
  

 

 

 

SECURITY AND PERFORMANCE COMPARISON OF NOSQL DATABASE 

SYSTEMS 

 

 

 

 

 

 

 

 

MUSTAFA MUSLIH SHWAYSH 

 

 

 

 

 

 

JULY 2018 



  

 

SECURITY AND PERFORMANCE COMPARISON OF NOSQL DATABASE 

SYSTEMS 

 

 

A THESIS SUBMITTED TO  

THE GRADUATE SCHOOL OF NATURAL AND APPLIED 

SCIENCES OF 

ÇANKAYA UNIVERSITY 

 

 

 

BY 

                             MUSTAFA MUSLIH SHWAYSH 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF 

MASTER OF SCIENCE 

IN 

THE DEPARTMENT OF  

COMPUTER ENGINEERING,   

INFORMATION TECHNOLOGY PROGRAM 

 

 

 

JULY 2018 



  

 
 



 iii 

 
 



 iv 

 

ABSTRACT  

 

SECURITY AND PERFORMANCE COMPARISON OF NOSQL DATABASE 

SYSTEMS 

 

SHWAYSH, Mustafa Muslih Shwaysh 

M.Sc., Department of Computer Engineering, Information Technology Program 

Supervisor: Dr. Instructor Murat SARAN 

July 2018, 93 Pages 

 

The advent of Big Data has led the development of several key technologies and 

platforms to answer the ever-growing nowadays data. NoSQL was one of these 

technologies. Although NoSQL databases began to develop before the appearance of 

big data, the adoption of NoSQL databases did not occur until big data created the 

need. However, many versions of NoSQL databases appeared each with different 

architectural design, its query language, and its own set of solutions for scalability, 

compression, security, clustering, which render it to become difficult to decide which 

NoSQL database provides the solution to a given problem or issue. Therefore, studies 

should be dedicated to testing these databases concerning several factors such as 

query processing speed, security of data, and its readiness to be used in the scalable 

environment. In this study, we propose an investigation in two-folds: first, examining 

the performance of two NoSQL databases, MongoDB (3.6.3) and Cassandra (3.11.1) 

in single node and multi-node (cluster) configurations using the recent version of 

Yahoo Cloud Serving Benchmark (YCSB-0.12.0). A testing environment is set up for 

each workload, and the responses for each database management system used in the 

study are examined for each workload. This study will help IT decision makers to 

determine which database is better according to its deployment requirements. The



 v 

 

second fold of this study is to investigate the security of both databases. The first step 

is a comparative study of both databases' security features according to ten selected 

features from the literature. The second step of our security investigation is data 

encryption overhead. Overhead is the time spent by the database engine to encrypt all 

incoming data streams plus the time spent to decrypt the data to answer queries. The 

results of this study have shown that the performance of each system differs due to 

the differences in its respective data storing mechanisms. The results have also 

revealed that the performance of MongoDB is better than Cassandra in a single node 

test, whereas in proposed multi-node test Cassandra performed better in one 

workload and took the lead in two other workloads when testing bigger record size. 

Security comparative investigation has shown that both databases have improved 

significantly concerning previous studies. However, Cassandra took the lead as it has 

better supported and the implementation of the selected security features is presented 

in this study. Lastly, MongoDB encryption performance regarding runtime and 

throughput was between nearly 2x and 2.5x faster than Cassandra which makes it 

more suitable to be used in the environments when encryption is a requirement. 

 

Keywords: NoSQL, database, performance, security, comparison



 vi 

 

ÖZ  

 

NOSQL VERİ TABANI SİSTEMLERİNİN GÜVENLİK VE PERFORMANS 

KARŞILAŞTIRMASI 

 

SHWAYSH, Mustafa Muslih Shwaysh 

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü, Bilgi Teknolojileri Programı 

Danışman: Dr. Öğretim Üyesi Murat SARAN 

Temmuz 2018, 93 sayfa 

 

Günümüzde giderek büyüyen verilerin ortaya çıkardığı ihtiyaçlara cevap vermek için 

çeşitli temel teknolojiler ve platformlar geliştirilmektedir.  NoSQL bu teknolojilerden 

birisidir. NoSQL veri tabanları büyük verilerin ortaya çıkmasından önce gelişmeye 

başlamış olsa da büyük verilerin saklanmasına ve işlenmesine ihtiyaç duyulana kadar 

NoSQL veri tabanlarının benimsenmesi gerçekleşmemiştir. Bununla birlikte, NoSQL 

veri tabanlarının her biri farklı mimari tasarıma, sorgulama diline ve ölçeklenebilirlik, 

sıkıştırma, güvenlik, kümelenme için kendi çözümlerine sahiptir ve bu da hangi 

NoSQL veri tabanının mevcut ihtiyaca bir çözüm sunacağına karar vermeyi 

zorlaştırmaktadır. Bu nedenle, NoSQL veri tabanlarını sorgulama hızı, veri güvenliği 

ve ölçeklenebilir ortamlarda kullanılmaya hazır olma gibi çeşitli faktörlerle test 

etmeye yönelik çalışmalar yapılmalıdır. Bu çalışmada iki aşamalı bir araştırma 

yapılmıştır: Birinci aşamada, iki farklı NoSQL veri tabanının, MongoDB (3.6.3) ve 

Cassandra'nın (3.11.1), Yahoo Cloud Hizmet Ölçümü (YCSB-0.12.0 sürümü) 

kullanarak performansını tek bir düğümde ve çok düğümlü (küme) 

konfigürasyonlarda inceleyerek karşılaştırılmıştır. Bu aşamada, farklı iş yükleri için 

bir test ortamı kurulmuş ve çalışmada kullanılan her bir veri tabanı yönetim 

sisteminin yanıtları her iş yükü için incelenmiştir. Bu çalışma, özellikle karar 

vericilerin, hangi veri tabanının gereksinimlerine göre daha iyi olduğunu



 vii 

 

belirlemesine yardımcı olacaktır. Bu çalışmanın ikinci katmanı, her iki veri tabanının 

güvenliğini araştırmaktır. İlk adım, her iki veri tabanının literatürdeki on seçilmiş 

özelliğe göre güvenlik özelliklerinin karşılaştırmalı bir çalışmasıdır. Güvenlik 

incelememizin ikinci adımı, veri şifreleme yükünün karşılaştırılmasıdır. Veri 

şifreleme yükü, veri tabanı motorunun tüm gelen veri akışlarını şifrelemek için 

harcadığı süreyi ve sorguları yanıtlamak için verilerin şifresini çözmek için harcanan 

toplam süredir. Bu çalışmanın sonuçları, her bir sistemin performansının, veri 

saklama mekanizmalarındaki farklılıklar nedeniyle farklı olduğunu göstermiştir. 

Sonuçlar, MongoDB'nin performansının tek düğümlü bir testte Cassandra'dan daha 

iyi olduğunu göstermiştir. Bununla birlikte, çok düğümlü testte Cassandra'nın 

özellikle büyük kayıtlarda daha iyi performans gösterdiği ortaya çıkmıştır. Güvenlik 

karşılaştırması araştırması, her iki veri tabanının da önceki çalışmalarda ortaya çıkan 

sonuçlara göre önemli ölçüde iyileştiğini göstermiştir. Ancak Cassandra, daha iyi 

güvenlik özelliklerine sahip olarak öne çıkmaktadır. Son olarak, MongoDB şifreleme 

performansı Cassandra'dan yaklaşık 2x ve 2,5 kat daha hızlı olduğu ortaya çıkmıştır, 

bu da şifrelemenin bir gereklilik olduğu ortamlarda MongoDB’nin kullanılmasının 

daha uygun olduğunu göstermektedir. 

 

Anahtar Kelimeler: NoSQL, veri tabanı, performans, güvenlik, karşılaştırma 

 

 

 

 

 

 



 viii 

 

ACKNOWLEDGEMENTS 

 

My greatest gratitude and warmest thanks are due to my supervisor Dr. Murat 

SARAN of the computer Engineering Department at Çankaya University. His 

understanding, encouraging and personal guidance have provided a great basis for 

this thesis. His ideas and constructive notes have had a remarkable influence on 

carrying out this thesis. I also wish to express my gratitude to my advisor Dr. Tolga 

PUSATLI for his help, advice and useful profound discussions.  

I must not forget to record my deep gratitude to the members of my family for their 

endless patience and continuous support during the period of my study. Special 

thanks are due to my parents for their generous support, love and understanding. I 

owe a great debt of thanks to my brothers and sister who always encourage me to 

complete my study. Thanks are also due to my teachers and friends.   



 ix 

 

TABLE OF CONTENTS 

 

STATEMENT OF NON-PLAGIARISM ................................................................... iii 

ABSTRACT ................................................................................................................ iv 

ÖZ ............................................................................................................................... vi 

ACKNOWLEDGEMENTS ...................................................................................... viii 

TABLE OF CONTENTS ............................................................................................ ix 

LIST OF FIGURES .................................................................................................. xiv 

LIST OF TABLES .................................................................................................... xvi 

LIST OF ABBREVIATIONS .................................................................................. xvii 

 

CHAPTERS: 

1. INTRODUCTION ............................................................................................... 1 

1.1. Aim of the study ........................................................................................... 2 

1.2. Significance of the study .............................................................................. 4 

1.3. Research questions ........................................................................................ 4 

1.4. Related work ................................................................................................. 5 

1.4.1. NoSQL Databases Performance ........................................................... 5 

1.4.1.1. NoSQL databases vs Relational Databases ............................ 5 

1.4.1.2. NoSQL vs NoSQL databases ................................................. 7 

1.4.2. NoSQL Databases Security ................................................................ 11 

1.5. Thesis structure ........................................................................................... 12 

 

2. THEORETICAL BACKGROUND .................................................................. 13 

2.1. NoSQL Data Stores types ........................................................................... 13 

2.2. Scaling ........................................................................................................ 14 

2.2.1. Sharding ............................................................................................. 15 

2.2.2. Replication ......................................................................................... 17 

2.3. MapReduce ................................................................................................. 19



 x 

 

2.4. NoSQL data store foundation ..................................................................... 20 

2.4.1. (CAP) Theorem  ................................................................................. 20 

2.4.2. BASE ................................................................................................. 22 

2.4.3. The Model of Consistency ................................................................. 22 

2.5. Security Issues in NoSQL ........................................................................... 23 

2.6. Security Threats in NoSQL ........................................................................ 25 

2.6.1. Distributed Environment .................................................................... 26 

2.6.2. Authentication .................................................................................... 26 

2.6.3. Safeguarding Integrity ........................................................................ 27 

2.6.4. Fine-Grained Authorization and Access control ................................ 27 

2.6.5. Protection of Data at Rest and in Motion ........................................... 28 

2.6.6. Privacy of User Data .......................................................................... 28 

 

3. NOSQL DATABASE MANAGEMENT SYSTEMS USED IN THE 

STUDY ....................................................................................................................... 30 

3.1. MongoDB ................................................................................................... 30 

3.1.1. MongoDB Architecture ...................................................................... 30 

3.1.2. MongoDB Data Model ....................................................................... 31 

3.1.3. MongoDB Query Model .................................................................... 32 

3.1.4. CRUD in MongoDB .......................................................................... 33 

3.1.5. Mongo DB Aggregation ..................................................................... 34 

3.1.6. MongoDB Features ............................................................................ 34 

3.1.7. Replication in MongoDB ................................................................... 35 

3.1.8. Sharding in MongoDB ....................................................................... 36 

3.1.9. Failure Handling in MongoDB .......................................................... 38 

3.2. Apache Cassandra ....................................................................................... 38 

3.2.1. Apache Cassandra Architecture ......................................................... 39 

3.2.1.1. Key Space ............................................................................. 39 

3.2.1.2. Commit Logs, Memtables and SSTables ............................. 40 

3.2.1.3. Hinted Handoff ..................................................................... 41 

3.2.1.4. Compaction ........................................................................... 41 

3.2.1.5. Bloom Filter .......................................................................... 41 

3.2.1.6. Staged Event-Driven Architecture (SEDA) ......................... 41 



 xi 

 

3.2.2. Data Model ......................................................................................... 42 

3.2.3. Apache Cassandra Features................................................................ 43 

3.2.4. Fault Tolerance in Cassandra ............................................................. 44 

3.3. Security in NoSQL Databases .................................................................... 44 

3.3.1. Cluster Security in NoSQL ................................................................ 44 

3.4. Authentication ............................................................................................. 45 

3.4.1. Authentication in MongoDB .............................................................. 46 

3.4.2. Authentication in Apache Cassandra ................................................. 47 

3.5. Authorization .............................................................................................. 47 

3.5.1. Authorization in MongoDB ............................................................... 47 

3.5.2. Authorization in Apache Cassandra ................................................... 47 

3.6. Auditing ...................................................................................................... 48 

3.6.1. Auditing in MongoDB ....................................................................... 48 

3.6.2. Auditing in Apache Cassandra ........................................................... 49 

3.7. Transport Encryption .................................................................................. 49 

3.7.1. Transport Encryption in MongoDB ................................................... 49 

3.7.2. Transport Encryption in Apache Cassandra ....................................... 49 

3.8. Encryption at Rest ....................................................................................... 50 

3.8.1. Encryption at Rest in MongoDB ........................................................ 50 

3.8.2. Encryption at Rest in Apache Casssandra .......................................... 51 

3.9. JMX Authentication .................................................................................... 51 

3.10. Authentication Caching ............................................................................ 52 

3.11. Proxy Roles ............................................................................................... 52 

3.12. Node-to-Node encryption ......................................................................... 53 

3.13. Client-to-Node encryption ........................................................................ 53 

 

4. TEST ENVIRONMENT ................................................................................... 55 

4.1. Hardware Features ...................................................................................... 55 

4.2. Software Features ....................................................................................... 55 

4.2.1. Yahoo Cloud Serving Benchmark (YCSB) ....................................... 55 

4.2.2. Mongo Database (Open Source) ........................................................ 57 

4.2.2.1. MongoDB Cluster Installation.............................................. 58 

4.2.3. Cassandra Database (Open Source) ................................................... 61 



 xii 

 

4.2.3.1. Cassandra Cluster Installation .............................................. 62 

4.3. NoSQL Databases Security ........................................................................ 63 

4.4. MongoDB Enterprise .................................................................................. 64 

4.5. MongoDB Enterprise Encryption ............................................................... 64 

4.6. Cassandra Enterprise .................................................................................. 65 

4.7. Cassandra Enterprise Encryption ................................................................ 65 

 

5. RESULTS .......................................................................................................... 66 

5.1. Single Node Test ......................................................................................... 67 

5.1.1. Workload A ........................................................................................ 67 

5.1.1.1. Workload A Findings ........................................................... 68 

5.1.2. Workload B ........................................................................................ 69 

5.1.2.1. Workload B Findings............................................................ 70 

5.1.3. Workload E ........................................................................................ 71 

5.1.3.1. Workload E Findings ............................................................ 72 

5.1.4. Workload F ........................................................................................ 73 

5.1.4.1. Workload F Findings ............................................................ 74 

5.2. Multi Node Test (Cluster) ........................................................................... 75 

5.2.1. Workload A ........................................................................................ 75 

5.2.1.1. Workload A Findings ........................................................... 77 

5.2.2. Workload B ........................................................................................ 77 

5.2.2.1. Workload B Findings............................................................ 78 

5.2.3. Workload E ........................................................................................ 79 

5.2.3.1. Workload E Findings ............................................................ 80 

5.2.4. Workload F ........................................................................................ 81 

5.2.4.1. Workload F Findings ............................................................ 82 

5.3. NoSQL Security .......................................................................................... 83 

5.3.1. Security Features Findings ................................................................. 83 

5.3.2. Cassandra: ............................................................................................ 85 

5.3.3. MongoDB: ........................................................................................... 86 

5.4. Encryption at Rest Benchmark ................................................................... 86 

5.4.1. Encryption Overhead Test Findings .................................................. 90 

 



 xiii 

 

6. CONCLUSION ................................................................................................. 91 

6.1. Suggestions for Future Study ...................................................................... 93 

REFERENCES ...................................................................................................... R1 



 xiv 

 

LIST OF FIGURES 

 

FIGURES   

 

Figure 1.1. Databases performance compression  ........................................................ 6 

Figure 1.2. Overall average performance of three workloads  ..................................... 7 

Figure 1.3. Throughput test results .............................................................................. 8 

Figure 1.4. Workloads test time results ....................................................................... 9 

Figure 1.5. Small and Large workload test performance results ............................... 10 

Figure 1.6. Scalability performance results ............................................................... 11 

Figure 2.1. Scaling-up versus Scaling-out ................................................................. 15 

Figure 2.2. Sharding ................................................................................................... 16 

Figure 2.3. Replication ............................................................................................... 17 

Figure 2.4. Master-Slave Replication ......................................................................... 18 

Figure 2.5. Peer-to-Peer Replication .......................................................................... 19 

Figure 2.6. MapReduce functions for word counting ................................................ 20 

Figure 2.7. CAP THEOREM ..................................................................................... 21 

Figure 2.8. Security threats in NoSQL databases....................................................... 25 

Figure 2.9. Security Threats with Distributed environments ..................................... 26 

Figure 3.1. MongoDB JSON Document .................................................................... 32 

Figure 3.2. The BI connector in MongDB ................................................................. 35 

Figure 3.3. Replication in MongoDB ......................................................................... 36 

Figure 3.4. Sharding mechanism in MongoDB ......................................................... 38 

Figure 3.5. Writing operation in Apache Cassandra .................................................. 40 

Figure 3.6. Data Types in Cassandra.......................................................................... 43 

Figure 3.7. Read/Repair node procedures in Cassandra............................................. 43 

Figure 3.8. NoSQL Security Model ........................................................................... 45 

Figure 3.9. Proxy Roles in Cassandra ........................................................................ 53 

Figure 4.1. YCSB Architecture .................................................................................. 56 

Figure 4.2. MongoDB Cluster Design ....................................................................... 59



 xv 

 

Figure 4.3. MongoDB Cluster Design Overview ....................................................... 59 

Figure 4.4. Cassandra Cluster Design Overview ....................................................... 63 

Figure 5.1. Workload A Test Performances Graph .................................................... 68 

Figure 5.2. Workload B Test Performances Graph .................................................... 70 

Figure 5.3. Workload E Test Performances Graph .................................................... 72 

Figure 5.4. Workload F Test Performances Graph .................................................... 74 

Figure 5.5. Workload A Test Performances Graph .................................................... 76 

Figure 5.6. Workload B Test Performances Graph .................................................... 78 

Figure 5.7. Workload E Test Performances Graph .................................................... 80 

Figure 5.8. Workload F Test Performances Graph .................................................... 82 

Figure 5.9. MongoDB Overhead Performances Graph .............................................. 88 

Figure 5.10. Cassandra Overhead Performances Graph ............................................ 89 

 

 



 xvi 

 

LIST OF TABLES 

 

 

TABLES   

 

Table 1.1.  Comparative analysis of sharding security in various nosql 

databases  ............................................................................................. 12 

Table 5.1.  Test Results of MongoDB (Workload A) ............................................ 67 

Table 5.2.  Test Results of Cassandra (Workload A) ............................................ 67 

Table 5.3.  Test Results of MongoDB (Workload B) ............................................ 69 

Table 5.4. Test Results of Cassandra (Workload B) ............................................. 69 

