithm is initially introduced for the computation of trigonometric functions, 

multiplication and division operations. Later on, this algorithm is further developed 

for the calculation of other elementary transcendental functions such as logarithms, 

exponentials, square roots.  CORDIC algorithm is used in many diverse areas such as 

robotics, signal processing, graphics and animation, digital communication, image 

processing. CORDIC algorithm is developed for the hardware implementation of 

mathematical functions, and it is shown by the researchers that CORDIC algorithm is 

a good choice for scientific calculators. The cost and size of the hardware equipment 

needed for the implementation of a mathematical function depends on the computation 

complexity of the algorithm under concern. In time, CORDIC algorithms with higher 

precision and faster convergence rates are proposed in literature. In this thesis work 

we study radix-2, radix-4, angle recoding, and extended angle recoding CORDIC 

techniques and compare the algorithms considering the number of iterations required 

for a defined precision. Algorithms are simulated via computer programs.  
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The results show that the radix-2 has requires more number of iterations 

compared to radix-4, angle recoding and extend angle recoding methods. 

Keywords: CORDIC, radix-2, radix-4, angle recoding, extended angle recording, 

computation of trigonometric functions.  
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CHAPTER 1 

INTRODUCTION 

1.1. Introduction 

In signal processing applications, it may be necessary to compute the precise 

values of trigonometric functions in real-time. There are different methods existing in 

the literature for the calculation of trigonometric functions, and two well-know of these 

methods are Taylor series approximations and CORDIC technique. However, these 

methods either involve the use of a multiplier or they have iterative structure, and for 

these reasons their processing latency is high.  

The CORDIC algorithms are iterative methods utilized to calculate 

trigonometric functions without the utilize of the multiplier [1]. After the introduction 

of CORDIC algorithm in 1956 huge improvement has been done on numerous 

varieties of this algorithm to calculate more complex functions [2]. However, the 

method in general uses p iterations to provide an output having p bit precision. This 

high iteration number implies a high output latency. The method also provides a scaled 

result, although the scaling factor is constant for basic CORDIC methods. Therefore, 

a scaled initial vector can be used before the iterations. 

These methods have been extensively utilized to numerous applications for 

example matrix transformations [3-4], decimal-to-binary conversions [5], singular 

value decompositions [6]. An important step of the original CORDIC algorithm is a 

determination of sign of residual angle W. The sign of are mining angle is used to 

determine direction of rotation for next iteration. Some improved version of the 

CORDIC algorithm [7] can be stated as, binary-to-bipolar recoding (BBR), micro-

rotation angle recoding (MAR) [8], modified vector rotational CORDIC (MVR-

CORDIC) [9], Hybrid CORDIC [10]. 
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The rotations are performed in the direction determined by the residual angle, 

and the magnitude of each rotation is predefined. The idea is to perform rotations in 

some directions such that residual value gets smaller. 

While the approach is not offering rotations, which allows a minimum iteration 

count as provided by the trellis-based searching schemes [11] but, it allows achieving 

ea. rotation in parallel that results in the reduction in whole delay. It also indicates an 

optimized method to deem the inverse of trigonometric functions using the extended 

vectoring mode. 

By considering the magnitude of rotations; it is figured that the acceleration of 

convergence of this mode is difficult to be obtained but; with reducing the residue to 

a sufficient value, it could be achieved.  

The additional representation over the higher level of granularity has been used 

in both modes to provide an estimation of the variable value with a good accuracy. 

While minimizing the critical path time, computes the residual angle. The proposed 

method is designed and verified to work in a circular co-ordinate scheme (although it 

can be extended to support the other co-ordinate schemes as well). 

1.2. Thesis Organization  

Remaining sections are outlined below: 

In the chapter-2, literature review is considered. In the chapter 3, various CORDIC 

methods have been explained in details such as radix-2, radix-4, angle recoding and 

extended angle recoding. Furthermore, we consider different trigonometric functions 

for evaluation. Also, we support our analysis with numerical examples. In chapter-4, 

the evaluation of the different CORDIC schemes are analyzed and discussed, fina lly, 

in the chapter five the conclusion and future work is given.  
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CHAPTER 2 

FUNDAMENTALS AND EXISTING APPROACHES 

2.1. The CORDIC Method 

The original CORDIC technique has two operation modes: rotation mode, 

which it is utilized to calculate the values of a “sine” and “cosine functions”, and a 

vectoring mode, which is used to compute an inverse of the trigonometric functions. 

The function of method can also be interpreted as the conversion of a unit vector from 

one pole to Cartesian co-ordinate scheme and vice versa. It can be designed to accept 

input (provide output) in any unit, such as degrees, radians and binary fractions of a 

half revolution for the rotation (vectoring) mode. In general, it takes “p” iterations to 

converge to a result with precision of “p” bits for both modes of the method. Also, 

each iteration involves a “p”bit operation. 

In a rotation mode of the CORDIC, it started with a known vector value which 

is generally taken as “0” radian. This vector is then rotated about the predefined angles 

to converge onto the required input angle. In vectoring mode of the algorithm, a value 

of the vectors is taken as input and stored as “X “and“Y”. The value of residual angle 

is initialized to “zero”. Rotations are performed similar to the rotation mode except 

that the rotations directions are computed via a sign of “Y” instead.  
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2.2. Existing Approaches 

CORDIC method calculates 2D rotation utilizing alternative equations with 

shift and add operations. A versatility of CORDICs are improved via emerging 

methods on a similar basis for binary coded decimal (BCD) number illustrationa l 

Daggett in 1959 [12]. These iterative approaches are presented utilizing decimal radix 

for the design of a powerful small machine via Meggitt in 1962 [13]. Then, Walther in 

1971 [14] planned the unified algorithm to calculate rotation in circular, linear, and 

hyperbolic coordinate schemes utilizing similar CORDIC technique, implanting 

coordinate schemes as parameter. 

In the last 50 years of CORDIC algorithm the wide application variety 

appeared. CORDIC methods have received increased consideration after the unified 

methods are proposed for its application [15]. CORDIC has been a choice to scientific 

calculator applications as well as HP-2152A co-processor, HP- 9100 desktop 

calculator and HP-35 calculator which are some example devices relying on a 

CORDIC method [16]. 

CORDIC arithmetic processor chips are planned and applied to achieve 

numerous functions possible in rotation as well as vectoring mode of circular, linear, 

as well as hyperbolic coordinate schemes [17]. Furthermore, CORDIC methods have 

been utilized in numerous applications [18], for example a single chip CORDIC 

processor for DSP applications in introduced in [19], and linear transformations [20], 

digital filters [21], [22], as well as matrix-based signal processing algorithms [22] are 

implemented in CORDIC. 
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Figure 2.1: Hierarchical of CORDIC methods [17]. 
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While CORDIC is not the fastest method to achieve these operations, it is 

attractive because of its potential for effective and cost saving operation of a large class 

of applications. Numerous changes are planned in the researches of the CORDIC 

method in the last two decades to offer high performance as well as cost saving 

hardware solutions to real time calculation of double dimensional vector rotation and 

transcendental functions. 