Table 5.5.  Test Results of MongoDB (Workload E) ............................................ 71 

Table 5.6. Test Results of Cassandra (Workload E) ............................................. 71 

Table 5.7. Test Results of MongoDB (Workload F) ............................................ 73 

Table 5.8.  Test Results of Cassandra (Workload F) ............................................. 73 

Table 5.9. Test Results of MongoDB (Workload A) ............................................ 75 

Table 5.10. Test Results of Cassandra (Workload A) ............................................ 76 

Table 5.11.  Test Results of MongoDB (Workload B) ............................................ 77 

Table 5.12.  Test Results of Cassandra (Workload B) ............................................. 77 

Table 5.13.  Test Results of MongoDB (Workload E) ............................................ 79 

Table 5.14.  Test Results of Cassandra (Workload E) ............................................. 79 

Table 5.15.  Test Results of MongoDB (Workload F) ............................................ 81 

Table 5.16.  Test Results of Cassandra (Workload F) ............................................. 81 

Table 5.17.  Security Features Comparison ............................................................. 84 

Table 5.18.  MongoDB Overhead Results ............................................................... 87 

Table 5.19.  Cassandra Overhead Results ................................................................ 87 

  



 xvii 

 

LIST OF ABBREVIATIONS 

 

ACID Atomicity, Consistency, Isolation, Durability  

AES                    Advanced Encryption Standard 

AUTH           Authentication 

CA                Certificate Authority  

CAP Consistency, Avilability, Partition Tolerance  

CBC             Cipher Block Chaining 

CQL                   Cassandra Query Language 

CRUD Create, Read, Update, Delete  

DCL          Data Control Syntax 

DDL                   Data definition language 

DES          Data Encryption Standard 

DML                   Data Manipulation languages 

DOS    Denial of Service attacks 

ECB        Electronic Code Book 

FIPS                   Federal Information Processing Standard 

HTML Hypertext Markup Language 

HTTP                Hypertext Transfer Protocol 

IT    Information Technology  

JMX              Java Management Extensions 

JSON JavaScript Object Notation 

KDC                   Kerberos Key Distribution Center 

LDAP                 Lightweight Directory Access protocol  

MD5     Message Digest 5  

NOSQL Non-Only Database Management System 



 

 xviii 

RBAC                 Role-Based Access Control 

RDBMS Relational Database Management System  

RLAC             Role-Level-Access Control  

SCRAM              Salted Challenge Response Authentication Mechanism   

SQL  Structured Query Language 

SSL                   Secure Sockets Layer 

TCP                  Transmission Control Protocol 

TDE Transparent Data Encryption 

TLS                   Transport Layer Security 

XML                  Extensible Markup Language 

XSS                   Cross-Site Scripting attacks   

YCSB  Yahoo Cloud Serving Benchmark 



 

 1 

CHAPTER 1 

INTRODUCTION 

 

The increase of sources of information and the explosion of data generated by users 

from social media and other content creating sites led to the need for large-scale data 

analysis platforms capable of storing and processing a massive amount of data. The 

advent of big data platforms was the answer to such need as often adheres to the 

principle of providing a high degree of availability and scalability.  

Big data can be defined as the ability to handle and manage large data within the 

right time [1]. Big data is also known as a huge size of data with a complexity that 

cannot be handled by the relational database systems (RDBMS). Several 

technologies have been developed rapidly including hardware such as the design of 

power efficient with parallel processing support, and software such as highly scalable 

databases and big data processing systems to accommodate the rapid growth of data 

[2]. There are three forms of the big data [2]: 

1-  Structured data: Any data has a known length and format is considered as a 

structured data Such as names, numbers, addresses, phones, emails. The 

structured data can be generated either human as inputs or results of applications 

such as gaming data. It can be generated by machines and example of this kind: 

weblog data and sensors. 

2-  Unstructured data: The data with unrecognized formats and length known as 

unstructured data. Most of the data at present are of this type. It comes from 

many sources like websites, mobiles, automation systems, social media, and 

satellites. This means that it can be generated from both humans and machines.



 

 2 

3-  Semi-structured data: It is a combination of structured and unstructured data. 

The amount of complexity in this data is very high. It is characterized as being 

long data, and it is recorded with a full size which leads to running queries to 

handle this type of data.  

The advent of Big Data has led to the development of several key technologies and 

platforms to answer the ever-growing nowadays data. NoSQL was one of these 

technologies. Although NoSQL databases began to develop before the appearance of 

big data, the adoption of NoSQL databases did not occur until the need was created 

by big data [3]. 

NoSQL database systems have several advantages that differ from the relational 

database systems to which we can conclude them as follows: 

1. It is easy to implement. 

2. At least one node will hold the data before replicating it to the others. 

3. NoSQL database systems are open source. 

4. Data will be replicated to multiple nodes, and it can be partitioned. 

5. It is easy to distribute because there is no need for a schema. 

6. The storage itself is a non-relational (semi-structured, schema-less). 

7. It can handle large data volumes. 

8.  The data should not be stored in a table, but in the documents that make it 

available, scalable with high performance. 

9. It is cheaper than the RDBMS systems. 

10. It has an agile design. 

1.1 Aim of the study  

Recently, many versions of NoSQL databases appeared each with different 

architectural design, its query language, and its own set of solutions for scalability, 



 

 3 

compression, security, clustering, which render it to become difficult to decide which 

NoSQL database appropriately provide the solution to a given problem or issue. 

Therefore, studies should be dedicated to testing these databases concerning several 

factors, such as query processing speed, security of data, readiness to be used in a 

scalable environment, programming languages. 

The aim of this study is divided into two-folds, firstly, we will test two widely used 

NoSQL database management systems, namely MongoDB and Cassandra. The test 

includes using third party tool known as Yahoo Cloud Service Benchmark (YCSB) 

which is designed to test NoSQL databases performance. However, real-world 

production environment always relies on database clustering to deploy databases 

such that to gain better performance, provide data safety and services with high 

availability during failovers. Single node test of MongoDB and Cassandra should 

give a thorough understanding of where both systems stand in term of performance 

and operations latencies. However, such test cannot be generalized to include the 

performance of the same databases in a cluster configuration. Therefore, we find it 

essential to include in this work the performance test of both databases in a cluster 

configuration. 

Secondly, security of information can be considered to be the second importance if 

not the first factor (besides performance) to determine which NoSQL database to use. 

As there are no tools to determine or measure the security in databases, we will 

present several security factors by which we will determine which database is 

comparatively better in term of information safety and security. 

Lastly, Databases Encryption Overhead is the time spent by the database engine to 

encrypt all incoming data streams plus the time spent to decrypt them to answer 

queries. Encryption generally is a resource consumption process; therefore, we find it 

essential to include benchmark test of both databases encryption engines. The results 

of such test can be used by IT decision makers when considering security measures 

of their production environments. If the data encryption cost is too high, one should 

think of other solutions for data protection. 



 

 4 

1.2 Significance of the study  

Around 150 different NoSQL database systems according to [4] exist choosing the 

appropriate database hard and complicated. The present study covers comprehensive 

performance test of two widely used NoSQL databases: MongoDB and Cassandra. 

The study will cover testing of both databases in single-node and multi-node (cluster) 

configuration, and it will help IT decision makers to determine which database is 

better according to their deployment requirements. 

Although many studies have compared several NoSQL databases systems regarding 

performance and other features, such as supported languages, scalability, we found 

no published studies on the latest version of MongoDB (3.6.3) and Cassandra 

(3.11.1). Similarly, through literature from 2013-2018, we have not found any 

scientific study dedicated to studying the overhead (cost) of data encryption in 

NoSQL databases. Therefore, the second significance of this study is to provide a 

thorough analysis of encryption engine in Cassandra and MongoDB.  

1.3 Research questions 

1 – Which NoSQL database system's (MongoDB 3.6.3 or Apache Cassandra 3.11.1) 

performance is better according to low average latency and high throughput 

concerning read, update, scan, insert, and read-modify-write operations?  

2 –  Which NoSQL database system's cluster performance is better regarding read, 

update, scan, insert, and read-modify-write operations? 

3 –  Which NoSQL database system is more reliable for production environment 

use? 

4 –  Which NoSQL database has better security features? 

5 –  Which NoSQL database provides less encryption overhead? 

  



 

 5 

1.4 Related work  

1.4.1 NoSQL Databases Performance 

Determining the right solution by IT decision makers is decided by several factors, 

for example choosing the right database for a project must be according to 

performance, security, cost, etc. NoSQL is one of the recent trends in Big Data as it 

offers a high degree of availability and scalability. Moreover, therefore, it can 

address the characteristic of Big Data where a massive amount of generated data 

must be stored and accessed later by different services. A survey of the literature 

showed that the current research trend is divided into two main categories: 

1.4.1.1 NoSQL databases vs Relational Databases 

These studies test the performance in specific application-oriented environments. For 

example, Yishan Li compared the performance of Microsoft SQL express with an 

early version of NoSQL databases including MongoDB, RavenDB, CouchDB, 

Cassandra, Hypertable, and Couchbase. During his test, several NoSQL databases 

outperformed Microsoft SQL while in some other tests the contrary happened. He 

also suggested that like any software application, NoSQL databases implementations 

go through changes over time and thus performance enhancements are more likely to 

happen [5]. 

Another study published by Parker in [6], which compared SQL server to one of the 

recent versions of MongoDB, showed that MongoDB outperformed SQL in inserts, 

updates, and simple queries, while SQL performance was much better when querying 

non-key attributes, and when aggregating queries, see Figure 1.1. 

  



 

 6 

       

(A) Insert      (B) Update 

        

 (C) Complex select query 

Figure 1.1. Databases performance compression [6]. 

MongoDB was also the subject of another study published in [7] where the 

researchers tested the scalability and performance of MongoDB and MySQL to 

process complex queries. It showed that MongoDB was able to outperform MySQL 

in handling complex queries, however, when using YCSB benchmark, MySQL 

performance was better. When the number of simultaneous connections was 

increased, the performance of both databases was similar.     

Cassandra, Shepra, and HBase were also compared in a similar study to MySQL 

according to nine selected features, such as replication, high availability, 

implementation language, persistence, and performance [8]. The researchers 

concluded that although the SQL and the NoSQL databases have several shared 

features, their performance behaviors are not similar in specific given tests. 

Therefore, they cannot be used interchangeably in a production environment. 

However, we would instead choose one of the two types of databases for a given 

instance. 



 

 7 

It is important to note that there is more published work which studied and compared 

SQL and NoSQL databases, but not from performance perspective such as 

comparison of SQL and NoSQL in the cloud [9], and a survey and comparison of 

relational and non-relational database [10].   

1.4.1.2 NoSQL vs NoSQL databases 

NoSQL databases are compared against each other regarding performance, security, 

and scalability in Clouds, Big Data platforms, and building applications. The related 

work in this section is reviewed starting from 2013. Abubakar evaluated the 

performance of Cassandra, HBase, MongoDB, OrientDB and Redis in [11] using 

YCSB benchmark tool and he found that memory based databases are the fastest 

disregarding the workload while document based databases are the slowest when the 

number of updates is increased. It was concluded that MongoDB, Redis, and 

OrientDB are better in performing read operations, while Cassandra and HBase have 

a better execution of updates operation. The Figure 1.2 below shows the overall 

average time of three workloads. 

 

Figure 1.2. Overall average performance of three workloads [11]. 

Similar research was published to study the performance behavior of MongoDB, 

Cassandra, and Riak. When the number of connections (users’ threads) increased, 

each database is tested as a single node and in nine node-cluster. Figure 1.3 shows 



 

 8 

the observed performance results for Read-only, Write-only, and Read-Write tests 

[12]. It shows that Cassandra outperformed MongoDB and Riak concerning 

throughput but with highest latency.  

    

(A) Read only test               (B) Write only test 

 

 

(C) Read and Write test 

Figure 1.3. Throughput test results [12]. 

Abramova compared MongoDB against Cassandra regarding fifteen different 

features including performance. Six workloads were chosen to test the performance 

of each database at 100K, 280K, and 700K record size [13]. The Figure 1.4 below 

depicts the obtained results of four selected workloads A, B, G, and F. 



 

 9 

 

(A)                                                                       (B) 

 

(C)                                                            (D) 

Figure 1.4. Workloads test time results [13]. 

In 2014, a study was published by Jay which studied the performance behavior of 

several databases when configured with small and large data workloads [14]. The 

study included three NoSQL databases, Cassandra, HBase, and MongoDB, and one 

relational database, namely MySQL. The researcher concluded that each database 

performance is entirely different when performing operations on small dataset when 

performing the same operations on a large dataset. Therefore, measuring the 

performance of any database must come from testing several different workloads of 

different size. The Figure 1.5 below shows the obtained results for workload A, B, 

and F. 

  



 

 10 

      

(A) Workload A – Small dataset                                           (B) Workload A – Large dataset 

 

      

(C) Workload B – Small dataset                            (D) Workload B – Large dataset 

 

      

(E) Workload F – Small dataset                              (F) Workload F – Large dataset 

Figure 1.5. Small and Large workload test performance results [14]. 

Lastly, Kumar and Roseline published a work in 2017 [15] which studied the effect 

of increasing the number of CPU cores on the performance of three NoSQL 

databases.  The researchers studied Cassandra, MongoDB, and HBase with a number 

of nodes from 10 to 40, and threads count from 30 to 60. The researchers concluded 

that MongoDB was the slowest concerning performance scalability of the three. 

Figure 1.6 depicts the scalability test results. 



 

 11 

   

(A) MongoDB                           (B) HBase 

 

(C) Cassandra 

Figure 1.6. Scalability performance results [15]. 

1.4.2 NoSQL Databases Security 

The broad adoption of NoSQL databases and big data is due to the fact that NoSQL 

databases capable of handling unstructured data, scalability, and performance. 

However, that brings more challenging issues, and one of this issues the security. 

Most of the developers of NoSQL databases focused on the performance at the 

expense of security. Thus, NoSQL security was subject of several pieces of research 

and studies. Okman studied the security features of Cassandra and MongoDB such as 

data encryption, authentication, authorization, query language, and auditing. He 

concluded that both databases are vulnerable to a denial of service attacks, weak 

authentication, no support for file data encryption, and very simple authorization 

mechanism [16]. Another work was published in the year of 2014 where six NoSQL 

databases studied extensively using five security features. The study concluded the 

following results shown in the table 1.1 below [17]. Researchers suggested that 

NoSQL databases need several improvements for customers and vendors. Similar 

observations were also made by Preecha Noiumkar and Tawatchai Chomsiri in [18]. 



 

 12 

Table 1.1. Comparative analysis of sharding security in various nosql databases [17]. 

Database  

 

        Criteria 

MongoDB Redis CouchDB Cassandra HBase 
Couchbase 

Server 

Authentication Medium Low Medium Low Medium Medium 

Access Control High Low Low Low Medium Low 

Secure 

Configuration 
Medium Low Low Low Low Low 

Data Encryption Medium Low Medium Medium Low Low 

Auditing Low Low Medium Low Medium Medium 

In 2015, a comprehensive study was published by Srinivas [19], where he compared 

three NoSQL databases and two SQL databases using the three bases of data security 

foundation; Confidentiality, Integrity, and Availability (CIA). The research 

concluded that NoSQL databases rapidly evolve at high speed regarding security. 

They also suggested that according to the growth of open source NoSQL databases, 

it is safe to predict that the security reaches a comparable level with relational 

databases. Lastly, in 2017, Cuzzocrea and Shahriar proposed data masking technique 

to further improve several security concerns in NoSQL databases [20]. Several 

security issues were solved using the proposed method while they suggested it was 

difficult to use the same technique to address the rest of the issues without additional 

development.  

1.5 Thesis structure 

This thesis consists of six chapters. The second Chapter describes the theoretical 

background of the NoSQL systems and management techniques. Chapter three 

details the information regarding the databases used in this study. While Chapter four 

describes several implementations procedures of test environments used in this study, 

Chapter five illustrates and details the observed results. Chapter six includes the 

conclusion of this work and suggestion for future work.  



 

 13 

CHAPTER 2 

THEORETICAL BACKGROUND 

 

This chapter focuses on the NoSQL databases and the related concepts, and the types 

of NoSQL databases, the MapReduce, replication, sharding and scaling concepts will 

also be covered in this chapter.  

2.1 NoSQL Data Stores types 

There are more than 150 types of NoSQL database systems used in different 

disciplines, all of them can be classified into four main classes according to the 

mechanism of storing data. 

1- Document data stores  

2- Key-value data stores 

3- Column-based data store  

4- Graph stores 

Document data stores: Instead of using columns with names and data types like the 

traditional relational database system we can deal with data as an object. In other 

words, we can create an object with structure and then add the new information as an 

instance of an object and these techniques can be classified as a type of the key-

value. It can be stored in different types such as JSON, XML, or any of the NoSQL 

document data. An example of this kind of stores is MongoDB and Apache 

CouchDB. Also, this kind of stores is known as semi-structured data, but there is a 

risk of working in this type of stores. This kind lacks the current requirement [12].



 

 14 

Key-value data store: The mechanism here works by matching the key and the 

value of storing, retrieving and managing the data, similar to arrays. Also, this 

mechanism is known as hashing [11]. Riak and Redis are examples of this kind of 

stores. This type is known as an in-memory database because of its dependence on 

the main memory of the computers data storage [12]. 

Column-based data store: They are also known as wide-column data stores. This 

type of stores is one of the most potent stores in NoSQL database systems. It is the 

same as the tables in the relational database systems but more expanded. The columns 

here are dynamic and can be modified during the process of the operations. The main 

benefit of using this type of stores it to provide high throughput and fast lookup but the 

calculation cost is high [12]. Rows of the same table can be associated with different 

columns. BigTable, Cassandra, and HBase are examples of this kind of stores. 

Graph stores: With the development of the social networks, this kind becomes more 

active. It represents the data as networks [12]. An example of this type of stores is 

Neo4J and InfoGrid. The data representation here is nodes, edges and the features for 

them. This type is suitable for high level connected data like social media networks. 

2.2 Scaling  

We can achieve scalability with the NoSQL database systems by using additional 

hardware resources and loading the data flowing towards those hardware resources 

or by depending on a cluster with many computers that work as one powerful 

computer [25]. There are two types of scaling techniques: sharding and replication. 

The three central operations for scalability in NoSQL databases are reading, writing 

and the volume of databases. The two terms that are related to databases which need 

to be clarified are the following  

 Scale-up: This concept means the increase of the power of the machines, like 

increasing their memories, using faster processors, increasing the number of 

cores, and using faster memories to make the database be able to process more 

operations. 



 

 15 

 Scale-out: Increasing the performance of database systems can be carried out by 

distributing the machines to work together in a distributed manner to respond to 

the requests of managing data as shown in the Figure 2.1 below. 

 

Figure 2.1. Scaling-up versus Scaling-out 

Scaling-up still has restrictions which cannot be passed through scaling-up and 

scaling-out are used to avoid the problem that concerns the increase of vast amounts 

of data. It is impossible to continue adding memory or cores to increase the power of 

a machine. Accordingly, one can say that hardware restricts scaling-up. Conversely, 

we can only add more machines to clusters and increase our clusters to meet the 

difficulties of the considerable increase of data. 

2.2.1 Sharding 

To handle the big data quickly and more accurately the term sharding appears within 

the scalability. Sharding is a process of segmenting the data into smaller pieces 

called "Shards" as showing in Figure 2.2 below. This process is the same as the 

parallel computing with retrieving addition. The first sharding techniques were 

implemented in the RDBMS, but the sharding features have been designed within the 

tables. By dividing the tables to many storage sources, the sharding does not give the 

join ability between the shards like the join between tables [26]. Those parts are not 

sharing anything because they are just separated parts from the same source. 

Sharding is precisely similar to the horizontal partitioning in the RDBMS which 



 

 16 

takes a big database and divides it into smaller databases to handle it easily. The 

sharding becomes more effective to the cost. To use one large size database, we need 

a powerful end-computer to manage it. Sharding does not require a high computation 

because of its size compared to the size of its origin [27]. 

 

Figure 2.2. Sharding  

So when we have an overload from many requests, for example, if we have five 

server's nodes then the work will be divided automatically into 20% for each server. 

However, we need to keep in mind the main factors that affect the response speed for 

a request, and this is called the geographical distribution. When the server receives a 

request from a user, then the nearest server to that request source should respond to 

that user [28]. 

One of the critical things that need to be decided earlier is when to use the sharding. 

Some databases provide the sharding from the beginning while other types give it as 

an option that can enable later. Moreover, this is related to the fact that some 

databases start feeding the data from scratch and starting with one node is less 

costing and the sharding is unnecessary. This causes many problems for many teams 

later when they decide to shard their data to lose their data permanently because the 

sharding occasionally depends on consuming the data [29]. 

  



 

 17 

2.2.2 Replication 

The replication process in NoSQL databases involves copying the same data to many 

copies and making each copy in different servers. Also, this will provide us with the 

speed of responses, and this is the main point in web applications which depend on 

the significant data technology and also provide us with the ability to add and update 

our data on the files [30]. The Figure 2.3 below explain how we can replicate a 

database between numbers of serves.  

 

Figure 2.3. Replication  

This method can be implemented by: 

 Master-slave replication: This design includes Master/Slave, the master has the 

writing responsibility, and slaves handle the synchronization of data to the master 

to update the primary information. The main benefit of this method is to avoid the 

failover of one of the replication and recover it. When a master node fails, the 

slave nodes will change the state from read-only to read-write state and another 

slave node will be converted into master node then the slaves will reconnect to the 

new master node and return to the read-only state [31]. Figure 2.4 explains all 

details of master-slave replication. 



 

 18 

 

Figure 2.4. Master-Slave Replication  

As concerns the advantages, the Master-Slave replication has a high scaling for 

reading a significant amount of data. When we need more requests, we can add more 

slaves to overcome that. However, this ability is sized by the master node to control 

the flow of the data to slave nodes. Also, the write operations are not that much good 

and when we need to handle this kind of operations we need to hold the read 

operations until the system deals with the write requests [32]. 

The disadvantages are when the master node fails the data in this node will be 

unreachable, and this will cause a loss in the data from the master node. The other 

disadvantage is that the new master node will take duration of time before it set and 

during this process the slave nodes will read and write data at the same time which can 

store different data on the same subject. When many users request the data, there might 

be a high chance that this data will differ due to this temporary process of master fail 

and converting the links from the slave nodes to the new master node [33]. 

 Peer-to-peer replication: The difference is that this design gives the ability of 

writing operations for each peer (node); moreover, we can add more nodes easily, 

and access the data store even with losing any peer while the master-slave method is 

not possible. The read here is good, but still, we have the write operations not 

effective [33]. Figure 2.5 explains all details of peer-to-peer replication. 



 

 19 

 

Figure 2.5. Peer-to-Peer Replication  

The benefit of using this type is that we can quickly pass the failover of the node 

without losing the reading ability from the other nodes. Another good reason to use 

this type of replication is that we can quickly add more nodes without caring to the 

controller of those nodes. The worst case of the type is when many people reach a 

node and retrieve then update the same node which easily can make a conflict with 

the update operations [34]. 

2.3 MapReduce   

Google, in 2004 presented a new technique which is called MapReduce, it is 

described in a corresponding article in [35]. It is defined as a technique used to get a 

significant amount of data within a short time. Several computers are used to divide 

the tasks of filtering and fetching data. The concept of MapReduce has two principal 

functions, mapping and reducing. By combining a key and value, the map function is 

used to create intermediate (Key-value) pairs. After the generation of all the 

intermediate keys, the reduce function uses these created keys to move all the 

intermediate values with their intermediate keys. See Figure 2.6 below. 



 

 20 

 

Figure 2.6. MapReduce functions for word counting 

2.4 NoSQL data store foundation 

The three main principles of the foundation of the NoSQL databases: are CAP 

Theorem, Base property and Consistency Model [36]. 

2.4.1 (CAP) Theorem 

In 2000, the CAP theorem was made by Eric Brewer [37]. Moreover, demonstrated 

in 2002 by Gilbert and Lynch [38]. The CAP Theorem theorizes that three 

fundamental properties represent any distributed system. 

Consistency: The same data is shown to many clients, and this includes the reading 

and writing. The consistency of the data through the network is well distributed, and 

this gives us the latest form of the data since we are working on the last save of the 

data, but that is not guaranteed since the user will see the older version of the data. 

The data should be the same one on all the nodes [39]. 

Availability: Even with node failover, the cluster is still accessible. In more details, 

when we try to access a node and its failure, then we always connect to another node 

to provide us with our query, and it will be the same as our query [40]. 



 

 21 

Partition Tolerance: Any physical break in the communication between nodes or 

fail in the hardware does not affect the cluster functionality. For instance, if we have 

two data centers and suddenly the connection breaks then the communication 

between those data centers is off, and we will lose the partition tolerance property. 

As a conclusion, in any distribution system, there is a need to guarantee the 

connection to fulfill the partition tolerance concept. If the partition tolerance is not 

available in the system, then it is not considered as a distributed system [41]. The 

main idea of CAP theorem is explained in Figure 2.5. 

 

Figure 2.7. CAP THEOREM  

The distributed system cannot handle all those three components concurrently. For 

example, the system needs the partition tolerance as the most part otherwise it cannot 

become distributed. Any other part (availability or consistency) with the partition 

tolerance is combined to present the distributed system. 

The types of the data store design are: 

 CA systems: A system consists of consistency and availability properties, but it is 

not considered as a distributed system because we have already mentioned that 

any distributed system needs the partition tolerance as one of its parts to become 

distributed and this design does not have it. The relational database systems are 



 

 22 

the example of this design for the reason of low scalability, and when the load is 

low Aster data, and HDFS Name node is the applicable systems [42]. 

 CP systems: a distributed system design contains the consistency and partition 

tolerance. The main problem with this design is that any node gets corrupted will 

make the cluster inaccessible. Hbase is a pure example for this kind of systems. 

MongoDB is considered as CP system, but recently this opinion is excluded when it 

has proved that MongoDB does not always work as a CP system. Therefore, it 

cannot be considered as a complete CP system [43]. 

 AP systems: This design of programming implementation is hard, but it still 

provides the availability and goodness when the low-latency is required. In this 

system, whenever a node fails the system has the accessibility until the corrupted 

one is fixed. However, here there is no insurance that all nodes will have the same 

data. Moreover, most of the time the requests will be the initial value like the 

caches as an example of this type. Couch DB and Cassandra are the good 

examples for this kind of systems [38]. 

2.4.2 BASE 

The BASE is the first primary element for the system reliability. The base is derived 

from the words Basically, Available, Soft state, Eventual consistency. The first part 

state that the system cannot offer the availability like the CAP theorem, but it is 

possible to change its state frequently, regardless no input is there. This case is called 

the soft state. The system becomes consistent due to the system which spends certain 

time with no input. Those prefer the priority rather than consistency. Also, it 

considered an AP system. The good thing here is that the BASE will provide the 

NoSQL: speed, scalability, simplicity and the horizontal distribution [44]. 

2.4.3 The Model of Consistency  

Werner Vogels states that inconsistency the clients and servers have a different 

attitude and represent it in three client-side types [45]:  



 

 23 

 Strong Consistency: The best option for enterprise systems because it retrieves the 

last data inserted into the system. 

 Eventual Consistency: It states that when the data is written, it will be able to 

appear for reading for the users but not directly after finishing the written 

operation which means there is a chance to retrieve an updated version of the 

targeted data. Also, all the nodes will get the same data. 

 Weak Consistency: There is no guarantee of retrieving the right value at the same 

time when access the system. 

The NoSQL database systems contribute all or part of the consistency. Hbase is 

treated as a NoSQL system with strong consistency while Cassandra has been treated 

as eventual consistency.  

2.5 Security Issues in NoSQL 

The security is one of the main problems that is related to RDBMS and then it is 

inherited to the NoSQL databases and to that due to the transactions that have 

already been used which deserve the RDBMS and their distribution: transaction 

manager, query processor, security manager, metadata manager and integrity 

manager [46]. Moreover, the advantages of using those distributions are the 

providing of [46]: 

 high performance  

 scaling 

 resiliency 

 network cost reduction 

 network traffic reduction 

However, even with those benefits, the security is the primary concern, some 

companies used central databases and covered them with types of security protection 

like the network protection or even encryption tools. However, this issue is hard to 

cover with the distribution of the databases. 



 

 24 

From all above, we need to keep in mind that the NoSQL database systems are 

extended of the RDBMS, and the concern that we have faced in RDBMS is still risky 

with technical changes in the methods [46]. 

The main reason underlying the use of the NoSQL databases is the performance and 

the real-time response for a large volume of data that does not structure like the 

RDBMS tables [46]. Still, the security issue is not covered so much because the 

foundations focused on the performance at the expense of the other fields, the 

security is one of them. Here we need to clarify that the NoSQL databases do not 

share the same architecture since that those databases designed to handle the 

requirements of the cloud computing applications [44]. Nowadays, most of the 

NoSQL databases face almost the same attacks from the RDBMS era, even with 

providing many solutions to improve their security many attacks made many 

problems such as SQL injections attacks, script injection attacks, and those attacks 

are still active within the NoSQL databases area [47]. Moreover, that is related to the 

dependency on a specific data structure in NoSQL databases (unstructured data) like 

the JSON files and many others which can be used to cross the firewalls and the 

security filtering with simple JavaScript code, and the system will consider it as data 

files. Another reason is the distribution environment of the NoSQL databases that are 

developed to handle the parallel computing and the sharing of data between nodes 

with a high probability of stolen data. Also, that makes the NoSQL databases open 

against a vast area of attacks which complicate the security problems [48]. Generally, 

we can list the security problem of NoSQL databases [49] as follows: 

1. lack in encryption of the data files 

2. does not provide enough authentication in client-server networks 

3. simple authorization 

4. SQL Injection Vulnerability 

5. filtering at the end point input 

6. encryption of the attribute  

7. methodology of the attribute relationship 



 

 25 

8. Granular access controller 

9. unsafe computation 

10. preserving data mining and analytics 

States that the attribute relationship in NoSQL databases is to protect the information 

in big data and considers the attribute as a key to extract the related information and 

assume that the attribute with higher relevance is more important than the other 

attributes. In the same paper, they explained the attribute encryption method. This 

method gives the user the ability to encrypt the data and clarify the accessibility to 

this data and those users are the only people who can decrypt the data [50]. 

2.6 Security Threats in NoSQL 

The main threats in NoSQL databases usually take place in the middleware and to 

overcome those threats we need to classify them, Figure 2.8 below shows security 

threats in NoSQL databases. 

 

Figure 2.8. Security threats in NoSQL databases 

  



 

 26 

2.6.1 Distributed Environment 

Most of the databases are distributed in the design by a network to give the user the 

accessibility remotely and locally. The synchronization of the writing and updating 

of the content of the databases are controlled by a central database [51]. In the 

distributed environment, there are many nodes spread over the network, and they 

work in parallel which gives more area for the attackers as shown in Figure 2.9. 

 

Figure 2.9. Security Threats with Distributed environments 

Also, the maintenance here is expensive in term of computation with a higher chance 

for error to appear and a high ability for the data to get stolen and all that related to 

the fact that there are no central management systems [52]. 

2.6.2 Authentication 

The authentication in NoSQL databases is provided at the local node unlike the 

servers, and that makes the NoSQL databases widely exposed to different attacks 

which lead to losing in the data to the attackers' accounts [16]. As an example of this 

kind of threats, we have the NoSQL databases Kerberos, which gives the 

authentication to the client nodes, but the attackers can get unauthorized access by 

duplication of the Kerberos ticket. The Kerberos ticket is an authentication 

mechanism in network developed by MIT. It works while the user is sending a 



 

 27 

request for login by asking for a ticket from the Key Distribution Center (KDC). As 

an acknowledgment, the KDC will send a Ticket-Granting Ticket (TGT) for the user 

and ticket encrypted with the user password. The user will receive the TGT, and if 

the user decrypts it with the right password, then the ticket will provide the user the 

ability to log into the system [53]. It is an excellent way to authenticate, but still it is 

critical, and this is due to the reason that one side carries it (KDC), and the attackers 

can crash through the network perimeter, hijack credentials and use them to move 

through the network, taking additional credentials and escalating privileges along the 

way to accomplish their goals [52].  

2.6.3 Safeguarding Integrity 

The safeguarding integrity is a requirement declaration in which the database does 

not give unauthorized accessibility to a user to modify the content of the data in the 

database, and those operations can be deleting, updating and insertion. In NoSQL 

databases, there is a lack in both of integrity and confidentiality. All that is related to 

the reason that we do not have a scheme or tables to determine the permission and 

the updating on that table or row. In NoSQL databases, we might face a situation 

when many users modify a data, and that will give different copies of the same data. 

Also, that makes the transaction in NoSQL databases hard [34]. That is why the 

financial sectors do not depend entirely on the NoSQL databases. It lacks a central 

controlling for that kind of transaction [54].  

2.6.4 Fine-Grained Authorization and Access control 

To protect data, we need first to authenticate the right use of that data. Moreover, 

when the user passes the authorization, he will become a part of the database system. 

However, in NoSQL databases, the situation is different because it lacks the schema 

and it cannot give the authorization on tables of part of the data. There is object level 

security which means that we do not have a fine-grained in NoSQL databases. 

Access control in databases depends on the classification of the authorization of the 

database. Access control and both disk and memory accounting are performed at the 

column-family level.  Families Column keys are grouped into sets called column 

families, which form the basic unit of access control. The whole data stored in a 



 

 28 

column family is usually of the same type. A column family must be created before 

data can be stored under any column key in that family. After a family has been 

created, any column key within the family can be used. However, the access control 

differs from one database to another depending on the security level that has been 

promoted to the users. Moreover, in NoSQL, we do not have a schematic model 

which makes it hard to implement [54]. 

2.6.5 Protection of Data at Rest and in Motion   

When we finish working on the data and flush it, and then we put it in the storage 

unit, we call this data at Rest. In Data Motion, when we have communicated with 

data, there are transition swaps. It is classified into two types: Inter-node 

communication and client-node communication. Most of NoSQL databases do not 

serve with the data at rest protection method. It might provide some encryption level 

on the data to protect it inside them, and that makes the data ambiguous [16]. Some 

NoSQL databases provide a partial level of data at rest and data in motion. In 

MongoDB, we have two encryption method for the data at rest. While Cassandra 

uses an encryption method called TDE (Transparent Data Encryption) for data at rest 

protection which consists of 6 encryption algorithms. However, the weak point here 

is to commit log in Cassandra because it is not encrypted which will lead to a severe 

gap in security. In data in motion, neither Cassandra nor MongoDB provides any 

Client-node communication. In Inter-node communication, Cassandra does not 

support any encryption, but we can modify the Inter-node communication by 

reconfiguring the server encryption options in the file Cassandra.yaml. MongoDB 

does not provide any inter-node communication. 

2.6.6 Privacy of User Data 

It is one of the main challenges that face the NoSQL databases due to its relationship 

with the dependency of the web-based application. While the NoSQL databases 

handle a significant amount of data with fast responses, the privacy is the most active 

threats in the big data field. Any NoSQL database system can deal with many nodes 

of users, but the problem starts when data is injected from an attacker to the system,  



 

 29 

and it can spread out in the entire system due to the fact of nonexistent of central 

management [55]. Many challenges confront the user data privacy and to mitigate 

those problems the developers try to overcome them by providing a more secure 

mechanism and methods to protect the data. There are many types of those risks such 

as the cryptography of data. This is the first defensive line against the attackers 

which requires powerful algorithms to protect the data. Another challenge is the data 

mining analysis. Data analysis is good to provide more information about users to 

help in giving the right reply for a user request. At the same time, however, the 

privacy is at risk of getting uncovered by the analyzer itself. The last example given 

by us is the divided access control in the big data. When there is no main controller 

for the users to flow through the network, there is a high probability for the attackers 

to access through those networks as a normal user [56]. 

  

 

 



 

 30 

CHAPTER 3 

NOSQL DATABASE MANAGEMENT SYSTEMS USED IN THE STUDY 

 

This chapter presents the NoSQL Databases Systems that are used in this study: 

MongoDB (3.6.3) and Apache Cassandra (3.11.1) with detailed information about 

each system. There are two significant parts to be explained: the first part is the 

architecture of each database system and the different aspects between them, besides 

how each one of them handles the flow of the data and how it manages them. The 

second part will be about the security of the NoSQL databases and the security 

architecture of each databases system and for both open source and enterprise 

editions of databases. 

3.1 MongoDB 

MongoDB is one of the most known NoSQL Database systems in the current days. It 

is considered one of the open source software under the GNU lie license and 

developed by 10gen Software Company in 2007 before it changed to the name 

MongoDB Inc. [57]. It is developed by the C++ programming language with 

scheme-less and document orientation. It also has a structured mechanism for the 

document. It is suitable for storing the large document as JSON File (JavaScript 

Object Notation) and many other files such as videos and images. 

3.1.1 MongoDB Architecture 

In the beginning, the developers of MongoDB kept in mind two main features to 

focus on as NoSQL database system: Scalability and High Performance. They 

designed it in a way to keep up with the development of the applications and



 

 31 

accelerating evolution of the technologies. It stores the data with high capability and 

real-time, and that makes MongoDB suitable for the online applications. MongoDB 

has the ability to mapping the memory files, and this helps the operating system to 

manage where to store the file in the case on the storage memory or in the virtual 

memory. Concerning this fact, the MongoDB lost the ability to control the data when 

written to the storage memory. MongoDB has different package when it comes with 

Mongod, Mongo, and Mongos which are the significant parts in the MongoDB 

package [58]. The main daemon process for the MongoDB system among them is the 

Mongod. It handles the request for the data and provides all the information for 

managing the data and the accessibility to them. The Mongo part of the package is 

responsible about the client information and representation. It gives the user the 

ability to update and query the data and administrative operations. Mongos part 

handles the data routing among the shards or what is known as (MongoDB shard). It 

controls the flow of the queries to the shards and determines the locations of the data 

within the shards [59].  

3.1.2 MongoDB Data Model 

As we mentioned before, the primary data representation in the MongoDB is the 

JSON Files (BSON), an example of this kind of data is shown in the Figure 3.1 

below. There is a unique identifier called "empId” in a document inside the 

collection of the JSON file to prevent the replication of the information. Those 

identifiers should have specific features [59]: 

 They should be unique (not repeated). 

 It is not possible to insert an empty key unless to determine the end of the key. 