A critical study of various architectures is proposed and implemented in this 

research for a 2D rotational CORDIC in circular coordinate scheme to initiate the work 

to the additional delay reduction or throughput enhancement. Also, a different 

CORDIC methods were studied in this research. 

A technique for correction of scale factor of CORDIC methods was proposed 

[21]. The scheme needs some few extra hardware for its operation, nonetheless do not 

need altering elementary rotation angles or sequence of iterations of standard CORDIC 

methods. Upper bounds for quantization error after utilizing proposed technique is 

formulated. The word serial implementation of method is also set. In the fixed-point 

arithmetic, area as well as delay of a suggested implementation are with regarding to 

standard CORDIC. 

The CORDIC methods which are utilized in calculation of the extensive 

variation of an elementary function were studied [20]; studied. It is the easiest and 

most elegant technique, in spite of its defect of the long delay. Angle Recoding 

techniques are capable of decreasing the number of iterations via greater than 50 

percent, while its operation in hardware needs a large increment in the cycle time to 

accommodate its complex angle selection function. This situation limits its utilizing 
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for such a case where the angle of rotations is fixed as well as known in advance, hence 

angle choosing is implemented offline.  The simpler operation of angle taking system 

that do not need an increase in cycle time, thence permitting an Angle Recoding 

technique must be utilized dynamically for random angles. 

The technique has also a benefit in-which the whole angles are fixed and are 

obtained in parallel in one step by testing only an initial rotation angle and, without 

having to achieve a successive CORDIC iterations. Such a dynamic Angle Recoding 

technique is modelled to utilize “sections” to bind a specific number of range 

comparators required to reach an appropriate value.

----

sdsd

MINM

ADD/SUBADD/SUB

SHFT SHFT
`

SIGN
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Y0X0
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Zi+1=Zi-σi αi

Yi+1Xi+1

σiσi

 

Figure 2.2 Angle Recoding method [21]. 

The work suggests a modern approximate system for CORDIC design. The 

scheme is relying on adapting a current Para-CORDIC architecture includ ing 
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approximation which introduced in numerous parts as well as made possible via 

relaxing a CORDIC method itself. 

The fully parallel estimated CORDIC schemes are suggested and; this system 

avoids a memory register of Para-CORDIC as well as creates a generation of rotation 

direction fully parallel. The complete examination as well as a calculation of error 

presented by an approximation along with various circuit associated metrics had been 

pursued utilizing HSPICE by way of simulation tool. 

bi

S(1)R(1)

R(l)

Add prediction

BBRH

BBRL

b1 ... bi-1 bi+1 bN b0

S(I+1)

Phase 2

S(I+2)
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S(N+1)

Yi+1Xi+1

XN+1=cosθ YN+2=sinθ

Phase 1

θHθL

Xi=k
Yi=0

R(2)

R(3)

R(4)

Yi+1Xi+1

θH

σl

σl

σl

 

Figure 2.3: The Para CORDIC Architecture. [22] 

Additionally, this error examination combines present figures of value for 

estimated calculating as well as MED Power Product (MPP)) including CORDIC exact 
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parameters. It revealed that, a good agreement of error values is obtained between the 

predictable and the simulated. A Discrete Cosine Transformation (DCT) and an 

Inverse DCT (IDCT) transformations by way of the case study of approximate 

computing to image processing are examined by using a proposed approximate FPAX 

CORDIC architecture with various accurateness needing. The results confirm the 

viability of suggested scheme. 

The research suggests a novel CORDIC-based fast radix-2 method for 

calculation of a discrete sine transforms (DST). A proposed algorithm is making a next 

higher order transforms from lower order transforms and have a few different benefits, 

for example regular and purely feed forward data path, in place calculation, unique 

post-scaling factor and, arithmetic-sequence CORDIC rotation angles. 

 Related to the current methods such as the suggested algorithms are not merely 

having lesser arithmetic complexity in addition it is admit effective pipelined VLSI 

application. Furthermore, the simplicity of getting a fast inverse DST via utilizing 

orthogonal characteristics. 

Rotation-extension CORDIC approaches, i.e. double-rotation and triple 

rotation, are suggested for objective of enhancement performance and accurateness of 

a CORDIC calculation method in radix-2. In a two-rotation as well as triple-rotat io n 

approaches, a convergence of CORDIC calculations are speeded up via repeating and 

triplicating micro-rotation angles to be “2θ” and “3θ”. Non-redundant mechanism, 

wherever rotation direction “δ” is in a set of “1” and “-1”,is relying on intermed iate 

converging parameter and it is applied to fix the scaling factors.  
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Convergence range and accurateness of elementary functions hardware 

implemented by utilizing CORDIC approaches in rotation mode and vectoring mode 

on circular, hyperbolic and, linear coordinate schemes are inspected and related to 

MATLAB simulation.  

A comparison performance demonstration that proposed CORDIC techniques 

offer greater computational accuracy compared to the traditional one at same number 

of iterations. The high precision CORDIC method is presented and estimated for VLSI. 

Finally, speed and area performances of CORDIC hardware rely on pipeline 

(unfolded) digit-parallel architecture of proposed CORDIC techniques are compared 

to CORDIC techniques are also specified. 

A reduction of CORDIC computational latency with high radix technique 

creates scaling factor in instability situation. Unstable scaling factor problem is 

resolved by online computation techniques which are also complex for hardware 

practice. A parallel method is utilized to accelerate calculations. The techniques are 

relying on double traditional CORDIC cores processing in parallel. Thus, the scaling 

factor problems are resolved, then estimation overhead of rotation direction as well as 

combination of two traditional CORDIC results are added. An extension rotation 

technique relying on radix-2 accelerates micro-rotation angle “φ” with the integer 

value “n”.Double-rotation technique achieves computational results with 

micro-rotation angle 2φ. Its scaling factors which are first planned by online 

calculation technique and with optimizing an error of a computational result in order 

to fix the scaling factor.  
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A relying on a decreasing computational delay as well as enhancing 

computational accurateness of CORDIC including a constant scaling factor relying on 

radix-2. A radix-2 utilized due to scaling factor available mathematically. A design 

and architecture of a CORDIC method on the radix-2 is straightforward for hardware 

operation. Both rotation extension CORDIC techniques are suggested, i.e. non-

redundant double-rotation and non-redundant triple-rotation. It is examined explored 

and simulated to calculate a fix scaling factors and an input domain ability for the 

elementary functions (an initial parameter and compensation parameter values for each 

basic function which performed in circular, hyperbolic and, linear). 

A CORDIC methods are the iterative arithmetic for the implementing vector 

rotations in numerous DSP tenders. Though, a large number of iterations are the main 

weakness of this method for its speed performance. 

Numerous investigators have planned systems to decrease a number of iterations.  

However, in execution a current CORDIC method norms of the vectors are 

typically an enlarged so that additional scaling processes are needed to the deliver a 

normalized output. Merging two process stages; micro-rotations as well as scaling 

phases and the vector rotational system; is named as a mixed-scaling-rota t ion 

coordinate rotational digital computer method. It removes overhead of the scaling 

processes which is inevitable in current CORDIC methods. Henceforth; it can 

significantly decrease total iteration number to enhance a speed performance.  

A suggested MSR-CORDIC is applied to DSP applications that rotational 

angles are recognized in the advance. Furthermore, most CORDIC methods are usually 

undergo from the round off noise in the fixed-word-length implementations. The 
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proposed two systems are to control and decrease the weakening. There are simula t ion 

results demonstration which an MSR-CORDIC method is improve a signal- to-

quantization-noise ratio (SQNR) performance via regulatory internal dynamic range.  

The first and second-order statistical characteristics were examined and with a 

mean and variance of a SQNR. Simulation results demonstration which an MSR-

CORDIC is improve SQNR performance of the both first and second-order statistica l 

properties. A VLSI architecture level of the proposed generalized MSR-CORDIC 

engine for a tradeoff among hardware complexity as well as quantization error 

performance which decreases the hardware complexity when compared with the newly 

proposed extend elementary angle set CORDIC method [5]. An MSR-CORDIC 

schemes have been applied to a variable- length FFT processor design [16], and the 

results in the significant hardware is decreasing in applying a twiddle factor operation. 

 The optimized and generalized CORDIC method in a rotation mode of a 

circular co-ordinate scheme. It calculates values of a trigonometric functions and it 

organized to give a result with the lower overall delay compared to present schemes. 

This is accomplished via utilizing redundant representations and estimates of a needed 

direction as well as angle of each rotation. Some methods have been calculated to offer 

a result in the stable number of iterations equal to the design parameter by way of 

chosen via a designer. Every iteration method achieves rotations among zero and a 

certain value “number”. The method to handle a scaling factor compensation for such 

methods is proposed. A result of functional verification for various values of a design 

parameter and the approximation of whole delay are illustrated. 
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CORDICs are the alternative methods that are utilized to compute 

mathematical functions; e.g. trigonometric hyperbolic exponential functions. An 

alternative process of traditional CORDICs is a time-consuming due to its insuffic ient 

rotation strategy. Lately, several enhanced rotation plans have been suggested to 

decrease the disproportionate rotations that are significantly decrease between (30% - 

60%) of an alternative process for the CORDIC method. But,  

there are better rotation strategies which are utilized for several functions. Meanwhile, 

the only plan to be well-matched with circular coordinate scheme as well as rotation 

mode of the CORDIC method to overcome such difficulty is presented by a unified 

rotation plan to allow functions of an enhanced rotation approaches for various 

coordinate schemes as well as operating modes of a CORDIC method. A suggested 

rotation strategy contains double mechanisms that have been unified coarse rotation as 

well as unified precise rotation which is drastically decrease disproportionate rotations 

temporarily which maintains a higher computing precision than the conventiona l 

methods. 
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CHAPTER 3 

CORDIC METHODS  

3.1. CORDIC 

The CORDIC methods are utilized for the calculation of elementary 

trigonometric functions. It is also employed for the calculation of other elementary 

functions, and new variants continue to appear. As implied via its name, the underlying 

idea is the rotation in the geometric space. In this chapter, we are going to evaluate 

trigonometric, inverse trigonometric and hyperbolic functions via CORDIC algorithm.  

3.2. Trigonometric functions  

The calculation of a sine as well as cosine exemplify the best use of the 

CORDIC algorithm. Therefore, we start with a discussion of these two functions and 

then proceed to other functions. Calculation of sine and cosine functions are performed 

in rotation mode, via rotating a unit-length vector over a given angle. 

In Figure 3.1, rotation of a unit vector with coordinates (𝑋𝑖 , 𝑌𝑖) at an angle φ from the 

𝑥 axis by an angle 𝜃𝑖 is demonstrated. The coordinates,(𝑋𝑖
∗  + 1, 𝑌𝑖 +1), of the new 

vectors are evaluated as 

𝑋𝑖+1
∗ =  𝑐𝑜𝑠(𝜃𝑖  +  𝜑) (3.1) 

 

𝑋𝑖+1
∗   =  𝑐𝑜𝑠𝜑𝑐𝑜𝑠(𝜃𝑖) −  𝑠𝑖𝑛𝜑𝑠𝑖𝑛(𝜃𝑖) 

 
(3.2) 

 

𝑋𝑖+1
∗   =  𝑋𝑖𝑐𝑜𝑠(𝜃𝑖 ) −  𝑌𝑖𝑠𝑖𝑛(𝜃𝑖) 

 
(3.3) 

 

𝑋𝑖+1
∗ = (𝑋𝑖   −  𝑌𝑖𝑡𝑎𝑛(𝜃𝑖) )𝑐𝑜𝑠(𝜃𝑖) 

 

(3.4)  
 

𝑌𝑖+1
∗  =  𝑠𝑖𝑛(𝜃𝑖  +  𝜑) 

 
(3.5) 

 

𝑌𝑖+1
∗   =  sin (𝜑) cos (𝜃𝑖) −  cos (𝜑) sin (𝜃𝑖)  

 

(3.6) 
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𝑌𝑖+1
∗   =  𝑋𝑖  cos (𝜃𝑖) −  𝑌𝑖  sin (𝜃𝑖) (3.7) 

 
  

 

 

𝑌𝑖+1
∗   =  (𝑋𝑖   −  𝑌𝑖𝑡𝑎𝑛(𝜃𝑖)) 𝑐𝑜𝑠(𝜃𝑖) (3.8) 

 

 

(0,1)
(xi+1,yi+1)

(xi+1,yi+1)
* *

(xi,yi)

(1,0)
Φ i

θi

 

Figure 3.1. CORDIC representation using rotation mode [5]. 