 

 32 

 

Figure 3.1. MongoDB JSON Document 

The MongoDB is a sensitive case when it comes to documents information. The 

example below is for this case, and it shows two different documents. MongoDB can 

store many shapes of documents within a collection. 

{“Name”: “mustafa”} 

{“name”: “mustafa”} 

3.1.3 MongoDB Query Model 

There are several types of the query within the MongoDB package. MongoDB Query 

Model allows executing different queries over all the parts (documents) of a 

collection such as arrays or any embedding objects. There are many features within 

the query model used for a response of query depending on the parameters used in 

the query. Those features include [60]: 



 

 33 

 Key-value query: This is often used as the primary key for a document. 

 Comparators: Those are used to compare the parts of queries within a range. From 

those operations, we have the higher than (>), greater than or equal (>=), less than 

(<) and less than or equal to (<=). 

 Logic operations: All the conditions are supported by specific representations 

such as: and, or, equal, not equal). 

 Aggregation queries: The well-known operations are from any modern 

programming languages (count, minimum, maximum). 

 Sorting queries. 

 Group by: It is the same as the group by a command in SQL programming 

languages. 

 Map Reduce: This is the main query used in NoSQL databases to handles the 

large volumes datasets. 

3.1.4 CRUD in MongoDB 

This section concentrates on the performance of MongoDB in the light of the most 

critical four operations which are used in every database: create, read, update and 

delete. The operations that are regarded as modification operations are create, update 

and delete, whereas the read operation is considered a query. In MongoDB, it is a 

query which tackles a particular document within a collection. A specific field from a 

document, a MongoDB query, may use a projection to specify that field. When 

reading from a particular field in a document, a projection may be used by a 

MongoDB query to limit that field. MongoDB is bundled with several kinds of 

queries. The query model of MongoDB permits queries over all documents inside a 

collection including embedded object and array [61]. 

MongoDB clarifies several query behaviors as follows:    

1. Mongo DB queries address one collection. 

2. Queries in Mongo DB can be changed to put limits, sort orders, and skips. 

3. A sort method should be adopted to get the order of documents by a query. 



 

 34 

3.1.5 Mongo DB Aggregation 

The aggregation process means the processing of data returning of the computed 

results of that data. From several documents we collect values, any data similar to 

other several operations are applied, and we get one result. MongoDB gives a broad 

set of aggregation operations. The documents within collections are the input to the 

aggregation operations, and the results are returned. 

3.1.6 MongoDB Features 

MongoDB is very powerful, and it is considered as a high-performance computing 

database system, and it has more flexibility in document orientation. Moreover, it is 

an open source software supported by a big community. It stores the data in a way 

different from the relational database system, in addition to tables, it uses collections 

and documents which are used for complex queries and fast retrieving. Besides, 

MongoDB is a scalable database that has additional indexing mechanism which 

includes TTL indexes and geospatial indexes which are used in geographic 

applications [57]. The configuration is easy in MongoDB, and the storing mechanism 

can handle data with large sizes easily. It is scheme less which is right in the failure 

cases that make the administration in such cases easy to handle and overcome. The 

new version of MongoDB contains a storage engine. The new features in this version 

are [62]: 

 Connector for Business Intelligence and Visualization Tools: This feature 

gives the ability to MongoDB to visualize the data to the user in business 

intelligence tools such as Tableau. For doing that there is a need to give 

MonogDB the possibility to connect to a data center in tabular form. Making this 

with MongoDB is hard. Because of that, they made it in the new versions. The 

main purpose behind making it is to connect MongoDB servers with the BI tools 

without the need to store any data. To have a good understanding look at the 

Figure 3.2 below. 



 

 35 

 

Figure 3.2. The BI connector in MongDB [63] 

 Encryption at rest: This means the ability of encryption the data when it is in the 

storage, and also it is one of the main features related to the security in MongoDB 

enterprise and NoSQL databases with powerful encryption algorithms, whereas 

we do not have it in the open source version. 

 Document validation: One of the latest version updates is supporting document 

validation in MongoDB, which helps in decreasing the overload and effort for 

both users and companies during the verification process for data. 

 Dynamic Lookups: It is part of the aggregation of the MongoDB, it helps in 

modeling the data with more flexibility. 

 Schema Visualization: The new ACID graphical interface for MongoDB helps 

the users to analyze and manipulate the flow of the data and comparing the values 

among them with additional feature related to the performance and the security of 

the MongoDB databases.   

3.1.7 Replication in MongoDB 

The replication is a process related to the Mongod in the MongoDB package, and it is 

used to maintain the same data by replicating it to many sources [64]. MongoDB 

supports replication similar to the master-Slave replication configuration, but not the 

same. The good point here is that there is a recovery step in case a failover which 

appears in the primary node or the connection lost between the primary node and 

secondary node. This procedure is done automatically. The MongoDB recovers the 



 

 36 

connection by converting one of the secondary nodes to a primary node. By doing 

that, we will assure the availability and redundancy to our database system. The 

replica set can extend to N number of nodes in a cluster, but it cannot have more than 

primary node. And by that the writing operations will be limited to the primary node 

only. In general, the replication means when a primary node receives data, it copies 

the data and replicates it to the secondary nodes [64]. Figure 3.3 below presents the 

replication.  

 

Figure 3.3. Replication in MongoDB 

3.1.8 Sharding in MongoDB 

MongoDB presents a sharding procedure. It can be characterized as a way of putting 

away data on a few machines. And it will provide a good position with rapid 

incrementing of data.  A separate machine which is utilized to store data may not be 

appropriate because of low throughput between the read/write processes. Sharding 

overcomes this issue by making use of even scaling. The MongoDB bunch includes 

three parts: 

 Mongos (routing server) 

 Shards 

 Configuration server 



 

 37 

To support sharding, MongoDB designs the Sharding which means the process of 

breaking a massive volume of data into smaller volumes to overcome the restriction 

of hardware. Bottlenecks in RAM or disk I/O are regarded instances of hardware 

restrictions. MongoDB consequently modifies the data in the sharded cluster as the 

data increases to the extent of the group increments or abatements. Sharding, unlike 

in social databases, is programmed and incorporated into the database, it minimizes 

the weight for designers and operations groups. Each shard consists of a replica set, 

and we make use of the shards to store real information. Expanding the number of 

nodes inside each shard prompts will expand repetition and accessibility. 

Configuration servers (mongod) are used to hold metadata that includes mappings for 

the original data in the shards. Directing servers use metadata to course operations to 

particular shards. MongoDB disperses data or shards at the collection level. Sharding 

specifies a collection’s data with the shard key [65]. The first step to shard a 

collection can be achieved with a Sharding key. A shard key is not different from 

ordering. A shard key is partitioned into chunks equitably over the shard by Mongo 

DB. Every chunk consists of a few numbers of records altogether. The essential 

benefit of the pieces lies in modifying the shards. In the case that a shard estimate 

becomes more substantial than the other shards, a few substances of the piece will be 

relocated to other smaller shards to rebalance the sizes of the shards. In the event in 

which another node is contained or expelled from the cluster, the pieces will also 

redistribute the information over the group. In Figure 3.4, the sharding architecture in 

MongoDB is presented.  

The configuration (mongod) holds the metadata, and it is responsible about routing 

the data to the shards. MongoDB distributes the data to the shards, and the shard will 

generate a shard key for the data. The shard key is like an index to this data. Then the 

shard key shares across the shard using MongoDB, the shard contains many chunks. 

Each chunk contains many ordered documents. This procedure offers to balance to 

the shards by migrating the shards with smaller size when a shard grows more 

substantial than the other shards. When a node is removed or added to the cluster, the 

chunk will resend the data among all the other nodes [65]. 

 



 

 38 

 

Figure 3.4. Sharding mechanism in MongoDB  

3.1.9 Failure Handling in MongoDB 

The excellent feature in MongoDB is the automatic failover recovery. If a node 

crashes in MongoDB cluster, we will face a state of losing the data. Even if the node 

return to work later, still we can get corrupted data. This problem is related to many 

reasons such as the hardware failure or problems in connection. When a node fails, 

the replication will recover the last update to that node and make it online again. 

Still, we have the terrible cases which cannot fixe with the failure handling. One of 

these cases is that when all the nodes fail within a shard. In this scenario, the 

MongoDB cannot make any operation in that shard. The second scenario is when the 

configuration servers fail. Then we lose the update of the data between shards. 

3.2 Apache Cassandra 

Apache Cassandra is NoSQL databases with high scalability and the data store of the 

Cassandra in from the fault-tolerant type. It is developed in Java programming 

language by Facebook to handle the search operation inside the Facebook inbox [66]. 

The first release was in 2008, and it took two years to be the head of Apache 



 

 39 

company projects in 2010. The primary reason to build Cassandra was to give the 

ability to help in the solving the Index search problem [67]. 

3.2.1 Apache Cassandra Architecture 

Unlike the other NoSQL database systems, Apache Cassandra has peer-to-peer 

architecture. There is a need to know master-slave architecture to understand the 

peer-to-peer architecture. In the master-slave architecture, when the master 

distributes data and controls the flow of the data to the other slave nodes, the slave 

needs to synchronize the data with the master to keep up-to-date data. However, 

when the connection is corrupted, or the master-slave fails the system start to lose 

data, and in the best cases, it will recover after a while which means loss of data. In 

Cassandra, the peer-to-peer architecture helps the node to control itself and work as 

similar to a master node at the same time. That gives the Cassandra the ability not to 

fail since there is no master node in it. Moreover, because of the peer-to-peer, the 

performance improves more than any other database in the previous versions [67].  

3.2.1.1 Key Space 

Apache Cassandra keeps all the information about the Metadata internally in a key space 

to help in providing the cluster with the needed information for all the operations in it 

[68]. Each node contains a Metadata. This Metadata is stored there by the aid of the key 

space, and the Metadata contains other information which includes [68]: 

 the name of the cluster 

 the token of the node 

 the information about the transferred data 

 the information about the schema and the key-space definitions 

 the node’s bootstrapping 

 

  



 

 40 

3.2.1.2 Commit Logs, Memtables and SSTables 

The commit logs in Cassandra help to improve it. The commit logs are responsible for 

the writing operation when a writing operation appears the commit logs record it in 

case a failure happens to recover it later. Other than recording it in the commit log, the 

writing operations are considered unsuccessful. Moreover, they can be recovered by 

the MemTable. After the commit log records data as successful, it will be written to the 

MemTable which will redirect the information to the SSTable after the MemTable 

reaches its limit. The MemTable will be created after that and stores the data from the 

SSTable, after that the SSTable will flush itself [69]. See Figure 3.5 below. 

 

Figure 3.5. Writing operation in Apache Cassandra 

Each memTable has a threshold value to decide the need of flushing when it reaches 

it. To control the limit amount copy of data in Cassandra, we need to set a value to 

the replication factor, and this factor is not associated with the number of cluster 

nodes. This procedure helps Cassandra to achieve durability and scalability. For the 

consistency, there are many levels of it in Cassandra. The part responsible about the 

levels is called a quorum. The consistency controls the amount of data replication 

before sending a response to a user request [69]. There are 5 levels (0, 1, ANY, 

QUORUM and ALL) [68]. The quorum value can be decided by [69]: 

Quorum Value = Replica Number / 2 + 1 



 

 41 

3.2.1.3 Hinted Handoff 

This feature in Cassandra Architecture provides availability. When a node fails in the 

cluster, the other nodes around it starts to acquire data temporarily. When the 

corrupted node returns to work, it starts collecting and reallocate the temporary data 

inside it. This helps to avoid the loss of the data. [70]. 

3.2.1.4 Compaction 

This operation is responsible for feeling the space in the SSTable by shrinking the 

data to shift this space to the end of the memory. This procedure is merging the 

SSTable and moving the keys, combining the columns and neglect the tombstones. 

The tombstone is the value associated with the delete operation and is responsible 

about recording the last delete operation which has been done on a record [68]. The 

SSTable also helps not to delete any record easily. Rather than deleting it after a 

delete operation appears, Cassandra will consider this record as an update and keep it 

in the ram within a tombstone. The whole procedure can be controlled by the value 

of the flag for this operation. This operation helps in reducing the space on the 

storage to receive a new data [68]. 

3.2.1.5 Bloom Filter 

In 1970 Burton bloom invent the bloom filter. The bloom filter is a probabilistic data 

model. This filter searches for a record existing in the SSTable in Apache Cassandra 

by using a fast non-deterministic algorithm. It works like a cache memory for fast 

search operations, and this boosts the operation with the large volume size data [71]. 

3.2.1.6 Staged Event-Driven Architecture (SEDA) 

With the help of SEDA model, the Cassandra can divide any set of operations into 

many stages to execute each stage. SEDA is suitable for simplifying the construction 

of the big data and can handle a massive amount of data quickly. "SEDA stages are 

composed of three components: event queue, an event handler, and an associated 

thread pool "[68]. 



 

 42 

3.2.2 Data Model  

The representation of the data model in Cassandra is distributed into multi-

dimensional tables. The tables contain keys as indexes and rows with a fixed size. 

The shape of a cluster in Apache Cassandra is a ring. Moreover, each cluster has its 

key space. Each key space should have a name and attribute to do the key space work 

against the other keys just as similar as the keys in relational databases. The key 

space consists of the features below [72]: 

 Replication Factor 

Replication factor is responsible for choosing the number of nodes to store data at 

the same time. If we have a replication factor of 4, then it means that four nodes 

will receive the rows of data and store them. The replication factor is vital to 

achieving high consistency. 

 

 Replica Statement Strategy 

There are two strategies for replication in Apache Cassandra: the Simple Strategy 

also known as (Rack Unaware Strategy) which is used for one rack and one data 

center, Network Topology Strategy known as (Rack Aware Strategy) which is 

used when one needs more than one data center. Also, it is recommended for a 

future extending plan for data centers [73].   

 

 Column Family 

The column family contains the rows of data as similar to the tables in the 

relational database systems. The row consists of ordered columns. The whole 

structure of the data is a container (Column Family). A column family can be 

associated with more than one key space. The column family has three main 

features: name, value and time stamp. The row value is named as a validator, and 

the column value is named comparator. There are many data types in Apache 

Cassandra. See Figure 3.6 below. 



 

 43 

 

Figure 3.6. Data Types in Cassandra 

3.2.3 Apache Cassandra Features 

Just similar to the hash table data structure, Cassandra is considered as a key-value 

store. Cassandra has a decentralized design which means any node can do read and 

write operation separately. This mechanism is good to avoid the node failure. See 

Figure 3.7. The Read/Repair method provides Cassandra with high availability. And 

there is no need to match column with a row like the relational database systems. 

 

Figure 3.7. Read/Repair node procedures in Cassandra 



 

 44 

The nodes can communicate with the gossip protocol [74]. The gossip protocol is 

responsible about to controlling the sending and receiving the data from and to the 

cluster. Cassandra is an AP software according to the CAP Theorem. However, it has 

an amount of consistency that can unbalance the relation between availability against 

data accuracy. Since Cassandra is part of the Apache Family it can integrate easily 

with Apache Hive [75], Map Reduce and Apache Pig [76] to make a complete set for 

the CAP Theorem. 

3.2.4 Fault Tolerance in Cassandra 

As we mentioned before, Cassandra is a peer-to-peer architecture with ring 

connection. Every node can read and write the data. Depending on the replication 

factor value, the nodes with the same number of the value will receive the same data. 

However, even with that, there is a node without a key called the zookeeper. The 

system selects the zookeeper. The nodes that will receive the keys are equal to (N - 

1) where N is the number of total nodes. If a node fails, the other node will receive 

the data until it returns to work again. Then it will start to collect the data from the 

nodes. In case a leader node fails then another node will be selected as a leader. The 

fail tolerance is limited to hardware fails or natural accidents [77].   

3.3 Security in NoSQL Databases 

The founders of the NoSQL focused on the performance rather than the security as 

clarified in the previous chapter. Moreover, when the users start increasing their 

feedback about the weakness of the big data some providers start considering the 

security features. Unlike the RDBMS, the security is interconnected with the 

performance of the NoSQL databases. However, at the same time, it is weak because 

NoSQL databases miss the centralized controller by the user. 

3.3.1 Cluster Security in NoSQL  

The security in NoSQL model is similar in design to the RDBMS but different in 

work. Some security tools can be found as a built-in feature in the NoSQL databases. 

We have the secure communication connector SSL/TLS, authentication with Kerberos, 



 

 45 

data at rest and data at motion transparent encryption. The main problem in the 

security of NoSQL databases is the cost which is expensive. See Figure 3.8 [78]. 

 

Figure 3.8. NoSQL Security Model 

3.4 Authentication   

In the beginning, the NoSQL databases did not contain proper support for 

authentication [79], but nowadays most of the NoSQL databases contain the 

authentication method. This functionality is responsible of specifying the user data 

through logging process or when we all know the username and password. The 

principal activities of this part are the following [80]. 

1. Providing the user with the information about the availability of the username that 

he picked to avoid creating the same login access information to the different user. 

2. Creating centralized access to the users on the database itself. And prevent the 

unauthorized user from logging the system.  

3.  Giving the constraints about creating the password and what it need to create a 

suitable secure password. Like the minimum characters for the password and the 

level of complexity.  

  



 

 46 

3.4.1 Authentication in MongoDB   

There are several algorithms for authentication in MongoDB. In the open source 

edition, we have the SCRAM which stances for (Salted Challenge Response 

Authentication Mechanism). The SCRAM is the current default authentication 

Mechanism in MongoDB, and it uses the SHA-1 Encryption Algorithm. It is used to 

encrypt names, passwords and database authentication by comparing the user and its 

password that are associated with a specific database [81]. The second one is the 

MongoDB-CR (Challenge Response). It was the previous default Mechanism until 

the version 3.0. It was used to identify the users by their passwords [82]. After the 

2.6 versions, the MongoDB made another authenticate mechanism called the x.509 

Certificates. It is used to authenticate the users to login the database by using the 

certificates through the TLS/SSL connection rather than users names and passwords. 

To use this method one needs to generate a valid certificate with a single authority. 

The certificate should contain two fields (keyUsage, extendedKeyUsage) which 

contain the digital user signature and its authority [83]. In the enterprise, we have 

additional mechanisms to the previous methods. We have FIPS which stands for 

(Federal Information Processing Standard) which a security standard to the US 

computer security criteria to all the software that encrypts and decrypts the data 

securely. There is a need to have the OpenSSL library to use the FIPS 140-2 [84]. 

Another mechanism is the Kerberos which is offered to mongod and mongos. It is a 

protocol for industry authentication. It is used for large size client-server systems. In 

this mechanism, each user has to use authenticated communication, and this is called 

the principal, and the principal should have a unique name. This procedure is done 

by the KDC (Kerberos Key Distribution Center) which contains the principals, and 

each principal is related to a secret key. When a user sends a request to obtain the 

ticket to access, the KDC checks the client's secret key and builds a connection after 

checking the server's secret key, and it keeps the secrets hidden for both sides 

(client/server) [85]. The enterprise edition also provides another mechanism for 

proxy authentication. Administrators use this feature. They manipulate the user's 

requests to the cluster and proxy their authentication to LDAP (Lightweight 

Directory Access Protocol) [86].  



 

 47 

3.4.2 Authentication in Apache Cassandra    

In Cassandra, we have fewer mechanisms than in the MongoDB. We have in the open 

source version the standard authentication only by using the usernames and passwords 

login which are called the Internal Authentication [87]. In the enterprise edition, we 

have three mechanisms: Internal Authentication, LDAP and Kerberos [87]. Also, those 

are the same mechanisms explained above in the MongoDB authentication. 