As it is indicated in (3.1) − (3.9) after rotation we obtain the new coordinates 

(𝑋𝑖+1
∗ , 𝑌𝑖+1

∗ ) which can be written omitting the scaling factor as 
 

𝑋𝑖+1   =  𝑋𝑖   −  𝑌𝑖  𝑡𝑎𝑛 (𝜃𝑖) (3.9) 

 
𝑌𝑖+1  =  𝑋𝑖  + 𝑌𝑖  𝑡𝑎𝑛 (𝜃𝑖) 

 
(3.10) 

As we shall see in the following paragraphs CORDIC hardware implementa t ion 

complexity for the calculation of trigonometric functions. 
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A comparison of (1)− (2)and (3) demonstrates that vector(𝑋𝑖+1, 𝑌𝑖+1 ), is has 

a scaling factor of1/ 𝑐𝑜𝑠 𝜃𝑖. Consequently, at the end of final rotations of method, it 

is important to multiply, i.e., scale, each 𝑋𝑖 and 𝑌𝑖 by this factor. Then, if number of 

rotations is constant number, then the scaling by 1/ 𝑐𝑜𝑠 𝜃𝑖  at each given step, gives 

rise to the total scaling factor 

𝐾 =  ∏
1

cos𝜃𝑖

𝑛

𝑖=0

 (3.11) 

 

Which can be written as 

𝐾 =  ∏√1+ tan(𝜃𝑖)

𝑛

𝑖=0

 (3.12) 

 

In fact, we can initialize𝑋0 to1/𝐾 to take the scaling factor into account at the 

beginning of the iterations. This initial scaling in 𝑋 subsequently introduces a simila r 

scaling in𝑌. We can choose the rotations angles 𝜃𝑖 such thattan 𝜃𝑖 = 2
−𝑖, this yields 

to 

𝑋𝑖+1   =  𝑋𝑖   −  𝑌𝑖2
−𝑖 (3.13) 

 

𝑌𝑖+1   =  𝑋𝑖   −  𝑌𝑖2
−𝑖 (3.14) 

 

 

Where multiplication by2−𝑖equals to a shift to right by i bits, and the initial value 𝐾 =
𝑋0 can be calculated using 

𝐾 =  ∏√1+ 2−2𝑖
𝑛

𝑖=0

 (3.15) 

 

Last issue in the convergence concept. In order to choose whether to add or subtract in 

the current iteration, total rotation angle is subtracted from𝜃. If the difference is 

negative, then an addition takes place; and if it is positive, then a subtraction takes 

place.  

CORDIC algorithm is based on the rotations on a geometric space. The amount of 

rotations affects the accuracy of the calculations. In this algorithm, the total rotation 

angle is calculated incrementally by way of𝜃0   ±  𝜃1 , 𝜃0  ±  𝜃1  ±  𝜃2, 𝜃0  ±  𝜃1  ±

𝜃2  ± 𝜃3, etc. rotation actions therefore correspond to making adjustments according 

to “how much farther we have to go”, angle residual is calculated in a third variable 

𝑍𝑖. 
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The initialization and iteration steps for the calculation of 𝑠𝑖𝑛𝑒 and 𝑐𝑜𝑠𝑖𝑛𝑒 
trigonometric function can be outlined as 

𝑋0 =
1

𝐾
 , 𝑌0 = 0 ,𝑍0 = 𝜃 𝑎𝑛𝑑 𝜃𝑖 = tan

−12−𝑖 

𝑋𝑖+1 = 𝑋𝑖 − 𝑠𝑖2
−𝑖𝑌𝑖 (3.26) 

 

𝑌𝑖+1 = 𝑌𝑖 + 𝑠𝑖2
−𝑖𝑋𝑖 

 
(3.17) 

 
𝑍𝑖+1 = 𝑍𝑖 − 𝑠𝑖𝜃𝑖  

 
(3.18) 

 

𝑠𝑖 = {
1   𝑖𝑓 𝑍𝑖  ≥ 0

−1  𝑖𝑓 𝑍𝑖  ≤ 0 
 

 
(3.19) 

MUX

Xi

Shifter

Adder-

Subtractor

input

i

Sign(Yi)

Sign(Zi)

MUX

Yi

Shifter

Adder-

Subtractor

i

Sign(Yi)

Sign(Zi)

MUX

Zi

Angles

Adder-

Subtractor

Sign(Yi)

Sign(Zi)

input input

 

Figure 3.2: Architecture of traditional CORDIC [16]. 
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3.2.1. Numerical Example for Sine and Cosine Function Calculation 

In this section we will provide a numerical example for the calculation of sine 

and cosine function using the rotation mode of CORDIC algorithm. Sine and cosine 

function are evaluated for a degree of 0.735 radians.  

First, we set initial values as:  

𝑌1 = 0 , 𝑍1 = 30o  → 0.523 rd, s1 = +1 

𝐾 = ∏√1+ 2−2𝑖
10

𝑖=1

 = 1.1644,𝑋1 =
1

𝐾
= 0.8588 

 

Next, we perform the iterations as follows: 
 
First iteration: 

𝑖 = 0 

 
𝜃0 = 0.7853 𝑟𝑎𝑑 

𝑋2 = 𝑋1 − 𝑠02
−1𝑌1  →  𝑋2 = 0.8588 

𝑌2 = 𝑌1 − 𝑠02
−1𝑋1 → 𝑌1 =  0.4294  

 

𝑍1 = 𝑍0 − 𝑠0𝜃1 → 𝑍1 = −0.2623 
Second iteration: 

𝑖 = 1 

 
𝜃1 = 0.4636rad𝑍1 < 0, 𝑠2 = −1 

 
𝑋2 = 𝑋1 − 𝑠12

−1𝑌1  → 𝑋2  = 0.8588 

 

𝑌2 = 𝑌1 − 𝑠12
−1𝑋1 →  𝑌2 = − 0.4294  

 
𝑍2 = 𝑍1 − 𝑠1𝜃1         → 𝑍2 = −0.2016 

 
Third iteration: 

 𝑖 = 2   
 

𝜃2 = 0.2450rad𝑍2 < 0, 𝑠2 = −1 

 
𝑋3 = 𝑋2 − 𝑠22

−2𝑌2  →  𝑋3 = 0.75145 
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𝑌3 = 𝑌2 + 𝑠22
−2𝑋2 → 𝑌3 =  0.2147  

𝑍3 = 𝑍2 − 𝑠2𝜃2        → 𝑍3 =  −0.0434 

and we go on like this till the last iteration, 

Last iteration: 

𝑖 = 10,  

𝜃10 = 0.0020 𝑟𝑑, 𝑍2 < 0, 𝑠10 = −1 

𝑋11 = 𝑋10 − 𝑠102
−10𝑌10  →  𝑋11   = 0.8569 

𝑌11 = 𝑌10 + 𝑠102
−10𝑋10 →  𝑌11 =  0.5002  

𝑍11 = 𝑍10 − 𝑠10𝜃10          → 𝑍11 = −0.002 

After last iteration, we obtain the sine and cosine values as 𝑋11   = 0.8569, 𝑌11 =
 0.5002. 

 
 

3.3. Calculation of Inverse Trigonometric Function via CORDIC Algorithm 

 

Assume that you know the sine or cosine value of an angle and you want to determine 

the value of the angle referencing its sine or cosine value. This can be achieved using 

the CORDIC algorithm either in rotation mode or in vectoring mode. For the 

calculation arcsine function, the CORDIC algorithm in rotation mode is as follows [2]: 

𝑋0 = 1 ,𝑌0 = 0 ,𝑍0 = 0, 𝑦0 = 𝑥 and 𝜃𝑖 = tan−1 2−𝑖 
 

𝑦𝑖+1 = 𝑦𝑖 +  2
−2𝑖𝑦𝑖 (3.20) 

 

𝑋𝑖+1
∗ = 𝑋𝑖 − 𝑠𝑖2

−𝑖𝑌𝑖 
 

(3.21) 
 

𝑌𝑖+1
∗ = 𝑌𝑖 + 𝑠𝑖2

−𝑖𝑋𝑖 
 

(3.22) 
 

𝑋𝑖+1 = 𝑋𝑖+1
∗ − 𝑠𝑖2

−𝑖𝑌𝑖+1
∗  

 

(3.23)  
 

𝑌𝑖+1 = 𝑌𝑖+1
∗ + 𝑠𝑖2

−𝑖𝑋𝑖+1
∗  

 

(3.24) 

 
𝑍𝑖+1 = 𝑍𝑖 + 2𝑠𝑖𝜃𝑖 

 
(3.25) 
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𝑠𝑖 = {
1   𝑖𝑓𝑋𝑖  ≤ 𝑦𝑖
−1  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
(3.26) 

The CORDIC algorithm in rotation mode for the calculation of arccosine function is 

as follow [3]: 

𝑅0 = 1 , 𝑌0 = 0 ,𝑍0 = 0, 𝑟0 = 𝑟 𝑎𝑛𝑑 𝜃𝑖 = tan
−12−𝑖 

𝑦𝑖+1 = 𝑦𝑖 +  2
−2𝑖𝑦𝑖 (3.27) 

 

𝑅𝑖+1
∗ = 𝑅𝑖 − 𝑠𝑖2

−𝑖𝑌𝑖  
 

(3.28) 

𝑌𝑖+1
∗ = 𝑌𝑖 + 𝑠𝑖2

−𝑖𝑅𝑖 (3.29) 
 

𝑅𝑖+1 = 𝑅𝑖+1
∗ − 𝑠𝑖2

−𝑖𝑌𝑖+1
∗  

 
(3.30) 

 

𝑌𝑖+1 = 𝑌𝑖+1
∗ + 𝑠𝑖2

−𝑖𝑅𝑖+1
∗  

 
(3.31) 

 

𝑍𝑖+1 = 𝑍𝑖 +2𝑠𝑖𝜃𝑖  
 

(3.32) 
 

𝑠𝑖 = {
 + 1   𝑖𝑓 𝑌𝑖 ≥ 𝑦𝑖
−1   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 
(3.33) 

 

3.3.1. Numerical Example on Arcsine and Arccosine Function Calculation 

In this section we provide numerical examples for the evaluation of arcsine and 

arccosine function using CORDIC algorithm in rotation mode. 

For𝑖 = 0 

𝜃0 =   0.4636,𝑋0 = 1 , 𝑌0 = 0 ,𝑍0 = 0, 𝑥0 = 0.5 ,𝑠0 = +1 

𝑋1
∗ = 𝑋0 − 𝑠02

−1𝑌0  →  𝑋1
∗ = 1 

𝑌1
∗ = 𝑌0 − 𝑠02

−1𝑋0  → 𝑋1
∗ = 0.5 

𝑋2 = 𝑋1
∗ − 𝑠02

−1𝑌1
∗ →  𝑋2 = 0.75 

𝑌2 = 𝑌1
∗ + 𝑠02

−1𝑋1 
∗ →  𝑌1 =  1  
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𝑍1 = 𝑍0 + 𝑠0𝜃1 →  𝑍1 =  0.9273 
 

For𝑖 = 1 
 

𝜃1 = 0.4636, 𝑋1
∗ = 1, 𝑌1

∗ = 0.5   𝑋1 = 1 ,𝑌1 = 0 ,𝑍1 = 0.9273,𝑥1 = 0.5 ,𝑠1 = +1 

𝑋2
∗ = 𝑋2 − 𝑠12

−2𝑌2  →  𝑋2
∗ = 0.5 

𝑌2
∗ = 𝑌2 − 𝑠12

−2𝑋2  →  𝑌1
∗ =  1.1875 

𝑋2 = 𝑋2
∗ − 𝑠12

−1𝑌2
∗  →  𝑋2 = 0.2031 

𝑌2 = 𝑌1
∗ + 𝑠12

−1𝑋1 
∗ → 𝑌2  =  1.3125  

𝑍2 = 𝑍1 + 𝑠1𝜃1          → 𝑍1 =  1.4173 

For𝑖 = 2 
 

𝜃2 = 0.1244,𝑋2
∗ = 0.5  𝑌2

∗ = 1.1875  𝑋2 = 0.2031 ,𝑌2 = 1.3125  𝑍2 = 1.4173  𝑥2
= 0.6744 ,𝑠2 = −1 

𝑋2
∗ = 𝑋2 − 𝑠12

−2𝑌2  → 𝑋2
∗ = 0.3672 

𝑌2
∗ = 𝑌2 − 𝑠12

−2𝑋2  →  𝑌1
∗ =   1.2871 

𝑋2 = 𝑋2
∗ − 𝑠12

−1𝑌2
∗  →  𝑋2 =  0.5281 

𝑌2 = 𝑌1
∗ + 𝑠12

−1𝑋1 
∗ → 𝑌2  =  1.2412  

𝑍2 = 𝑍1 + 𝑠1𝜃1          → 𝑍1 =  1.1685 
 

For 𝑖 = 3 

 
𝜃2 = 0.0624, 𝑋2

∗ = 0.3672,𝑌2
∗ = 1.2871, 𝑋2 = 0.5281 ,𝑌2 = 1.2412 ,𝑍2

= 1.1685,𝑥2 =  0.6771 ,𝑠2 = −1 

 
𝑋2
∗ = 𝑋2 − 𝑠12

−2𝑌2  → 𝑋2
∗ = 0.6057 

 
𝑌2
∗ = 𝑌2 − 𝑠12

−2𝑋2  →  𝑌1
∗ =   1.2082 

 

𝑋2 = 𝑋2
∗ − 𝑠12

−1𝑌2
∗  →  𝑋2 =  0.6812 

 

𝑌2 = 𝑌1
∗ + 𝑠12

−1𝑋1 
∗ → 𝑌2  =  1.1704 
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𝑍2 = 𝑍1 + 𝑠1𝜃1 → 𝑍1 =  1.0437 

Now we provide a numerical example for the calculation of arcsine function using the 

CORDIC algorithm in rotation mode as follows: 

For𝑖 = 0 

𝜃0 =   0.4636,𝑋0 = 1 , 𝑌0 = 0 ,𝑍0 = 0, 𝑦0 = 0.5 ,𝑠0 = +1 

 
𝑋1
∗ = 𝑋0 − 𝑠02

−1𝑌0  →  𝑋1
∗ = 1 

 
𝑌1
∗ = 𝑌0 − 𝑠02

−1𝑋0  → 𝑋1
∗ = 0.5 

 