3.5 Authorization  

The authorization is the process of giving the users the accessibility to a specific part 

of the database which means giving the user the limit access to the objects in the 

database by making constraints and roles to the users for those objects. To let them 

reach only the guaranteed data for those users without showing them unnecessary or 

private data for other users [88]. 

3.5.1 Authorization in MongoDB   

The authorization in MongoDB is done by the RBAC (Role-Based Access Control). 

The RBAC gives a role or more to the user to limit his access to the resources of the 

database system and anything outside the roles is specified to the user, the user cannot 

access. The same mechanism is used by the enterprise version of MongoDB [89]. 

3.5.2 Authorization in Apache Cassandra   

In Cassandra, we have the same as the MongoDB RBAC with the same 

functionality. Also, there is RBAC in the enterprise. In the Cassandra, this feature 

is not enabled by default. The Cassandra.yaml file can easily be configured and 

uncommented the two lines:   

Authenticator: com.datastax.bdp.cassandra.auth.PasswordAuthenticator 

Authorizer: com.datastax.bdp.cassandra.auth.CassandraAuthorizer 



 

 48 

Cassandra provides more flexibility, we can easily enable both the authentication and 

authorization, and we can use authentication without authorization to give free space 

to the user to work with no constraints on them [90]. 

3.6 Auditing 

The auditing can be recognized as the system mechanism recording the user activity 

in the system and monitoring them when needed [91]. It also helps in the security to 

detect the possible cracking in the user’s passwords [92]. Auditing is the ability to 

detect any attempt to insert unauthorized data to the database and the way of 

detecting that. The auditing securing can be done by recording all the request to the 

database and saving them in logs and trails to detect them and filter them. The 

Auditing can also be done through the changes in the configuration files for the 

databases not only in the data [88]. 

3.6.1 Auditing in MongoDB 

Unfortunately, there is no auditing in the open source version of MongoDB, whereas 

in the enterprise edition we have many features for auditing [93]: 

 Schema (DDL): In this feature, the MongoDB records the Data Definition 

Language queries such as creating and deleting the database objects and 

databases. 

 Replica set and sharded cluster: This means recording the replication and 

sharding operations and configurations. 

 Authentication and Authorization: Recording the authentication and 

authorization information and logs within the clusters and databases are needed. 

 CRUD operations: Recording all the operations we make on the database 

information (create, read, update and delete) and records. 

 Moreover, the activities between the clients and databases. 

  



 

 49 

3.6.2 Auditing in Apache Cassandra  

Just like the MongoDB, Cassandra open source version does not contain auditing 

property. In the enterprise, we have the following features [94]: 

 AUTH: Recording the login operation to the database. 

 DDL: The logs files of the Data Definition Language operations. 

 DML: The logs files of the Data Manipulation Language operations. 

 DCL: The logs files for the Role-Based (RBAC) operations. 

 QUERY: Records all the queries that have been done in the database. 

3.7 Transport Encryption  

The data always transports from the user to the database. However, here the 

transportation is encrypted to save the data from unauthorized users to see its 

content. Encryption, in general, has several ways. The Transport Encryption and 

Encryption data at rest. The transport encryption is associated with the connection 

while the encryption in data at rest is when the data in the storage [88]. We will 

cover the transport encryption only. 

3.7.1 Transport Encryption in MongoDB  

In the open source version, MongoDB supports TLS/SSL (Transport Layer Security) 

and (Secure Sockets Layer). Those algorithms use the OpenSSL libraries. Also, they 

make sure that the connection can be readable by only the intended user. They encrypt 

the connection key of 128-bit of length. In the enterprise edition, we have the same 

method with an additional one, the FIPS with the minimum of 128-bit length key [95]. 

3.7.2 Transport Encryption in Apache Cassandra  

In Cassandra, in the open source edition, we have an encryption method, encryption 

with SSL. It can work in hardware and software. It can be a node or cluster or peers. 

The endpoints need to transport the information between them to build the trust in 



 

 50 

the connection, and then the keys need to be generated. The public key will be shown 

to the entities of the connection, and the private keys will be stored on the server 

until it receives a certificate from the user. Then it will check the private key that is 

associated with, and it will provide the permission for the connection [96]. Among all 

the other version of MongoDB and Cassandra, the enterprise has a various number of 

JCE cipher algorithms [97]:   

 AES/CBC/PKCS5Padding. With different keys: 128, 192, and 256. 

 AES/EBC/PKCS5Padding. With different keys: 128, 192, and 256. 

 DES/CBC/PKCS5Padding. With 56-bit key. 

 DESede/CBC/PKCS5Padding. With different keys: 112, 168. 

 Blowfish/CBC/PKCS5Padding. With keys: 32, 40, 56, 112, 128, 168, 192, 256, 

and 448. 

 RC2/CBC/PKCS5Padding. With different keys: 40, 56, 112, and 128. 

The default algorithm is the AES/CBC/PKCS5Padding with a key length of 128-bit. 

3.8 Encryption at Rest 

We mean by this to protect the data which is not moving through the traffic in 

database associated Network. We can conclude that any data is either a computer or 

any terminal machine that is not moving to another entity like node or cluster which 

is called Data at Rest. Moreover, it also means that the data is not active or it has any 

process on it [98]. 

3.8.1 Encryption at Rest in MongoDB  

There is no encryption at rest in the open source version. In the enterprise edition 

MongoDB supports many algorithms to encrypt the data: 

 AES256-CBC (Advanced Encryption Standard in Cipher Block Chaining mode) 

via OpenSSL 



 

 51 

 AES256-GCM (Advanced Encryption Standard in Galois/Counter Mode) 

Both algorithms work with 256-bit keys only. We can run them either locally on our 

machine or remotely through KMIP (Key Management Interoperability Protocol) 

server [99]. 

3.8.2 Encryption at Rest in Apache Casssandra 

We do not have it in the open source version. In the enterprise, we have six 

algorithms which work with the different length of keys and can run locally and 

remotely through KMIP server [100]: 

 AES/CBC/PKCS5Padding with keys: 128, 192 and 256. 

 AES/ECB/PKCS5Padding with keys: 128, 192 and 256. 

 DES/CBC/PKCS5Padding with 65-bit key only. 

 DESede/CBC/PKCS5Padding with keys: 112 or 168. 

 Blowfish/CBC/PKCS5Padding with keys: from 32 to 448. 

 RC2/CBC/PKCS5Padding with keys: from 40 to 128. 

3.9 JMX Authentication  

JMX is a term stands for (Java Monitoring Extension). It is a technology for 

monitoring the checks of the progress of the resources depending on the JVM (Java 

Virtual Machine). This technology provides a deep controlling for the resources that 

have been built by Java programming language. It uses the MBeans (Managed 

Beans) to collect all the information, and those beans are Java objects that are laid in 

MBean server. There is no support for JMX in MongoDB at all. Datastax provides 

this tool in Apache Cassandra [101].  

  



 

 52 

3.10 Authentication Caching 

It is another technology that is supported in Apache Cassandra. The cache is 

temporary storage to store data for quick response with the limited size of storage for 

only the important information. The caching in Cassandra is storing the roles of the 

user login and related information. The caching helps to not authorize the user many 

times during work in the database. It limits many logins at a time without the need to 

do the authorize procedures many times. The default value for a user role to stay in 

the cache is measured with milliseconds, and the roles stay in the cache for 120000 

milliseconds (2 minutes) as a default. The same time for updating is needed.  For the 

permission to a user to do these procedures is 120000 milliseconds and to update it 

2000 milliseconds. As the maximum number of entries allowed in the cache depends 

on RLAC (Row-Level Access Control) and the formula below gives the right size to 

the data to be cached [102]: 

numRlacUsers * numRlacTables + 100 

3.11 Proxy Roles  

Just like the authenticating caching, the proxy rules are another security feature 

counted to Apache Cassandra except it is in the enterprise version only. The proxy 

rules allow the user to log to a server and execute the CQL (Cassandra Query 

Language) commands in the application layer. This technique means that this server 

is responsible about transferring the commands to the database server and replying to 

the user requests without the need to log them to the database server. As an outcome, 

it helps to secure the data and limit the authorization to the user in the command 

[103]. See Figure 3.9 below. 



 

 53 

 

Figure 3.9. Proxy Roles in Cassandra  

3.12 Node-to-Node encryption  

Using SSL (Secure Sockets Layer), we can secure the data that transfers between 

nodes in a cluster. There is no such mechanism in MongoDB open source version, 

but the situation is different with the enterprise copy. In MongoDB enterprise, we use 

the same techniques and algorithms we have mentioned earlier in the Transport 

encryption part with a minimum of 128-bit length for the key [104]. In Cassandra, all 

the nodes should have an SSL certificate, and they should modify the cassandra.yaml 

file by enabling the server_encryption_options line for each node and there is a need 

to set the key store and the trust store. After that, we restart the Cassandra to update 

the changes [105]. 

3.13 Client-to-Node encryption  

This mechanism is to encrypt the data which can be found in all the versions of 

MongoDB and Cassandra. This technique is about securing the data between the user 

application machine and the cluster of the database. This technique depends on the 

SSL by securing the connection channel between the wanted node in the cluster and 

the user (client). MongoDB deals with this technique in the same way as the node-to-

node encryption with a change in the 3.2.6 version. By checking for a certificate for a 

user identity with the data allocated in a .pem file that contains the root certificate 

chain to check whether the user is the right user by checking his identity that already 



 

 54 

has been set by the CA (Certificate Authority). This certificate should be valid in the 

system the moment user used it to log the cluster [104]. In Cassandra, it is less 

complicated. All we need to do is to enable client_encryption_options on each node, 

and, and then we restart the Cassandra [106]. 

 

 

 

 

 

 

 



 

 55 

CHAPTER 4 

TEST ENVIRONMENT 

 

In this chapter, the details of MongoDB and Cassandra testing environments will be 

given. From the installation of databases, configuration parameters are chosen to set 

up single and cluster nodes test, and network setup. 

4.1 Hardware Features 

The cluster is composed of four computers, each of which has the following 

specifications: 

 4 GB RAM 

 Intel Core i3 processor 

 3.33 GHz processor speed  

 200 GB of ephemeral storage in each unit 

 Ubuntu 16.04 LTS (64-bit) 

4.2 Software Features 

 Several software components were used to produce the results presented in this study. 

They are as follows: 

4.2.1 Yahoo Cloud Serving Benchmark (YCSB) 

YCSB is an open source tool developed by Yahoo labs [107] used in benchmarking 

the performance of several databases, such as HBase, OrientDB, Redis, MongoDB,



 

 56 

Cassandra, and Hypertable. The tool was first introduced in 2010 by Brian F. Cooper 

[108] as a tool to test cloud base services, and then furtherly developed by the team to 

include several SQL and NoSQL databases. Figure 4.1 below shows YCSB tool 

architecture. The tool is typically used to stress test Read, Write, Update, Scan, Insert 

operations on the given database. Although there are six different workloads 

predefined and set by default, each workload can be redesigned to fit any test required 

by the user. For example, the read and write percentage performed by YCSB tool can 

be reconfigured with an ability to choose the size of record and operation counts. 

 

Figure 4.1. YCSB Architecture 

Installation of latest version YCSB tool (0.12.0) is a straightforward process, which 

is explained as follows:  

 

The following should be defined and passed as arguments to YCSB tool to run a 

workload: 

1 – Load/Run: Load is used to load the data into the designated databases, whereas 

Run is used afterward to start the defined test. 

terminal> curl -O --location 

https://github.com/brianfrankcooper/YCSB/releases/download/0.12.0/ycsb-0.12.0.tar.gz 

 

terminal> tar xfvz ycsb-0.12.0.tar.gz 

terminal> cd ycsb/bin 



 

 57 

2 – The name of the database is like mongodb for Mongo database, and cassandra-

cql for Cassandra database. 

3 –  Workload name is such as workloada, workloadb. 

4 –  Remote host IP address where the database is hosted. 

For example, to run a stress test using workload B against a Cassandra database, we 

used the following: 

 

It is important to note that –s sets YCSB to statistically reports its output on the 

terminal, -P to define a workload, and –p to pass the remote IP address. 

4.2.2 Mongo Database (Open Source) 

Mongo database is one of the two databases tested in this study. Single node 

installation and configuration is a simple procedure. However, cluster configuration 

requires more attention to network and building cluster entities. For this study, we 

used MongoDB 3.6.3 installed in a machine hosting Ubuntu 16.04 LTS (long-term 

supported version). According to Mongo website [109]. The required steps to install 

MongoDB are elaborated below. 

Step 1 – Adding MongoDB keyserver and package source list: 

 

Step 2 – Run package update:  

 

terminal> ycsb load cassandra-cql -s -P workloads/workloadb -p  

hosts="192.168.56.101" 

 

terminal> ycsb run cassandra-cql -s -P workloads/workloadb -p  

hosts="192.168.56.101" 

terminal> sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 

2930ADAE8CAF5059EE73BB4B58712A2291FA4AD5 
 

terminal> echo "deb [ arch=amd64 ] http://repo.mongodb.org/apt/ubuntu "$(lsb_release -

sc)"/mongodb-org/3.6 multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-3.6.list 

terminal> sudo apt-get update 

 



 

 58 

Step 3 – Install MongoDB: 

 

Step 4 – Start MongoDB server: 

 

After installation, we must prepare the database to receive YCSB benchmark data by 

creating a database named "ycsb," while YCSB tool will create the required 

collection inside ycsb database named "usertable." 

 

4.2.2.1 MongoDB Cluster Installation 

Throughout documentation site [110], MongoDB cluster is divided into three main 

entities, see Figure 4.2 below. 

1 – ConfigSvr: Config servers store metadata and configuration settings of the 

cluster are used to map the requested data by client’s applications to the shard 

node which contains it. Such data can be retrieved reliably and consistently. 

2 – Database Router (referred to as Mongos): The DB query routers are the 

MongoDB instances responsible for carrying applications data queries and 

building the right responses from the appropriate shards nodes through 

consulting cluster’s Config servers. In other words, DB routers are the interface 

between client applications and data stored among shards nodes. 

3 –  Shards (i.e. Nodes): Shards are where all data stored, only containing a subset of 

the total sharded data. MongoDB is designed shards to hold data in what is 

called replica sets instead of a single machine which inherently allows data to be 

replicated among several secondary nodes to ensure data availability in the 

events that a primary shard node goes offline. 

terminal> sudo apt-get install mongodb-org=3.6.3 mongodb-org-server=3.6.3 mongodb-

org-shell=3.6.3 mongodb-org-mongos=3.6.3 mongodb-org-tools=3.6.3 

terminal> sudo service mongod start 

terminal> mongo –host 95.183.187.144 

> use ycsb; 



 

 59 

 

Figure 4.2. MongoDB Cluster Design 

One should note that these entities are not different software packages designed to 

perform the duties mentioned above, but it is the MongoDB software package 

performing different roles defined in the database configuration file; found under 

/etc/mongo/mongo.conf. For example, to configure Shards, the parameter 

"ClusterRole:" should hold the value of shardsvr, whereas the same parameter for the 

config server should be set to configsvr. 

For to test the performance of MongoDB cluster, we configured a cluster containing 

six MongoDB nodes; four shards, one DB router, and one ConfigSvr. Figure 4.3 

gives an overview of cluster layout used in this study. 

 

Figure 4.3. MongoDB Cluster Design Overview 



 

 60 

The installation of Mongo databases on each node was done according to the steps 

explained in Section 4.2.1 above, however, starting the cluster was accomplished as 

follows: 

Step 1 – Start the ConfigSvr: 

 

Step 2 – Start every Mongo database in every Shard node: 

 

Step 3 – Start and connect the DB router to cluster ConfigSvr: 

 

Step 4 – Login to DB router from another terminal and start adding Shard nodes 

using sh command: 

 

Step 5 – Confirm the cluster status: 

 

Step 6 – Create Sharded database named “ycsb” and add shard collection “usertable”: 

 

Terminal> mongod --config /etc/mongod.conf --fork 

 

Terminal> mongod --config /etc/mongod.conf --fork 

 

Terminal> mongos --configdb "replConfig/95.183.187.142:27017" --bind_ip 

95.183.187.140 

 

 

mongos> sh.addShard ("shardrep1/95.183.187.143:27017") 

mongos> sh.addShard ( "shardrepl2/95.183.187.145:27017") 

mongos> sh.addShard ("shardrepl3/95.183.187.144:27017") 

mongos> sh.addShard ( "shardrepl4/95.183.187.146:27017") 

 

 

 
mongos> sh.status () 

 

 

 
mongos> use ycsb; 

mongos> sh.enableSharding ("ycsb"); 

mongos> sh.shardCollection ("ycsb.usertable", {"name":1}); 

 



 

 61 

4.2.3 Cassandra Database (Open Source) 

Cassandra is the second database tested in this study licensed and maintained by 

Apache [111]. We used the latest version of Apache Cassandra (3.11.1) along with 

Java 8 installed on Ubuntu 16.04 LTS according to the following instructions [112]: 

Step 1 – Install Java 8: 

 

Step 2 – Add Cassandra keyserver and package source list: 

 

Step 3 – Run system update: 

 

Step 4 – Install Cassandra: 

 

Step 5 – Check Cassandra server status: 

 

terminal> sudo add-apt-repository ppa:webupd8team/java 

terminal> sudo apt-get update 

terminal> sudo apt-get install oracle-java8-set-default 

 

terminal> gpg --keyserver pgp.mit.edu --recv-keys F758CE318D77295D  

terminal> gpg --export --armor F758CE318D77295D | sudo apt-key add - 

terminal> gpg --keyserver pgp.mit.edu --recv-keys 2B5C1B00  

terminal> gpg --export --armor 2B5C1B00 | sudo apt-key add - 

terminal> gpg --keyserver pgp.mit.edu --recv-keys 0353B12C  

terminal> gpg --export --armor 0353B12C | sudo apt-key add - 

terminal> echo "deb http://www.apache.org/dist/cassandra/debian 311x main" | sudo tee -

a /etc/apt/sources.list.d/cassandra.sources.list 

terminal> sudo apt-get update 

 

terminal> sudo apt-get install cassandra 

 

terminal> sudo service mongod status 



 

 62 

Now, “ycsb” keyspace and “usertable” table should be created accordingly: 

 

4.2.3.1 Cassandra Cluster Installation 

Cassandra cluster designed by Apache provides a quick and easy way to build and 

configure database cluster if compared to MongoDB approach. However, MongoDB 

approach of clustering databases guarantees horizontal and vertical scalability of the 

cluster whereas Cassandra approach was designed to scale only horizontally. We 

followed the procedure found in Cassandra documentation website [113] and 

changed several configuration parameters in Cassandra.yaml file is (found under 

etc/cassandra/cassandra.yaml) to accommodate our cluster design. In every node, we 

performed the following: 

Step 1 – Set the cluster name to “TestCluster” 

 

Step 2 – Set tokens_num to 256: 

 

Step 3 – Set rpc_address to host ip address: 

 

terminal> cqlsh 95.183.187.144 

cqlsh> create keyspace ycsb 

        WITH REPLICATION = {'class' : 'SimpleStrategy', 'replication_factor': 3 }; 

cqlsh> USE ycsb; 

cqlsh> create table usertable ( 

        y_id varchar primary key, 

        field0 varchar, field1 varchar, 

        field2 varchar, field3 varchar, 

        field4 varchar, field5 varchar, 

        field6 varchar, field7 varchar, 

        field8 varchar, field9 varchar); 

 

cluster_name: ‘TestCluster’ 

num_tokens: 256 

 

rpc_address: 95.183.187.140 



 

 63 

Step 4 – Set seed to remote seeder address: 

 

Step 5 – Configure the listening address to host ip address: 

 

Step 6 – Set data snitch to RackInferringSnitch 

 

After that, the seeder node should be started first followed by starting the remaining 

three nodes. It is important to note that Cassandra Seeder Node functions as 

ConfigSvr and Mongos (DB Router) when compared to MongoDB cluster. Figure 

4.4 gives an overview of Cassandra cluster layout used in this study.  