𝑋2 = 𝑋1
∗ − 𝑠02

−1𝑌1
∗ →  𝑋2 = 0.75 

 
𝑌2 = 𝑌1

∗ + 𝑠02
−1𝑋1 

∗ →  𝑌1 =  1  
 

𝑍1 = 𝑍0 + 𝑠0𝜃1         → 𝑍1 =  0.9273 

 
For 𝑖 = 1 

𝜃1 = 0.4636,𝑋1
∗ = 1, 𝑌1

∗ = 0.5  𝑋1 = 1  𝑌1 = 0  𝑍1 = 0.9273, 𝑦1 = 0.6250  , 𝑠1
= +1 

𝑋2
∗ = 𝑋2 − 𝑠12

−2𝑌2  →  𝑋2
∗ = 0.5 

 
𝑌2
∗ = 𝑌2 − 𝑠12

−2𝑋2  →  𝑌1
∗ =  1.1875 

 
𝑋2 = 𝑋2

∗ − 𝑠12
−1𝑌2

∗  →  𝑋2 = 0.2031 

 

𝑌2 = 𝑌1
∗ + 𝑠12

−1𝑋1 
∗ → 𝑌2  =  1.3125  

 
𝑍2 = 𝑍1 + 𝑠1𝜃1          → 𝑍1 =  1.4173 

 
For 𝑖 = 2 

 
𝜃2 = 0.1244,𝑋2

∗ = 0.5, 𝑌2
∗ = 1.1875, 𝑋2 = 0.2031 ,𝑌2 = 1.3125 ,𝑍2

= 1.4173, 𝑦2 =  0.6744 ,𝑠2 = +1 

 
𝑋2
∗ = 𝑋2 − 𝑠12

−2𝑌2  →  𝑋2
∗ =  0.0391 

 
𝑌2
∗ = 𝑌2 − 𝑠12

−2𝑋2  →  𝑌1
∗ =   1.3379 

 

𝑋2 = 𝑋2
∗ − 𝑠12

−1𝑌2
∗  →  𝑋2 = −0.1282 

 
𝑌2 = 𝑌1

∗ + 𝑠12
−1𝑋1 

∗ → 𝑌2  =  1.3428 
 

𝑍2 = 𝑍1 + 𝑠1𝜃1          → 𝑍1 =  1.6660 
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For 𝑖 = 3 
 

𝜃2 = 0.0624, 𝑋2
∗ = 0.0391,𝑌2

∗ = 1.3379  𝑋2 = −0.1282 ,𝑌2 = 1.3428 ,𝑍2
= 1.6660, 𝑦3 =  0.6744 ,𝑠2 =  +1 

 

For 𝑖 = 3 
 

𝜃2 = 0.1244,𝑋2
∗ = 0.5, 𝑌2

∗ = 1.1875  𝑋2 = 0.2031 ,𝑌2 = 1.3125 ,𝑍2 = 1.4173,𝑦2
=  0.6744 ,𝑠2 = +1 

 

𝑋3
∗ = 𝑋2 − 𝑠12

−2𝑌2  →  𝑋2
∗ =  0.0391 

 
𝑌3
∗ = 𝑌2 − 𝑠12

−2𝑋2  →  𝑌1
∗ =   1.3379 

 
𝑋3 = 𝑋2

∗ − 𝑠12
−1𝑌2

∗  →  𝑋2 = −0.1282 

 

𝑌3 = 𝑌1
∗ + 𝑠12

−1𝑋1 
∗ → 𝑌2  =  1.3428 

 

𝑍3 = 𝑍1 + 𝑠1𝜃1          → 𝑍1 =  1.6660 

Now we provide a numerical example for the calculation of arctan function using the 

CORDIC algorithm in rotation mode as follows: 

For𝑖 = 1 

𝜃1 =   0.5493,𝑋1 = 0.5 ,𝑌1 = 0.25 ,𝑍1 = 0, 𝑠1 = −1 

𝑋2 = 𝑋1 − 𝑠12
−1𝑌1  →  𝑋2 = 0.0400 

𝑌2 = 𝑌1 − 𝑠12
−1𝑋1 →  𝑌1 = 0.0050 

𝑍2 = 𝑍1 − 𝑠1𝜃1         → 𝑍1 =   0.6693 

For 𝑖 = 2 

𝜃2 =   0.5493,𝑋2 = 0.0400 ,𝑌2 = 0.0050 ,𝑍2 = 0.6693, 𝑠2 = −1 

𝑋3 = 𝑋2 − 𝑠22
−2𝑌2  → 𝑋3 = 0.0413 

𝑌3 = 𝑌2 − 𝑠22
−2𝑋2 →  𝑌3 = −0.0050 

𝑍3 = 𝑍2 − 𝑠2𝜃2         → 𝑍3 =   0.9247 
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For 𝑖 = 3 

𝜃3 =   0.5493,𝑋3 = 0.0413,𝑌3 = −0.0050 ,𝑍3 = 0.9247, 𝑠3 =  +1 

𝑋4 = 𝑋3 − 𝑠32
−2𝑌10  →  𝑋3 = 0.0419 

𝑍4 = 𝑍3 − 𝑠3𝜃3         → 𝑍3 =   0.7991 

For 𝑖 = 10 

𝜃10 =   0.0010,𝑋10 = 0.0420,𝑌10 = 0.0000 ,𝑍10 =  0.8021,𝑠10 = −1 

𝑋11 = 𝑋10 − 𝑠102
−10𝑌10  →  𝑋11 = 0.0420 

𝑌11 = 𝑌10 − 𝑠102
−10𝑋10 →  𝑌11 =  0.0000 

𝑍11 = 𝑍10 − 𝑠10𝜃10         → 𝑍11 =    0.8025 

3.4. Higher Radix CORDIC Method 

The new radix-4 CORDIC method for circular coordinates in rotation mode is 

presented in this section. This method is an extension of a radix-2 method, and it 

utilizes powers of four instead of powers of two. The complexity of a radix-4 micro 

rotations is less than that of a conventional radix-2 micro rotations considering the 

total number of iterations required for the convergence of the algorithm. The radix-4 

CORDIC algorithm is given as 

𝑋1 =
1

𝐾
 (3.38) 

 

𝑌1 = 0 

 
(3.39) 

 

𝑈1 = 4𝜃  0 < 𝜃 <
𝜋

4
 

 
(3.40) 

 

𝜃𝑖 = tan
−1(𝑠𝑖4

−𝑖) 
 

(3.41) 

 

𝑋𝑖+1 = 𝑋𝑖 − 𝑠𝑖2
−𝑖𝑌𝑖 

 
(3.42) 
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𝑌𝑖+1 = 𝑌𝑖 + 𝑠𝑖2
−𝑖𝑋𝑖 (3.43) 

 

𝑈𝑖+1 = 4 (𝑈𝑖 −4
𝑖𝜃𝑖 ) 

 
(3.44) 

 

𝑠𝑖 = {
1   𝑖𝑓 𝑍𝑖  ≥ 0

−1  𝑖𝑓 𝑍𝑖 < 0 
𝑖 =   1,2,3,⋯ ,

𝑛

2
 

 
(3.45) 

𝑠𝑖 = 

{
 
 
 
 
 

 
 
 
 