 

Figure 4.4. Cassandra Cluster Design Overview 

4.3 NoSQL Databases Security 

The second aim of this study is to compare and test the security of both Cassandra 

and MongoDB databases. Through reading security features of both databases from 

[114-116], we have found that Cassandra and MongoDB open source versions only 

support few security features such as authorization, authentication, data transport 

- Seed: “95.183.187.143” 

Listen_address: 95.183.187.140 

 

endpoint_snitch: RackInferringSnitch 

 



 

 64 

encryption. Whereas the Enterprise edition of both databases furtherly supports an 

extensive list of security features including data encryption at rest, JMX 

authentication, Proxy roles, node-to-node encryption. 

 In this study, the security features of open source and an enterprise edition for both 

databases will be evaluated against ten security factors identified from [114-116], then, a 

general conclusion will be drawn concerning the database which provides better security 

features and protection of its data. The encryption benchmark (i.e., overhead) of both 

databases will be demonstrated using different workloads of YCSB. 

4.4 MongoDB Enterprise 

MongoDB enterprise edition is also available through Ubuntu package manager where 

the same procedure depicted in Section 4.2.2 above can be used to install all the required 

packages. However, the apt-get repository list and installation command are different: 

Step 1 – Add the packet source list: 

 

Step 2 – Install the Enterprise edition: 

 

4.5 MongoDB Enterprise Encryption 

As discussed in Section 4.3, it is essential to test encryption speed of both databases, 

in other words, the cost of encrypting data at rest. To prepare MongoDB for such 

test, firstly, the database encryption keys must be generated and saved to be 

accessible by the database itself. Secondly, data encryption is not active by default, 

and therefore, an argument must be passed to enable the encryption. We used 

OpenSSL to randomly generate the 256-bit key, and the key is then stored in a file 

named "system_keys" which is then passed to the mongod command.  

terminal> sudo echo "deb [ arch=amd64,arm64,ppc64el,s390x ] 

http://repo.mongodb.com/apt/ubuntu xenial/mongodb-enterprise/3.6 multiverse" | sudo 

tee /etc/apt/sources.list.d/mongodb-enterprise.list 

terminal> sudo apt-get install mongodb-enterprise 

 



 

 65 

The following must be performed in order to enable MongoDB encryption engine. 

 

4.6 Cassandra Enterprise 

Cassandra enterprise edition is maintained and developed by Datastax, and therefore, 

it is no longer available under Apache open source license. The installation is done 

merely by downloading the related package from Datastax website provided at [117] 

and following the installation instructions.   

4.7 Cassandra Enterprise Encryption 

In general, enabling encryption in Cassandra is similar to MongoDB in that keys 

must be generated first, and then encryption will take place. However, Cassandra 

enterprise provides its tool to generate encryption keys, and the tool accepts key 

length and name of encryption algorithm used as parameters: 

 

By default, the generated key(s) will be stored under “dse/resources/dse/ 

system_keys/system_key”. Another advantage of Cassandra enterprise encryption 

engine is that it allows per-table encryption, which is a benefit over MongoDB 

encryption style which only allows per-database encryption.  

After creating ycsb keyspace along with usertable collection, we alter the table to add 

encryption accordingly: 

 

 

terminal> openssl rand -base64 32 > system_keys 

terminal> mongod --enableEncryption --encryptionKeyFile system_keys 

 

 

terminal> dsetool createsystemkey 'AES/ECB/PKCS5Padding' 256 system_key 

 

cqlsh> ALTER TABLE usertable WITH compression = {'class': 

'EncryptingLZ4Compressor', 'cipher_algorithm': 'AES/ECB/PKCS5Padding', 

'secret_key_strength': 256, 'system_key_file': 'system_key'}; 



 

 66 

CHAPTER 5 

RESULTS 

 

In this chapter, the results of the two tested databases, MongoDB and Cassandra, are 

thoroughly explained in tables and illustrated figures. As we discussed in the 

previous chapter, YCSB benchmark tool will be used to emphasize testing the two 

databases according to the following four workloads (according to YCSB 

documentation site): 

1 –  Workload A: This workload has a mix of 50% reads and 50% writes. An 

application example is a session store recording recent actions. 

2 –  Workload B: This workload has 95% reads and 5% writes. We use application 

examples such as photo tagging and adding a tag as an update, but most 

operations are to read tags. 

3 –  Workload E: This workload has 95% scans and 5% inserts. In this workload, 

short ranges of records are queried instead of individual records. An application 

example is threaded conversations. 

4 –  Workload F: This workload has 50% reads and 50% read-modify-writes. In this 

workload, the client will read a record, modify it, and write back the changes. 

Three testing scenarios are proposed in this study for both databases, (1) Single node 

server test, (2) Multi-node test (Cluster), and (3) encryption overhead. At the end of 

this chapter, a comprehensive evaluation of four databases security (including 

enterprise edition) features is given. 



 

 67 

5.1 Single Node Test 

Several previous studies have considered testing of MongoDB and Cassandra 

performances in a single node scenario; however, there have been numerous 

architectural database updates since the newer versions of MongoDB 3.6.3, and 

Cassandra 3.11.1. Therefore, we are opted to repeat this test accordingly and to 

record any performance improvements/differences. 

For each of the workload mentioned above, we have tested each database with record 

counts from 20K to 100K and operation counts from 20K to 100K. 

5.1.1 Workload A 

Workload A is divided equally into 50% read, and 50% update, the tables below depict 

the performance of both databases along with throughput and average latencies.   

Table 5.1. Test Results of MongoDB (Workload A) 

 Run Time Throughput Read 

Operations 

Average Read 

Latency 

Update 

Operations 

Average 

Update Latency 

1 16435.333 1836.577 9931 715.426 10069 853.327 

2 34237.333 1178.981 20039 770.210 19961 897.791 

3 46760.666 1308.195 29931.666 694.376 30068.333 829.756 

4 68618.666 1176.480 39913.666 782.349 40086.333 903.535 

5 90840 1100.874 49947.666 826.171 50052.333 964.233 

Table 5.2. Test Results of Cassandra (Workload A) 

 Run Time Throughput Read 

Operations 

Average Read 

Latency 

Update 

Operations 

Average 

Update Latency 

1 39930 501.584 9946 1929.983 10054 1709.200 

2 72121.333 554.783 20021.666 1782.545 19978.333 1639.367 

3 114176.666 525.575 30002 1906.669 29998 1768.465 

4 153660.666 521.470 39891.333 1956.324 40108.666 1783.894 

5 180697.333 553.602 49926.666 1841.026 50073.333 1689.928 



 

 68 

Notice also Figure 5.1 which gives the more precise idea of the performance results. 

     
(A)                                                                                       (B) 

 

     
(C)                                                                                (D) 

 

     
(E)                                                                             (F) 

Figure 5.1. Workload A Test Performances Graph  

5.1.1.1 Workload A Findings 

Based on the illustrated results in Figure 5.1, we can conclude the following: 

1 –  Both databases performance was closely similar in Read and Update operations 

(Figure 5.1 – C, E). 

2 – MongoDB has lower Read and Update latency (Figure 5.1 – D, F). 

3 –  MongoDB is faster in terms of Runtime and Throughput (Figure 5.1 – A, B). 



 

 69 

5.1.2 Workload B  

Workload B consists of heavy Read at 95% with only 5% of update operation, the 

tables below depict the performance of both databases along with throughput and 

average latencies.  

Table 5.3. Test Results of MongoDB (Workload B) 

 Run Time Throughput Read 

Operations 

Average Read 

Latency 

Update 

Operations 

Average 

Update Latency 

1 18073 1106.901 18999.666 847.681 1000.333 1255.566 

2 35382 1130.569 37992.333 847.934 2007.666 1153.773 

3 50223.333 1197.029 56997.333 806.477 3002.666 1087.200 

4 69030.333 1158.954 75938.666 833.732 4061.333 1114.189 

5 84827 1178.901 94944 823.008 5056 1079.744 

Table 5.4. Test Results of Cassandra (Workload B) 

 Run Time Throughput Read 

Operations 

Average Read 

Latency 

Update 

Operations 

Average 

Update Latency 

1 39458.333 507.13 18956.333 1786.055 1043.666 1948.521 

2 73361 545.277 37985.333 1744.496 2014.666 1705.923 

3 106671 562.504 57023.666 1714.173 2976.333 1713.62 

4 142182.333 562.662 75979 1729.820 4021 1704.219 

5 174442.333 573.276 94991 1705.425 5009 1678.946 

   We can easily conclude that MongoDB is still better than Cassandra because 

MongoDB has also performed better than Cassandra. Although read and update 

operations baseline remains close, MongoDB has demonstrated low latency in both. 

Figure 5.2 below illustrates the performances results for workload B.   



 

 70 

      

(A)                        (B) 

      

(C)                                                                        (D) 

      

(E)                                                                              (F) 

Figure 5.2. Workload B Test Performances Graph  

5.1.2.1 Workload B Findings 

Based on the illustrated results in Figure 5.2, we can conclude: 

1 –  Both databases performance is closely similar in Read and Update, but MongoDB 

has performed slightly better in Update operations (Figure 5.2 – C, E). 

2 –  MongoDB has much lower Read and Update latencies (Figure 5.2 – D, F). 

3 –  MongoDB has also performed faster in terms of Runtime and Throughput 

(Figure 5.2 – A, B). 



 

 71 

5.1.3 Workload E 

Workload E consists of massive Scans at 95%, and 5% inserts, the tables along with 

figures below illustrate the observed performances of both databases along with 

throughput and average latencies.   

Table 5.5. Test Results of MongoDB (Workload E) 

 Run Time Throughput Scan 

Operations 

Average Scan 

Latency 

Insert 

Operations 

Average Insert 

Latency 

1 61140 327.248 18982 3116.253 1018 1215.029 

2 122496.333 326.551 37998.333 3132.648 2001.666 1248.305 

3 182979.333 327.956 57039.333 3121.077 2960.666 1281.497 

4 247197 323.638 75945.333 3166.320 4054.666 1342.127 

5 312054.666 320.487 94990.666 3199.101 5009.333 1354.309 

Table 5.6. Test Results of Cassandra (Workload E) 

 Run Time Throughput Scan 

Operations 

Average Scan 

Latency 

Insert 

Operations 

Average Insert 

Latency 

1 80894 247.681 19019.333 3939.912 980.666 2408.27 

2 169119 236.662 37998 4244.616 2002 2058.631 

3 251757 238.74 57008 4237.062 2992 2090.074 

4 341142.333 234.517 75967.666 4330.378 4032.333 2021.399 

5 429940 232.742 94996.333 4373.914 5003.666 2057.852 

 

  



 

 72 

See Figure 5.3 below which also concerns workload E. 

     

(A)                                                                           (B) 

     

(C)                                                                          (D) 

    

(E)                                                              (F) 

Figure 5.3. Workload E Test Performances Graph  

5.1.3.1 Workload E Findings 

In this workload, we are laboriously scanning for the queries with a partial percentage of 

inserting operations. Based on the illustrated results in Figure 5.3, we can conclude: 

1 –  Both databases performance is closely similar in Scans and Inserts (Figure 5.3 – 

C, E). 



 

 73 

2 –  MongoDB has lower Scan and Insert latencies, although Cassandra performance 

starts getting closer to MongoDB (Figure 5.3 – D, F). 

3 –  Although, MongoDB has the faster Runtime, MongoDB and Cassandra 

Throughput baseliners are not far away from each other (Figure 5.3 – A, B). 

5.1.4 Workload F 

Throughout our test, we have found the workload F to be the highest workload 

concerning performance and latency. It consists of 50% Reads and 50% Read-

Modify-Writes operations. The tables below depict the measured performances of 

both databases along with throughput and average latencies, while Figure 5.4 

illustrates performances comparison. 

Table 5.7. Test Results of MongoDB (Workload F) 

 Run Time Throughput Read 

Operations 

Average Read 

Latency 

RMW 

Operations 

Average RMW 

Latency 

1 27351 731.251 20000 830.059 9986.333 1840.798 

2 50711.666 794.682 40000 786.985 19889.666 1707.952 

3 79389.666 755.824 60000 824.531 29932 1791.495 

4 101342 792.430 80000 785.904 40127 1709.865 

5 134400.333 744.292 100000 836.038 49863.666 1827.968 

Table 5.8. Test Results of Cassandra (Workload F) 

 Run Time Throughput Read 

Operations 

Average Read 

Latency 

RMW 

Operations 

Average RMW 

Latency 

1 53806.666 371.71 20000.0 1689.699 10026 3333.299 

2 104141 384.100 40000.0 1713.053 19997.333 3323.215 

3 153152 391.768 60000.0 1689.571 29937.666 3302.937 

4 205605.666 389.098 80000.0 1723.413 40042.333 3321.504 

5 250886.333 398.586 100000.0 1677.215 50029 3256.287 



 

 74 

   

(A)                                                                             (B) 

  

(C)                                                                            (D) 

   

(E)                                                                              (F) 

Figure 5.4. Workload F Test Performances Graph 

5.1.4.1 Workload F Findings 

        In this workload, we have equally performed Reading and Read-Modify-Write 

operations. MongoDB still outperforms Cassandra in every aspect, runtime, 

throughput, and latencies, see Figure 5.4. 

  



 

 75 

5.2 Multi Node Test (Cluster) 

Real world production environment always relies on clustering to deploy databases. 

Such that is to gain better performance, to provide data safety and services high 

availability during failovers. Single node test of MongoDB and Cassandra gives a 

thorough understanding of where both systems stand in term of performance and 

latencies; however, such test cannot be generalized to include the performance of the 

same databases in a cluster configuration.   

Therefore, the second part of the test work presented in this chapter will focus on 

testing both databases in a cluster configuration, each cluster with four nodes. The 

test is conducted with different record counts and operation counts, each of which 

starts from 200K to 1000K, respectively. The details of each configuration have been 

mentioned in the previous chapter, see Sections 4.2.2.1 and 4.2.3.1. 

5.2.1 Workload A 

         The same procedure is followed as in single node test. Similarly, the tables below 

and figures illustrate the observed performance. 

Table 5.9. Test Results of MongoDB (Workload A) 

 Run Time Throughput Read 

Operations 

Average Read 

Latency 

Update 

Operations 

Average 

Update Latency 

1 189325.666 1056.521 100008 802.976 99992 1074.406 

2 442939.666 911.039 199921 988.431 200079 1213.205 

3 922747 658.34 300038.333 1380.849 299961.666 1682.892 

4 1303404.666 619.233 399872.333 1460.166 400127.666 1787.272 

5 2555220 392.490 500067.333 2450.367 499932.666 2649.419 

 

  



 

 76 

Table 5.10. Test Results of Cassandra (Workload A) 

 Run Time Throughput Read 

Operations 

Average Read 

Latency 

Update 

Operations 

Average Update 

Latency 

1 177161.333 1129.016 100001 1012.823 99999 709.259 

2 351265.333 1138.748 200067 1019.912 199933 702.684 

3 528788 1134.67 299697.333 1033.142 300302.666 2104.688 

4 716027.333 1117.376 400081.3333 1056.752 399918.666 707.610 

5 896105.666 1116.104 499666.666 1063.785 500333.333 704.772 

 

     

(A)                                                                             (B) 

    

(C)                                                                           (D) 

    

(E)                                                                        (F) 

Figure 5.5. Workload A Test Performances Graph  



 

 77 

5.2.1.1 Workload A Findings 

Cassandra cluster has impressively outperformed MongoDB in both Runtime and 

throughput (see Figure 5.5 – A, B). Although MongoDB outperformed Cassandra in 

Read latency at 200K, and for Update latency at 600K, MongoDB much worse in all 

other record sizes for both Read and Update latencies (see Figure 5.5 – D, F). 

5.2.2 Workload B 

With 95% Read and 5% update, the tables and figure given below show the obtained 

results. 

Table 5.11. Test Results of MongoDB (Workload B) 

 Run Time Throughput Read 

Operations 

Average 

Read 

Latency 

Update 

Operations 

Average 

Update 

Latency 

1 160311.333 1247.590 190027.666 784.821 9972.333 985.462 

2 325884.333 1227.465 380013.333 789.11 19986.666 1198.377 

3 502878.333 1193.212 570099.333 806.697 29900.666 1417.208 

4 858295 932.615 760093.333 1052.147 39906.666 1380.099 

5 1784495 560.897 950099.333 1758.093 49900.666 2201.564 

Table 5.12. Test Results of Cassandra (Workload B) 

 Run Time Throughput Read 

Operations 

Average 

Read 

Latency 

Update 

Operations 

Average 

Update 

Latency 

1 207330 964.645 189958.666 1023.69 10041.333 820.578 

2 415484.666 962.738 380012 1034.872 19988 808.048 

3 656912.666 913.377 570160 1096.912 29840 811.614 

4 903624 885.419 759964.333 1134.951 40035.666 809.569 

5 1097332 911.306 950123 1102.226 49877 806.6163 



 

 78 

    

(A)                                                                 (B) 

   

(C)                                                             (D) 

    

(E)                                                             (F) 

Figure 5.6. Workload B Test Performances Graph  

5.2.2.1 Workload B Findings 

     Workload B shows that MongoDB has outperformed Cassandra in both time and 

throughput (see Figure 5.6 – A, B). However, it fails at big record sizes, precisely at 

800K and 1000K. For Read latency (see Figure 5.6 – D), MongoDB performance 

was better at small record sizes, 200K, 400K, and 600K, but it fails at bigger records 

of 800K and 1000K. On the other hand, Cassandra outperformed MongoDB in all 

workloads for Update latency (see Figure 5.6 – F). 



 

 79 

5.2.3 Workload E 

        Workload E has Scan and Insert operations. Performance results are entirely 

different from single node test, as shown in the tables and figures below. 

Table 5.13. Test Results of MongoDB (Workload E) 

 Run Time Throughput Scan 

Operations 

Average  

Scan 

Latency 

Insert 

Operations 

Average 

Insert 

Latency 

1 489738.666 408.397 189961 2508.358 10039 1170.669 

2 983812.333 406.583 380000 2522.627 20000 1144.206 

3 1559814.666 384.734 569946.333 2671.215 30053.666 1137.814 

4 2305628.666 347.120 760287.666 2967.738 39712.333 1143.912 

5 2992651.333 334.343 949899.666 3084.228 50100.333 1157.343 

Table 5.14. Test Results of Cassandra (Workload E) 

 Run Time Throughput Scan 

Operations 

Average  

Scan 

Latency 

Insert 

Operations 

Average 

Insert 

Latency 

1 669796 298.608 189996 3444.24 10004 1089.534 

2 1407478.333 284.201 379963.333 3631.700 20036.666 1090.711 

3 2143035 279.988 570193.333 3690.331 29806.666 1070.743 

4 2905027 275.384 760025.333 3755.047 39974.666 1075.058 

5 3728085.333 268.382 950125.666 3855.991 49874.333 1098.939 

 

  



 

 80 

      

(A)                                                                            (B) 

      

(C)                                                                          (D) 

      

(E)                                                                       (F) 

  Figure 5.7. Workload E Test Performances Graph  

5.2.3.1 Workload E Findings 

MongoDB cluster has observed less running time and more throughput compared to 

Cassandra (see Figure 5.7 – A, B). Insert and Scan operations' baselines are closely 

similar. However, MongoDB cluster has outperformed Cassandra with Scan latency 

while the baseline remained close in Insert latency (see Figure 5.7 – D, F). 

  

   
   

 T
im

e 
in

 m
s 



 

 81 

5.2.4 Workload F 

Similarly, workload F is the slowest among other tested workloads. It has taken 45 

minutes when loading 1000K data in cluster test. The figure and tables are shown 

below summarize the obtained results. 

Table 5.15. Test Results of MongoDB (Workload F) 

 Run Time Throughput Read 

Operations 

Average 

Read 

Latency 

RMW 

Operations 

Average 

RMW 

Latency 

1 263087.333 760.204 200000.0 788.969 100032.333 1827.800 

2 548234.333 729.658 400000.0 799.145 199982 1932.037 

3 878288.666 683.342 600000.0 846.958 300256.333 2075.620 

4 1517119.333 527.782 800000.0 1347.153 399828 2426.343 

5 2589082.666 389.412 1000000.0 2042.227 500663.666 3126.639 

Table 5.16. Test Results of Cassandra (Workload F) 

 Run Time Throughput Read 

Operations 

Average 

Read 

Latency 

RMW 

Operations 

Average 

RMW 

Latency 

1 281281 711.032 200000 1006.159 99915.666 1760.635 

2 564644.666 708.411 400000 1020.211 199815.333 1773.740 

3 885190.333 677.827 600000 1084.707 299888.333 1840.972 

4 1214971.333 658.554 800000 1125.522 400062 1888.033 

5 1492033.333 670.283 1000000 1102.238 500035 1861.163 

 



 

 82 

    

(A)                                                                              (B) 

    

(C)                                                           (D) 

    

(E)                                                                           (F) 

Figure 5.8. Workload F Test Performances Graph  

5.2.4.1 Workload F Findings 

MongoDB cluster has performed slightly similar to Cassandra during 200K, 400K, and 

600K. However, time and throughput performances behavior increasingly become 

worse during 800K, and 1000K, respectively. Similarly, the performance baseline 

grew up in both Read (at 800K) and Read-Modify-Update (at 600K) latencies. 

  



 

 83 

5.3 NoSQL Security  

After reviewing the selected set of features defined in Section 4.3, we have found 

that open source version of both databases supports only a few features when 

compared to the enterprise edition. We have also found that Cassandra supports more 

algorithms and security features when compared to MongoDB enterprise edition. The 

table below summarizes the comparison of selected security features among 

MongoDB and Cassandra (Open Source and Enterprise).  

5.3.1 Security Features Findings  

From the above table, we can conclude the points below: 

1 –  MongoDB (open source and enterprise edition) supports more authentication 

algorithms while Cassandra supports taking the lead in the authorization. 

2 -  Cassandra supports a wide selection of encryption algorithms to encrypt data 

over the network and at rest (i.e., stored on disk), with an ability to choose 

various key lengths, such as 40, 56, 112, 128, 168, 192, 256, and 448 bit. 

3 –  Cassandra (open source and enterprise edition) supports JMX authentication and 

authentication caching. However, Proxy roles are supported by enterprise edition 

only, while MongoDB has no native support for these features. 

4 –  MongoDB provides better auditing features which are essential in database 

administration. 

5 – Node to node and client to node encryption are supported by Cassandra (open 

source and enterprise edition) and MongoDB enterprise. However, MongoDB 

open source version only supports the client to node encryption. 

6 –  Last and from [16, 18, 20], we can add the following: 

 

  



 

 84 

Table 5.17. Security Features Comparison 

Features MongoDB 

 (open Source) 

Cassandra  

(open Source) 

MongoDB 

(Enterprise) 

Cassandra 

(Enterprise) 

Authentication 

Yes 
supported: 

SCRAM, 

MongoDB-CR, 
x.509 

Yes 

supported: Internal 

Authentication 

Yes 
supported: SCRAM, 

MONGODB-CR, 

x.509, FIPS, Kerberos, 
SASL binding to LDAP servers. 

Yes 

supported: Internal, LDAP, 

Kerberos 

Authorization 

Yes 

supported: 
RBAC 

Yes 
supported: 

Cassandra Role 

Manager 

Yes 

supported: RBAC 

Yes 

supported: RBAC, LDAP, Kerberos 

Transport 

Encryption 

Yes 

supported: 

TLS/SSL 

Yes 
Supported: 

TLS, SSL 

 

Yes 

supported: FIPS, TLS/SSL 

Yes 

supported: 

AES/CBC/PKCS5Padding, 
AES/ECB/PKCS5Padding, 

DES/CBC/PKCS5Padding, 

DESede/CBC/PKCS5Padding, 
Blowfish/CBC/PKCS5Padding, 

RC2/CBC/PKCS5Padding 

Encryption At 

Rest 
No No 

Yes 

supported: AES256-CBC 
via OpenSSL. AES256-GCM 

Yes 
supported: 

AES/CBC/PKCS5Padding, 

AES/ECB/PKCS5Padding, 
DES/CBC/PKCS5Padding, 

DESede/CBC/PKCS5Padding, 
Blowfish/CBC/PKCS5Padding, 

RC2/CBC/PKCS5Padding 

Auditing No No 

Yes 
supported: 

schema (DDL), 

replica set and sharded cluster, 
authentication and 

authorization, 

CRUD operations, 
system activities from users to 

databases applications 

Yes 

supported: 

AUTH, 
DML, 

DDL, 

DCL, 
Query 

JMX 

Authentication 
No 

Yes 
Supported: 

File based 

username and 
password 

authentication 

No 

Yes 

Supported: 
File based username and password 

authentication, Cassandra-

controlled roles and passwords. 

Authentication 

Caching 
No Yes No 

Yes 

Supported: 

Internal (using given username and 
password), LDAP 

Proxy Rules No No No 

Yes 

Supported: 
Internal (using given username and 

password), LDAP 

Node-to-Node 

encryption 
No 

Yes 
Supported: 

TLS, SSL, FIPS 

Yes 

Supported: 

TLS, SSL, FIPS 
 

Yes 
Supported: 

TLS_RSA with AES 128 

CBC_SHA, 
TLS_DHE_RSA with AES 256 

CBC_SHA 

Client-to-Node 

encryption 

Yes 

Supported: 

TLS, SSL, FIPS 

Yes 

Supported: 

TLS, SSL, FIPS 

Yes 

Supported: 

TLS, SSL, FIPS 

Yes 

Supported: 

TLS_RSA with AES 128 
CBC_SHA, 

TLS_DHE_RSA with AES 256 

CBC_SHA 



 

 85 

5.3.2 Cassandra:  

-  Default does not encrypt Cassandra Data Files meaning that an attacker with 

access to the file-system can directly extract information database files. 

-  Default does not encrypt Inter-Cluster and Client communication interfaces. 

Encryption and clients-certificates should be enabled by setting the .keystore 

and .truststore with their related paths. 

-  Cassandra Query Language is a parsed language. Thus it is vulnerable to 

injection-attack.  

-  Cassandra uses Thread-Per-Client model which means a new connection requires 

Cassandra server to set new thread. Therefore, Cassandra is more vulnerable to 

DOS attacks where an attacker can initiate numerous fake connections to 

Cassandra server by only knowing remote server IP address. Cassandra project 

recommends utilizing connection pool to protect system resources better.   

-   Authentication in Cassandra is provided through IAuthenticate interface and 

through SimpleAuthenticator class, both are not enabled by default. It is also 

important to note that client interface defined in Apache Thrift Framework [118] 

will always transmit passwords in plain-text, such that if an attacker that is 

capable of sniffing network packets between any client and databases can easily 

discover the password. All passwords are stored in unsalted MD5 hashed format, 

however, MD5 is not cryptographically secure and it is easy to recover exact 

plain-text using pre-calculated lists and rainbow tables found online. 

-  Authorization in Cassandra is available through IAuthority interface, which comes 

with a set of security concerns. The first concern is the pass-through 

implementation, which gives full access permissions to all database files 

regardless of the users. The second one, weakness is the set of permissions given 

to any user which is stored on a flat file and not on a synchronized file across the 

cluster nodes. Therefore, the individual user must re-give the same set of 

permissions at each node of the cluster.  

  



 

 86 

5.3.3 MongoDB: 

-  Default does not encrypt MongoDB Data Files meaning that an attacker with 

access to the file-system can directly extract information database files. 

-  MongoDB uses the TCP port 27017 by default for clients' connections and TCP 

port 28017 for management statistics; default does not encrypt both of these ports. 

-  MongoDB heavily utilize JavaScript in its MongoDB Query Language which 

makes it more prone to script-injection and XSS attacks. 

-  MongoDB does not support SSL client-node communication by default.  

-  MongoDB authentication is not supported when running in Shard mode, only in 

standalone and replica-set mode. However, it is not enabled by default. Passwords 

and user authentications details are stored in a flat file in the following format: 

<user name>: mongo: < password>. Such file can be easily accessed by an 

attacker from the admin data-files and all the defined passwords are recovered. 

Although passwords are MD5 hashed, MD5 is still cryptographically insecure. 

-  Authorization is also not supported in Shard mode, and only in replica-set and 

standalone mode. 

5.4 Encryption at Rest Benchmark  

      Encryption of data at a network or disk level comes at the prices of speed, or what is 

known as encryption overhead. Overhead is defined as the time spent by encryption 

engine to encrypt all the incoming data, and generally, it can be measured according 

to following formula:   

Overhead Time = (Run time (Encryption) – Run time (normal)) / Run time (normal) 

From Table 5.17, we can see that encryption at rest is only available in enterprise 

edition of both databases. Therefore, to calculate the overhead time, we have used 

YCSB tool with the same workloads used in this chapter and measured time and 

throughput for each database without encryption, then after, we have enabled 

encryption according to Sections 4.5 and 4.7 and re-performed the same test. We 



 

 87 

have used AES256-CBC encryption algorithm with 256-bit of key length in 

MongoDB and Cassandra, however, in Cassandra, the algorithm is found under a 

different name, which is AES/CBC/PKCS5Padding. The results are shown in Tables 

5.18, 5.19, and Figure 5.9. 

Table 5.18. MongoDB Overhead Results 

 

 

W
o
rk

lo
a
d

s  

MongoDB Enterprise 

(non-Encrypted) 

MongoDB Enterprise 

(Encrypted) 

Overhead 

Avg Run 

Time 

Avg 

Throughput 

Avg Run 

Time 

Avg 

Throughput 

Time Throughput 

1  A 50027.666 1180.041 50643.013 1141.687 1.23 % - 3.25 % 

2  B 50555.266 1185.747 51196.533 1157.266 1.26 % - 2.40 % 

3  F 70562.466 1140.109 79285.199 753.203 12.36 % - 33.93 % 

4  E 181008.199 340.082 183667.200 334.518 1.46 % - 1.63 % 

Table 5.19. Cassandra Overhead Results 

 

 
W

o
rk

lo
a
d

s 
Cassandra Enterprise  

(non-Encrypted) 

Cassandra Enterprise 

(Encrypted) 

Overhead 

Avg Run 

Time 

Avg 

Throughput 

Avg Run 

Time 

Avg 

Throughput 

Time Throughput 

1 A 111273.399 530.385 112484.333 518.962 1.08 % - 2.15 % 

2 B 111650.399 532.081 112734.133 527.080 0.97 % - 0.93 % 

3 F 166336.732 359.051 169537.999 353.918 1.92 % - 1.42 % 

4 E 275627.999 223.216 288188.733 217.885 4.55 % - 2.38 % 

 

 

 



 

 88 

 

 

 

(A) MongoDB Runtime 

 

(B) MongoDB Throughput 

Figure 5.9. MongoDB Overhead Performances Graph 

From the Figure 5.9.A above, we can see that MongoDB performed well regarding 

runtime overhead. The overall runtime overhead for workload A, B, and E is below 

2%. However, overhead time of workload F was the worse at 12%.  



 

 89 

Throughput also decreased by 3.25%, 2.40%, and 1.63% for workloads A, B, and E 

respectively (see Figure 5.9.B). We also found that workload F gave the worse 

throughput overhead at 33.93% decrease. Therefore, we can conclude that Read-

Modify-Write is the costliest operations to perform when considering encryption at 

rest in MongoDB.  

 

(A) Cassandra Runtime 

 

(B) Cassandra Throughput 

Figure 5.10. Cassandra Overhead Performances Graph 



 

 90 

As it can be seen from Figure 5.10.A and 5.10.B Cassandra enterprise performance 

was much worse in comparison with MongoDB. From Tables 5.18 and 5.19, 

Cassandra is between ~ 2x to 2.5x slower than MongoDB in all workloads. 

Concerning encryption runtime and throughput overhead, we observed less than 2% 

overhead of the total runtime and 3% throughput decrease for all workloads with ~ 

5% runtime overhead for workload E.  

5.4.1 Encryption Overhead Test Findings  

      According to the results presented, we have observed the following: 

1 –  Time and throughput overhead: although both databases had closely the same 

overhead percentage for runtime and throughput, MongoDB performance is 2x 

to 2.5x faster than Cassandra. We found Read-Modify-Write to be the costliest 

operation in MongoDB while Scan and Insert operations are the costliest for 

Cassandra.  

2 –  MongoDB performed considerably slow workload F while Cassandra in 

workload E - with and without encryption - since we expected steady 

performance overhead, i.e., different operations should have the same cost. 



 

 91 

CHAPTER 6 

CONCLUSION 

 

This study presents the performance and security comparison results of two NoSQL 

databases (MongoDB and Apache Cassandra). To answer the questions of the study 

presented in Section 1.3, we have prepared a test environment detailed in Chapter 4.  

To answer the first question, MongoDB outperformed Cassandra in all workloads (A, 

B, E, and F) regarding runtime and throughput. It is safe to say that Cassandra 

performance was close to MongoDB only in Scan and Insert operations with 

comparable performance latencies, whereas we observed substantial performance 

differences in Read, Update, Read-Modify-Write operations with noticeable worse 

latencies.  

Concerning, for the second question, in our multi-node test (i.e., cluster 

configuration), Cassandra outperformed MongoDB concerning runtime and 

throughput in workload A (MongoDB dropped Read latency from 400K to 1000K 

and much worse performance in Update latency), and workload B only at 800K and 

1000K. While MongoDB took the lead in workload E (runtime, throughput, Scan 

latency, and closely similar Insert latency), both Cassandra and MongoDB 

performance was similar at 200K, 400K, and 600K in workload F with MongoDB 

falling behind in terms of runtime, throughput (at 800K, and 1000K), Read latency 

(from 800K), and Read-Modify-Write latency from records size 600K.  

As regards the third question mentioned in section 1.3 above, besides the 

performance behavior in a cluster configuration, we should mention that MongoDB 

architecture supports horizontal and vertical scalability meaning that more nodes can



 

 92 

be configured to work as a single DB router or as multiple DB routers and the same 

thing is correct for config and shards server. In connection with this question, it is 

concluded that MongoDB is better suited for production environments. 

Regarding the fourth research question, MongoDB enterprise edition came short 

concerning security features. Cassandra enterprise edition supports a wide range of 

authentication, authorization, and encryption algorithms, which makes it more 

capable of integrating into a heterogeneous environment.  

As concerns, the fifth research question, Tables 5.18 and 5.19 reveal that we found 

Cassandra enterprise performance was worse by ~ 2x to 2.5x for all workloads in 

comparison with MongoDB. Therefore, it is concluded that MongoDB is better 

suited to use when data encryption is a requirement.  

Regarding the literature reviewed in Section 1.4, our results show that over the past 

few years MongoDB performance became better when compared with the previously 

published works. According to the single node test we found that MongoDB 

performed better concerning runtime and throughput when compared to Cassandra, 

in contrast with the studies published by John Klein in [12], Abramova in [13], and 

Jay [14]. 

We expected Cassandra performance to be better for all workloads in our proposed 

multi-node test due to its in-memory data structure. However, MongoDB recent 

edition 3.6.3 new architecture seems to handle performance and scalability much 

better than the previous versions when compared to Kumar and Roseline work 

published in [15]. Therefore, it shows that MongoDB cluster performance has also 

improved. To summarize, Cassandra has better Read and Update performance in 

cluster test due to its in-memory structure, while MongoDB is better at Insert and 

Scan operations. 

Both databases showed improved security support and implementation of several 

features when compared to previously published studies in [16-19]. However, the 

comparison carried out in this study revealed that Cassandra enterprise edition took 



 

 93 

the lead in the security features comparison because DataStaX has acquired it and it 

is no longer available as an open source. 

Lastly, we did not find any previously published work which studied encryption 

overhead of NoSQL databases making this work significant. 

6.1 Suggestions for Future Study 

The following topics are deemed worthy of future studies: 

1 –  Testing performance of vertically scaled MongoDB cluster with other NoSQL 

database. 

2 –  Checking the overhead method in the multi-node cluster and observing the 

performance of the new versions of MongoDB and Cassandra and other 

NoSQL database systems. 

3 -  Testing the performance of NoSQL database management systems with the 

relational database management system (RDBMS) to present a comparative 

study in term of performance and security. 

4 –  Testing the new security features that will be added in MongoDB, Cassandra, 

and checking whether is an enhancement in the previous features. 

 

 



 

 R1 

 

REFERENCES 

 

[1]  Halper F., Kaufman M., Hurwitz J., "Big data for dummies," John Wiley & 

Sons Inc., Hoboken, New Jersey, 2013. 

[2]  Agrawal D., Bernstein P., Bertino E., Davidson S., Dayal U., Franklin M., 

Widom J. (2012), Challenges and Opportunities with Big Data [Online].  

Available: CRA.org. 

[3]  Andlinger P. (2013), RDBMS dominate the database market, but NoSQL 

systems are catching up [Online]. Available: https://engines.com.  

[4]  NoSQL databases [Online]. Available: https://nosql-database.org. 

[5]  Li et al., "A performance comparison of SQL and NoSQL databases," Proc. 

2013 IEEE Pacific Rim Conf. 

[6]  Parker et al., "Comparing nosql mongodb to an sql db.", Proc. 2013 ACM 

Southeast Conf. 

[7]  Hadjigeorgiou C., "Rdbms vs nosql: Performance and scaling comparison.", 

M.S. thesis, High Performance Computing, The University of Edinburgh, 

2013. 

[8]  Tudorica B. et al., "A comparison between several NoSQL databases with 

comments and notes," Roedunet International Conference, IEEE, 2011. 

[9]  Hammes D., "Comparison of NoSQL and SQL Databases in the 

Cloud," Proc. 2014 Southern Association for Information Systems Conf.  