 2        𝑖𝑓 

21

8
> 𝑈𝑖  ≥

−21

8

   1    𝑖𝑓 
5

8
< 𝑈𝑖 < 13/8 

0        𝑖𝑓 
−5

8
> 𝑈𝑖 <

5

8

−1   𝑖𝑓 
13

8
< 𝑈𝑖 <

−5

8

−2        𝑖𝑓 
−21

8
> 𝑈𝑖 <

−13

8

𝑓𝑜𝑟 𝑖 =
𝑛

2
+ 1,… ,

3𝑛

4
 (3.46) 

 

Where𝑠𝑖 = {−2,−1, 0, 1 2} and an elementary angle𝜃𝑖 = arctan (𝑠𝑖4
−𝑖), are the 

factors used at the𝑖 𝑡ℎ iteration. The constant term 𝐾 is calculated depending on the 

total number of iterations as 

𝐾 = (∏√1+ 𝑠𝑖4
−2𝑖

𝑛

𝑖

).                                                    (3.47) 

3.4.1. Numerical Example for Cosine and Sine Function Calculation Using 

Radix-4 CORDIC Algorithm 

The numerical example is given about rotation mode of CORDIC methods for 

the calculation of cosine and sine functions using radix-4 CORDIC algorithm.   

For 𝑖 = 0 

𝑋0 = 1 ,𝑌0 = 0 , 𝑈0 = 0, 𝑠0 = 2 𝑎𝑛𝑑 𝜃0 = 0.2450 

𝑋1 = 𝑋0 − 𝑠02
−0𝑌0    → 𝑋1 =  0.8588  

𝑌1 = 𝑌0 + 𝑠02
−0𝑋0    → 𝑌1 = 0.2147 
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𝑈1 = 4 (𝑈0 − 4
0𝜃0)   →  𝑈1 = 4.4579 

For 𝑖 = 1 

𝑋1 =  0.8588  ,𝑌1 = 0.2147 ,𝑈1 = 4.4579,𝑠1 = 1, and𝜃1 =  0.0624  

𝑋2 = 𝑋1 − 𝑠12
−1𝑌1    →  𝑋2 =   0.8454 

𝑌2 = 𝑌1 + 𝑠12
−1𝑋1    → 𝑌2 = 0.4831 

𝑈2 = 4 (𝑈1 − 4
1𝜃1)   → 𝑈2 =14 

For 𝑖 = 2 

𝑋2 =  0.8454,𝑌2 = 0.4831, 𝑈2 = 14,𝑠2 = 1,and𝜃2 =   0.0156  

𝑋3 = 𝑋2 − 𝑠22
−2𝑌2    → 𝑋2 =  0.8244 

𝑌3 = 𝑌2 + 𝑠22
−2𝑋2    → 𝑌2 = 0.4961 

𝑈3 = 4 (𝑈2− 4
2𝜃2)   → 𝑈2 =51 

For 𝑖 = 3 

𝑋3 =  0.8244,𝑌3 = 0.4961,𝑈3 = 51, 𝑠3 = 1, and𝜃3 =    0.0039  

𝑋4 = 𝑋3 − 𝑠32
−3𝑌3    → 𝑋4 =  0.8225 

𝑌4 = 𝑌3 + 𝑠32
−3𝑋3    → 𝑌4 = 0.4993 

𝑈4 = 4 (𝑈3− 4
3𝜃3)   → 𝑈4 =202 

For 𝑖 = 4 

𝑋4 =  0.8225,𝑌4 = 0.4993, 𝑈4 = 202,𝑠4 = 1, and𝜃4 =    0.0010  

𝑋5 = 𝑋4 − 𝑠42
−4𝑌4    →  𝑋5 = 0.8220 
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𝑌5 = 𝑌4 + 𝑠42
−4𝑋4    → 𝑌5 = 0.5001 

𝑈5 = 4 (𝑈4− 4
4𝜃4)   →  𝑈5 =802 

Hence, we find thatcos(30) =  𝑋5 =  0.8220 and sin(30) =  𝑌5 =  0.5001 

3.5. Angle Recoding (AR) Methods 

AR Method aims to decrease the number of CORDIC iterations via encoding 

the angle of rotation as the linear combination of the set of chosen elementary angles 

of micro-rotations. AR techniques are well-suited for many signal processing and 

image processing applications where the rotation angle is known priori. 

In the traditional CORDIC methods the rotation direction is determined 

using𝑠𝑖 = ±1 . Hence 𝑛 CORDIC iterations will be required even if 𝜃 =  0, because 

each time for𝑠1 = 1, or 𝑠1 = −1an iteration is to be calculated. They suggested to 

relax this constraint via letting𝑠𝑖  =  0sothat total number of the CORDIC iterations 

can be minimized. It is called as Angle Recoding since it resembles a multip lier 

recoding technique employed in modern multiplier design. Angle according technique 

can be outlined as: 

Initial:𝑖𝑛𝑝𝑢𝑡 𝑎𝑛𝑔𝑙𝑒 (𝑆) 

Angel set: 𝜃 = atan−1 2−𝑖 

Determining minimum angle: 

for index = 1: 10 

 

                       d =  theta(index) 

 

  if(abs(S −   d) <  1000) 

 

                                     mymin =  abs(S −  d) 
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                                     i =  index; 

 

                         end 

end 

When the best angle for rotation is determined, we simply use CORDIC 

algorithm for the update of parameter values as 

𝑋0 =
1

𝐾
 , 𝑌0 = 0 ,𝑍0 = 𝜃 𝑎𝑛𝑑 𝜃𝑖 = tan

−12−𝑖 

𝑋𝑖+1 = 𝑋𝑖 − 𝑠𝑖2
−𝑖𝑌𝑖                                                   (3.48) 

𝑌𝑖+1 = 𝑌𝑖 + 𝑠𝑖2
−𝑖𝑋𝑖                                                    (3.49) 

𝑍𝑖+1 = 𝑍𝑖 − 𝑠𝑖𝜃𝑖                                                         (3.50) 

𝑠𝑖 = {
1   𝑖𝑓 𝑌𝑖  ≥ 0
−1  𝑖𝑓 𝑍𝑖 < 0 

                                                (3.51) 

3.5.1. Numerical Example on Sine and Cosine Function Calculation Using Angel 

Recoding Method 

A numerical example is given about angle recoding method. The sine and 

cosine values are calculated for 30 degree.  

𝑌3 = 0 , 𝑍3 = −0.0607 , s3 = −1 

 𝐾 =  ∏√1 + 2−2𝑖
10

𝑖=1

 = 1.1644,  𝑋1 =
1

𝐾
= 0.8588 

For 𝑖 = 3, 

𝜃0 = 0.1244 𝑟𝑑 

𝑋4 = 𝑋3 − 𝑠32
−3𝑌3  →  𝑋3 =  0.8319 
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𝑌4 = 𝑌3 − 𝑠32
−3𝑋3  →  𝑌3 =  0.5502 

𝑍4 = 𝑍3 − 𝑠3𝜃3         → 𝑍3 = −0.0607 

 

For 𝑖 = 4 

𝜃4 =  0.0624 𝑟𝑑 ,     𝑍4 < 0, 𝑠4 = −1 

𝑋5 = 𝑋4 − 𝑠42
−4𝑌4  →  𝑋4  = 0.8663 

𝑌5 = 𝑌4 − 𝑠42
−4𝑋4 →  𝑌4 = 0.4982 

𝑍5 = 𝑍4 − 𝑠4𝜃4         → 𝑍4 =  0.0017 

For 𝑖 = 5 

𝜃5 = 0.0017 𝑟𝑑, 𝑍5 < 0, 𝑠5 = +1 

𝑋6 = 𝑋5 − 𝑠52
−5𝑌5  →  𝑋5 = 0.75145 

𝑌6 = 𝑌5 + 𝑠52
−5𝑋5 → 𝑌5 =  0.2147 

𝑍6 = 𝑍5 − 𝑠5𝜃5        → 𝑍5 =  −0.0434 

 

For 𝑖 = 6 

𝜃6 = 0.0017 𝑟𝑑, 𝑍6 < 0, 𝑠6 = −1 

𝑋7 = 𝑋6 − 𝑠62
−6𝑌6  → 𝑋7 = 0.8590 

𝑌7 = 𝑌6 + 𝑠62
−6𝑋6 → 𝑌7 =  0.5119 

𝑍7 = 𝑍6 − 𝑠6𝜃6        → 𝑍7 =  −0.0139 
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~

y(i+1)  Or y(m+1)~

 

Figure 3.3: Hardware architecture of extended elementary-angle-set recoding [17]. 

 

3.6. Extended Elementary-Angle-Set Recoding 

In the traditional CORDIC, any given rotation angle is expressed as the linear 

combination of values of elementary angles that belong to a set. But in AR approaches, 

this constraint is relaxed via adding zeros to the linear combinations to obtain a desired 

angle using relatively fewer terms of the form 𝜎 arctan−1 2𝑟, where 𝜎 ∈ {−1, 1 ,0}, 

and a elementary-angle set is extended further and it is given as: 

𝜃 = arctan(𝜎12
−𝑟1 + 𝜎22

−𝑟2)                                         (3.52) 

EEAS has better recoding efficiency in terms of the number of iterations and it 

can yield better error performance than the AR system. In EEAS the iterative terms 

become as in: 
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𝑋𝑖+1 = 𝑋𝑖 −  ((𝜎12
−𝑟1 + 𝜎22

−𝑟2)𝑌𝑖                                 (3.53) 

𝑌𝑖+1 = 𝑌𝑖 +  ((𝜎12
−𝑟1 + 𝜎22

−𝑟2)𝑋𝑖                                    (3.54) 
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CHAPTER 4 

PERFORMANCE EVALUATION  

4.1. Introduction 

In this chapter we compare different CORDIC algorithms considering the 

number of iterations required for the convergence of the algorithm. 

4.1.1. Traditional Cordic Method (Radix-2) 

The performance of radix -2 is calculated. In Figure 4.1, the x-axis represents 

the computation accuracy or residual tolerated angle and the vertical axis denotes the 

number of iterations. The rotation angle set is defined as a vector and it is chosen as 

[45 26.6 14 7.1 3.6 1.8 0.9 0.4 0.2 0.1]. The results apparent in the Figure are 

summarized as follow: 

1. As computation accuracy increases, the number of iteration increases 

2. Number of iterations for angle 50 is less compared to another angle 

3. As angle diverts or converges from the angle 50, the number of iteration 

increases.  

4.1.2. Cordic Method (Radix-4) 

The performance of radix-4 is calculated. In the Figure 4.2, the x-axis 

represents the computation accuracy or residual tolerated angle and the vertical axis 

denotes the number of iterations. The rotation angle set is defined as vector and it is 

chosen as [45 26.6 14 7.1 3.6 1.8 0.9 0.4 0.2 0.1]. The results apparent in the Figure 

4.2 are summarized as follow: 

1. As computation accuracy increases, the number of iteration increases 

2. Number of iterations for angle 50 is less compared to another angle 

3. As angle diverts or converges from the angle 50, the number of iteration 

increases.  

4. Number of iterations required for radix-4 is less compared to radix-2 



33 

4.1.3. Cordic Method (Angle Recoding) 

The performance of angle recording is calculated. From the Figure 4.3, the x-

axis represents the computation accuracy or residual tolerated angle and the vertical 

axis denotes the number of iterations. The rotation angle set is defined as vector and it 

is chosen as [45 26.6 14 7.1 3.6 1.8 0.9 0.4 0.2 0.1].  

 

 
Figure 4.1 Computation accuracy vs number of iterations for radix-2 
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Figure 4.2 Computation accuracy vs number of iterations for radix-4 
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Figure 4.3 Computation accuracy vs number of iterations for angle recoding. 

 

 

The results apparent in the figure are summarized in the following: 

1. As computation accuracy increases, the number of iteration increases  

2. Number of iterations for angle 50 is less compared to another angle 

3. As angle diverts or converges from the angle 50, the number of iteration 

increases.  

4. Number of iterations required for angle recoding is less compared to radix-

4 
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CHAPTER 5                                                             

CONCLUSIONS AND FUTURE WORK 

CORDIC algorithm is one of the most widely used function calculat ion 

algorithm used in electronic world. Without the invention of CORDIC algorithm the 

computation of the trigonometric functions would be overhead for the electronic 

world. CORDIC algorithm is introduced in 1956, since then numerous works have 

been done for faster and lower complexity CORDIC algorithm.  There of these 

algorithms areRadix-4 CORDIC, Angle Recording, and Extended Angle Recording. 

In this thesis work, we implemented the rotation mode CORDIC algorithms for the 

calculation of trigonometric and inverse trigonometric function. The chosen functions 

are sine, cosine, tangent, arccos, arcsin, acrtan.  

We obtained iteration with respect to computation accuracy graphs for all the three 

techniques we mentioned. We have seen that Radix-4 CORDIC, Angle Recording 

techniques uses less iterations considering the classical Radix-2 CORDIC algorithm. 

In current literature it can be seen that researchers still working on lower complexity 

and faster convergence CORDIC algorithms. In current technology, there seems to be 

a saturation in the speed of electronic devices. The electronic devices made using 

semiconductor technology has limited operating speed. For this reason, it is essential 

to improve the algorithms used for the evaluation of mathematical function in 

hardware platform. 

From the simulation results we see that some of the angles like 50 degree requires less 

iterations compared to the others. 
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5.2. Future Work 

Optimized hardware implementation of CORDIC algorithm can be stated as a 

future work. CORDIC algorithm can be implemented in FPGA devices using the 

VHDL language. However, in this implementation care should be taken for the 

employment recent and optimized CORDIC algorithms using less iterations and 

having large accuracy. 
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