[10]  Jatana N., Puri S., Ahuja M., Kathuria I., Gosain D., "A survey and 

comparison of relational and non-relational database," International Journal 

of Engineering Research & Technology, 2012. 



 

R2 

 

 [11]  Abubakar Y., Adeyi T., Auta I., "Performance evaluation of NoSQL systems 

using YCSB in a resource austere environment," Performance Evaluation, pp. 

23-27, 2014. 

[12]  Klein J. et al., "Performance evaluation of nosql databases: A case 

study," Proc. 2015 1st Workshop on Performance Analysis of Big Data 

Systems, ACM.  

[13]  Veronika A. and Bernardino J., "NoSQL databases: MongoDB vs 

Cassandra," Proc. 2013 international computer science and software 

engineering Conf., ACM. 

 [14]  Choi C., “A study and comparison of NoSQL databases”. M.S. thesis 

California State University, Northridge, USA, 2014. 

[15]  Rajith K., Roseline R. Mary., "Comparative Performance Analysis of   

various NoSQL Databases: MongoDB, Cassandra and HBase on Yahoo 

Cloud Server," Imperial Journal of Interdisciplinary Research, Vol. 3, No. 4 

2017. 

[16]  Lior O. et al., "Security issues in nosql databases," in Trust, Security and 

Privacy in Computing and Communications Conf., 2011. 

[17]  Anam Z et al., "Security of sharded NoSQL databases: A comparative 

analysis," in Information Assurance and Cyber Security Conf., 2014. 

[18]  Preecha N. and Chomsiri T., "A comparison the level of security on top 5 

open source NoSQL databases," in 9th International Information Technology 

and Applications Conf., 2014. 

[19]  Sethuraman S. and Nair A., "Security maturity in NoSQL databases-are they 

secure enough to haul the modern it applications?" in Advances in 

Computing, Communications and Informatics Conf., 2015. 

[20]  Cuzzocrea, Alfredo, and Hossain Shahriar. "Data masking techniques for 

NoSQL database security: A systematic review." in IEEE International Big 

Data Conf., 2017. 

[21]  Cattell R., “Scalable SQL and NoSQL data stores,” Acm Sigmod     

Record, Vol. 39, No. 4, pp.12-27, 2011. 



 

R3 

 

[22]  Mike B., "The Chubby lock service for loosely-coupled distributed systems," 

Proc. 2006 7th symposium on Operating systems design and implementation.  

[23]  Hector G. and Salem K., "Main memory database systems: An 

overview," IEEE Transactions on knowledge and data engineering, Vol. 4, 

No.6, pp. 509-516, 1992. 

[34]  Antonios M. et al. "A classification of NoSQL data stores based on key 

design characteristics," in Procedia Computer Science, pp. 94-103, 2016. 

[25]  Tiwari S., “CHAPTER 1: NOSQL: WHAT IT IS AND WHY YOU NEED 

IT,” in Professional NoSQL, John Wiley & Sons Inc., pp. 9, 2011. 

[26]  Ahmed O. et al., "Comparison and classification of nosql databases for big 

data," Proc. 2015 International Big Data Conf. 

[27]  Mayur M. P. et al. "A qualitative analysis of the performance of MongoDB vs 

MySQL database based on insertion and retrieval operations using a 

web/android application to explore load balancing—Sharding in MongoDB 

and its advantages." Proc. 2017 International IoT in Social, Mobile, Analytics 

and Cloud Conf. 

[28]  Sadalage P., Fowler M., “NoSQL Distilled: A Brief Guide to the Emerging 

World of Polyglot Persistence,” Adison-Wesley, pp. 39, 2013. 

[29]  Sadalage P., Fowler M., “NoSQL Distilled: A Brief Guide to the Emerging 

World of Polyglot Persistence,” Adison-Wesley, pp. 40, 2013. 

[30]  Rasha O. and Piazzolla P., "Modelling replication in nosql datastores," in 

International Quantitative Evaluation of Systems Conf., 2014. 

[31]  Chao-Hsien L. and Zheng Y., "Automatic SQL-to-NoSQL schema 

transformation over the MySQL and HBase databases," in IEEE International 

Consumer Electronics, Taiwan, 2015. 

[32]  Sadalage P., Fowler M., “NoSQL Distilled: A Brief Guide to the Emerging 

World of Polyglot Persistence,” Adison-Wesley, pp. 49, 2013. 

[33]  Sadalage P., Fowler M., “NoSQL Distilled: A Brief Guide to the Emerging 

World of Polyglot Persistence,” Adison-Wesley, pp. 50, 2013.  



 

R4 

 

[34]  Sadalage P., Fowler M., “NoSQL Distilled: A Brief Guide to the Emerging 

World of Polyglot Persistence,” Adison-Wesley, pp. 51, 2013.  

[35]  Dean J. and Ghemawat S., “MapReduce: Simplified Data Processing on 

Large Clusters,” Proc. 6th Symposium on Operating Systems Design & 

Implementation Conf., Vol. 6, 2004. 

[36]  Wang G. and Tang J., “The NoSQL Principles and Basic Application of 

Cassandra Model,” Proc. International Computer Science and Service System 

Conf., Washington, DC, USA, pp. 1332-1335. 2012. 

[37]  Brewer E. A., “Towards Robust Distributed Systems (Abstract),” Proc. 19th 

Annual ACM Symposium on Principles of Distributed Computing, Portland, 

Oregon, USA. pp. 7, 2000. 

[38]  Gilbert S., and Lynch N. A., “Brewer's Conjecture and the Feasibility of 

Consistent, Available, Partition-Tolerant Web Services,” ACM SIGACT 

News, Vol. 33, No. 2, pp. 51-59, 2002. 

[39]  Abadi D., "Consistency Tradeoffs in Modern Distributed Database System 

Design: CAP is Only Part of the Story," Computer, Vol. 2, pp. 37-42, 2012. 

[40]  Gilbert S., Lynch N., “Brewer's conjecture and the feasibility of consistent, 

available, partition tolerant web services,” ACM SIGACT, Vol. 33, No. 2, pp. 

51-59, 2012. 

[41]  Gilbert S., Lynch N., "Perspectives on the CAP Theorem," Computer, Vol 45, 

No. 2, pp. 30-6, 2012. 

[42]  Gessert F., Wingerath W., Friedrich S., Ritter N., “NoSQL Database Systems: 

A Survey and Decision Guidance,” Computer Science-Research and 

Development, Vol 32, No. 3-4, pp. 353-356, 2017. 

[43]  Call me maybe: MongoDB (18/5/2013) [Online]. Available:https://aphyr.com 

[44]  Ganesh D., “BASE analysis of NoSQL databases,” Future Generation 

Computer Systems”, Vol. 52, pp. 13-21, 2015. 

[45]  Vogels W., “Eventually Consistent,” Communications of the ACM, Vol. 52, 

No. 1, pp. 40-44, 2009. 

https://www.sciencedirect.com/science/journal/0167739X
https://www.sciencedirect.com/science/journal/0167739X
https://www.sciencedirect.com/science/journal/0167739X/52/supp/C


 

R5 

 

[46]  Deka G., “NoSQL Database for Storage and Retrieval of Data in Cloud,” 

CRC Press. pp. 252, 2017. 

[47]  Mohamed A., Obay G., Ismail M., “Relational vs. NoSQL databases: A 

survey,” International Journal of Computer and Information Technology, Vol. 

3, No. 3, pp. 598–601, 2014. 

[48]  Ahmed J., Gulmeher R., “NoSQL databases: New trend of databases, 

emerging reasons, classification and security issues,” International Journal of 

Engineering Sciences & Research Technology, Vol. 4, No. 6, pp. 176–184, 

2014. 

[49]  Factor P., NoSQL: Are You Ready to Compromise with Security (1/4/2013) 

[Online]. Available: http://www.sqlservercentral.com/ 

[50]  Ebrahim S., Mohammad A. N., “Survey on security issues in Big Data and 

NoSQL,” ACSIJ Advances in Computer Science: An International Journal, 

Vol. 4, No. 4, pp. 68–72, 2015. 

[51]  Patil H. S., Mukhtar Y. S., “Distributed database: An relevance to business 

organization,” Journal of Information and Operations Management, Vol. 2, 

No. 1, pp. 21–24, 2011. 

[52]  Deka G., “NoSQL Database for Storage and Retrieval of Data in Cloud,” 

CRC Press. pp. 257, 2017. 

[53]  Carlo B., Basso A., Giusto C., "Kerberos protocol: an overview," Distributed 

Systems, Italy, (2002). 

[54]  Deka G., “NoSQL Database for Storage and Retrieval of Data in Cloud,” 

CRC Press. pp. 258, 2017. 

[55]  Deka G., “NoSQL Database for Storage and Retrieval of Data in Cloud,” 

CRC Press. pp. 260, 2017. 

 [56]  Jose M., Serrão C., "Security and privacy issues of big data, Handbook of 

research on trends and future directions in big data and web intelligence,” IGI 

Global, pp. 20-52, 2015. 

[57]  MongoDB Official Website, [Online]. Available: http://mongodb.com/.  



 

R6 

 

[58]  Chodorow K., Dirolf M., “MongoDB - The Definitive Guide: Powerful and 

Scalable Data Storage,” O'Reilly, 2010. 

[59]  MongoDB Documentation, [PDF]. Available: http://docs.mongodb.org/v3.6/ 

MongoDB-manual.pdf/  

[60]  MongoDB Query Manual [Online]. Available: 

https://docs.mongodb.com/manual/tutorial/query-documents/ 

[61]  MongoDB Crud Operations [Online]. Available: 

https://docs.mongodb.com/manual/crud/ 

[62]  MongoDB Previews New Features at Global User Conference, [Online]. 

Available:https://www.mongodb.com/press/new-features-at-global-user-

conference 

[63]  MongoDB Connector for BI, [Online]. Available: https:// docs.mongodb.org 

/bi-connector/  

[64]  MongoDB Replication, [Online]. Available: https:// docs.mongodb.com 

/manual/replication/ 

[65]  MongoDB Sharding, [Online]. Available: https://docs.mongodb.com /manual 

/sharding/   

[66]  Facebook’s Cassandra paper, annotated and compared to Apache Cassandra 

3.0, [Online]. Available: https:// docs.datastax.com /en/articles /Cassandra 

/cassandrathenandnow.html 

 [67]  Lakshman, A., Malik P., “Cassandra-A Decentralized Structured Storage 

System,” ACM SIGOPS Operating Systems Review, Vol. 44, No. 2, pp. 35-

40, 2010. 

[68]  Hewitt E., “Cassandra - The Definitive Guide: Distributed Data at Web 

Scale,” O'Reilly Media Inc., 2016.  

[69]  Turnable Consistency, [Online]. Available: https:// teddyma.gitbooks.io 

/learncassandra/content/replication/turnable_consistency.html 

https://docs.mongodb.com/


 

R7 

 

[70]  Cassandra DataStaX Documentation, [Online]. Available:  https://docs 

.datastax.com/en/cassandra/3.0/cassandra/operations/ opsRepair Nodes 

HintedHandoff.html  

[71]  Cassandra Documentation - Bloom Filters, [Online]. Available: 

http://cassandra.apache.org /doc/latest/operating/bloom_filters.html  

[72]  Artem C., Kashlev A., Lu S., "A big data modeling methodology for apache 

Cassandra," in IEEE International Congress on Big Data, 2015. 

[73]  Cassandra DataStaX Documentation – Data Distributed Replication, 

[Online]. Available: https:// docs.datastax.com /en/Cassandra /2.1/ Cassandra 

/architecture/ architectureDataDistributeReplication_c.html 

[74]  Ganesh A. J., Kermarrec A., Massoulie L., “Peer-to-Peer Membership 

Management for Gossip-Based Protocols,” IEEE Trans. Computers, Vol. 52, 

No. 2, pp. 139-149, 2003. 

[75]  Apache Hive, [Online]. Available: https://hive.apache.org/  

[76]  Apache Pig, [Online]. Available:  https://pig.apache.org/ 

[77]  Dietrich F., "Cassandra: Principles and application," Department of Computer 

Science, University of Illinois, Urbana-Champaign, unpublished, 2010. 

[78]  Deka G., “NoSQL Database for Storage and Retrieval of Data in Cloud,” 

CRC Press. pp. 260, 2017. 

[79]  Factor, Michael, et al. "Secure Logical Isolation for Multi-tenancy in cloud 

storage." Mass Storage Systems and Technologies (MSST), 2013 IEEE 29th 

Symposium on. IEEE, 2013 

[80]  Deka G., “NoSQL Database for Storage and Retrieval of Data in Cloud,” 

CRC Press. pp. 261, 2017. 

[81]  MongoDB SCRAM Protocol, [Online]. Available: 

https://docs.mongodb.com/manual/core/security-scram/  

[82]      MongoDB Security, [Online]. Available: https://docs.mongodb.com /manual 

/core/security-mongodb-cr/  

https://docs/
https://docs.mongodb.com/


 

R8 

 

[83]  Use x.509 Certificates to Authenticate Clients, [Online]. Available: 

https://docs.mongodb.com/manual/tutorial/configure-x509-client-

authentication/  

[84]  Configure MongoDB for FIP, [Online]. Available: 

Shttps://docs.mongodb.com/manual/tutorial/configure-fips/ 

[85] Kerberos Authentication, [Online]. Available: 

https://docs.mongodb.com/manual/core/kerberos/ 

[86]  Authenticate Using SASL and LDAP with OpenLDAP, [Online]. Available: 

https://docs.mongodb.com/manual/tutorial/configure-ldap-sasl-openldap/ 

[87]  Cassandra DataStaX Documentation, [Online]. Available: https://docs 

.datastax.com /en/cassandra/3.0/cassandra 

[88]  Deka G., “NoSQL Database for Storage and Retrieval of Data in Cloud,” 

CRC Press. pp. 262, 2017.  

[89]  Role-Based Access Control, [Online]. Available: https://docs.mongodb.com 

/manual/core/authorization/  

[90]  Schumacher R., A Quick Tour of Internal Authentication and Authorization 

Security in DataStax Enterprise and Apache Cassandra (26/2/2013), 

[Online]. Available: https://www.datastax.com/dev/blog/a-quick-tour-of-

internal-authentication-and-authorization-security-in-datastax-enterprise-and-

apache-cassandra  

[91]  Badkar P., Oracle Database Security Guide 11g Release 1, [PDF]. Available: 

http://docs.oracle.com/cd/B28359_01/network.111/b28531.pdf 

[92]  Meier J., Mackman A., Dunner M., Vasireddy S., Escamilla R., Murukan A.,  

"Chapter 2: Threats and Countermeasures,”, [Online]. Available: 

msdn.microsoft.com/en-us/library/ff648641.aspx 

[93]  MongoDB Auditing, [Online]. Available: https:// docs.mongodb.com /manual 

/core/auditing/  

[94]     Enabling Data Auditing in DataStaX Enterprise, [Online]. Available:  

https://docs.datastax.com/en/datastax_enterprise/5.0/datastax_enterprise/sec/ 

auditEnabling.html/  

https://docs/
https://docs.mongodb.com/


 

R9 

 

[95]  Transport Encryption, [Online]. Available: 

https://docs.mongodb.com/manual/core/security-transport-encryption/  

[96]  Cassandra DataStaX Documentation – SSL Authentication, [Online]. 

Available: https:// docs.datastax.com /en/Cassandra /3.0/Cassandra 

/configuration/ secureSSLIntro.html/  

[97]   Cassandra DataStaX Documentation, [Online]. Available: 

https://docs.datastax.com/en/dse/5.1/dse-admin/datastax_enterprise/security 

/secEncryptLocalKeys.html/ 

[98]  Deka G., “NoSQL Database for Storage and Retrieval of Data in Cloud,” 

CRC Press. pp. 259, 2017.  

[99]  Cassandra DataStaX Documentation - Encryption at Rest, [Online]. 

Available: https://docs.mongodb.com/manual/core/security-encryption-at-

rest/  

[100]    Cassandra DataStaX Documentation – Encryption Configuration, [Online]. 

Available: https:// docs.datastax.com /en/datastax_enterprise /5.0/ 

datastax_enterprise/sec/ encryptConfig.html/  

[101]  Cassandra DataStaX Documentation – JMX Authentication, [Online]. 

Available: https://docs.datastax.com/en/cassandra/2.1/cassandra/security/ 

secureJmxAuthentication.html  

[102]  Cassandra DataStaX Documentation – Authentication Caching, [Online]. 

Available: https://docs.datastax.com/en/dse/6.0/dse-admin 

/datastax_enterprise/security/secAuthCacheSettings.html  

[103]  Configuring proxy roles for applications, [Online]. Available: https://docs 

.datastax.com/en/dse/5.1/dse-admin /datastax_enterprise/ security /secProxy 

.html  

[104]    TLS/SSL Configuration for Clients, [Online]. Available: https://docs  

.mongodb.com /manual/tutorial/configure-ssl-clients  

[105]  Cassandra Node to Node Encryption, [Online]. Available: https://docs 

.datastax.com/en/cassandra/2.1/cassandra/security/secure SSLNode 

ToNode_t.html  

https://docs.datastax.com/en/dse/5.1/dse-admin/
https://docs.datastax.com/en/dse/6.0/dse-admin
https://docs/
https://docs/


 

R10 

 

 [106]  Cassandra Client to Node Encryption, [Online]. Available: https://docs 

.datastax.com/en/cassandra/3.0/cassandra/configuration/secureSSL 

ClientToNode.html  

 [107]  Yahoo Cloud Service Benchmark tool (YCSB), [Online]. Available:       

https://research.yahoo.com/news/yahoo-cloud-serving-

benchmark/?guccounter=1 

 [108]  Brian F. C. et al., "Benchmarking cloud serving systems with YCSB," Proc. 

2010 ACM symposium on Cloud computing Conf. 

 [109]  MongoDB Official Website: Installation, [Online]. Available: https://docs 

.mongodb.com/manual/installation/ 

 [110]  MognDB Official Website: Shard Installation, [Online]. Available: 

https://docs.mongodb.com/manual/tutorial/deploy-shard-cluster/ 

 [111]  Cassandra Official Website, [Online]. Available: http://cassandra.apache.org 

 [112]  Cassandra Official Website: Installation, [Online]. Available:     

http://cassandra.apache.org/doc/latest/getting_started/installing.html 

 [113]  Cassandra Official Website: Configuration file, [Online]. Available: 

http://cassandra.apache.org/doc/latest/configuration/cassandra_config_file.ht

ml?highlight=cluster 

 [114]  MongoDB official website: Security, [Online]. Available: https://docs 

.mongodb.com/manual/security/ 

 [115]  Cassandra Official Website: Security, [Online]. Available: http://cassandra 

.apache.org/doc/latest/operating/security.html 

 [116]   Cassandra Enterprise Official Website: Security, [Online]. Available:    

https:// docs.datastax.com/en/dse/5.1/dse-admin /datastax_enterprise 

/security / securityTOC.html 

 [117]  Datastax Official Website, [Online]. Available: https://www.datastax.com. 

 [118]  Apache Thrift Framework, [Online]. Available: https://thrift.apache.org/ 

https://docs/
https://research.yahoo.com/news/yahoo-cloud-serving-benchmark/?guccounter=1
https://research.yahoo.com/news/yahoo-cloud-serving-benchmark/?guccounter=1
https://docs/
https://www.datastax.com/

