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Abstract: In this paper, a three-dimensional cancer model was considered using the
Caputo-Fabrizio-Caputo and the new fractional derivative with Mittag-Leffler kernel in
Liouville-Caputo sense. Special solutions using an iterative scheme via Laplace transform,
Sumudu-Picard integration method and Adams-Moulton rule were obtained. We studied the
uniqueness and existence of the solutions. Novel chaotic attractors with total order less than three
are obtained.
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1. Introduction

Mathematical models for tumour growth have been extensively studied in the literature, and
the main purpose of these studies is to understand the mechanism of the disease and to predict its
future behavior. These models are governed by ordinary differential equations; however, the local
differentiation has failed to portray real world problems due to the lack of non-locality effect into
mathematical formulation; to solve them, mathematicians introduced the concept of differentiation
with non-local operators. The concept of fractional calculus (FC) involved the concept of differentiation
with non-local operators (fractional differentiation) is the natural generalization of the classical calculus.
Fractional operators represent dissipative effects or damage; these considerations are important for
modeling real world problems [1–15]. Michele Caputo and Mauro Fabrizio in [16] presented a new
definition of fractional operator based on the exponential decay law without singular kernel; its
definition is based on the convolution of a first-order derivative and the exponential function. Losada
and Nieto [17] analyzed the properties of this newly presented fractional derivative. Based on this
new derivative, some interesting studies can be found in [18–23]. Recently, Atangana and Baleanu
suggested two fractional operators in Liouville-Caputo and Riemann-Liouville sense based on the
generalized Mittag-Leffler function; these fractional operators with non-singular and non-local kernel
were introduced in order to better describe complex physical problems that follows at the same time
the power and exponential decay law [24–30].
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FC is applied in different directions of physics, control process, signal processing, mathematical
biology and in many more. Particularly, mathematical biology is a rich source for mathematical ideas.
Actually, several investigators begin to study the qualitative properties and numerical solutions of
biological models considering fractional order derivatives. For instance, Area in [31] studied the
fractional order ebola epidemic model. Singh in [32] explained a fractional biological population
model. Based on a Caputo-Fabrizio fractional derivative, a new fractional model or giving up
smoking dynamics was presented in [33]. Numerical solutions were obtained with the aid of an
iterative technique, the existence and uniqueness of the solutions are obtained. González-Parra [34]
studied the nonlinear fractional order influenza A (H1N1) model. Arshad in [35] considered a
fractional HIV (human immunodeficiency virus) infection model with particular focus on the degree
of T-cell depletion. Stability and equilibrium points were investigated. In these models, the fractional
order equations are related to systems with memory that exists in the biological systems.

Another important area of application of the FC is the chaos theory. In the fractional case,
the model of the system can be rearranged into three fractional equations, and each equation could
contain the non integer fractional order. In these systems, the total order of the system is the sum of
each particular order. In [36], the authors studied the chaotic behaviors in the fractional order Chen
system. A synchronization scheme in fractional-order complex Lorenz systems is presented in [37].
Chaotic regions, periodic windows and routes to chaos were explored. The other fractional order
chaotic systems were described in many other works [38–41]. In cancer models, the dynamics of the
interactions of the tumour cells with other cells may exhibit chaos [42–45].

In this work, we consider a non-dimensionalized cancer system described in [46]. Starting from
the integer-order cancer model defined as

ẋ1(t) = x1(t)(1− x1(t))− Ax1(t)x2(t)− Bx1(t)x3(t),

ẋ2(t) = Cx2(t)(1− x2(t))− Dx1(t)x2(t), (1)

ẋ3(t) = E
x1(t)x3(t)
x1(t) + F

− Gx1(t)x3(t)− Hx3(t),

where {A, B, C, D, E, F, G, H} are system parameters.
This model considers three cell populations: x1(t) denotes the number of tumour cells at time t;

x2(t) is the number of healthy host cells at time t, and x3(t) refers to the number of effector immune
cells at time t in the single tumour-site compartment. The first equation gives the rate of change in
the population of the tumour cells with time t. The second equation consider that healthy tissue cells
grow logistically and involved to maximum carrying capacity. The model assumes that the cancer cells
proliferate faster than the healthy cells. Finally, the third equation illustrates the stimulation of the
immune system by the tumour cells with tumour specific antigens [46].

2. Fractional Operators

The Caputo-Fabrizio fractional derivative in Liouville-Caputo sense (CFC) is given by [16]

CFC
0 D

γ
t { f (t)} = M(γ)

n− γ

∫ t

0
f n(θ) exp

[
− γ

n− γ
(t− θ)

]
dθ, n− 1 < γ ≤ n, (2)

where M(γ) is a normalization function such that M(0) = M(1) = 1. If f (t) is a constant function, then,
the Caputo-Fabrizio-Caputo derivative given by Equation (2) is zero. For this fractional derivative,
the kernel in Equation (2) does not have singularity for t = θ. This property is of particular interest
because it can describe the full memory effect for a given system.

The Laplace transform of the CFC fractional derivative is given by

L
{

CFC
0 D

γ
t f (t)

}
(s) =

sF(s)− f (0)
s + γ(1− s)

. (3)
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The Sumudu transform (ST) of Equation (2) is defined as

ST
{

CFC
0 D

γ
t f (t)

}
(s) = M(γ)

ST[ f (t)]− f (0)
1 + γ(s− 1)

. (4)

The fractional integral of order γ, (0 < γ < 1) of the function f (t) is defined below [17]

CF
0 Iγ

t f (t) =
2(1− γ)

(2− γ)M(γ)
f (t) +

2γ

(2− γ)M(γ)

∫ t

0
f (s)ds. t ≥ 0, (5)

where
M(γ) =

2
2− γ

, 0 < γ < 1. (6)

The Atangana-Baleanu fractional derivative in Liouville-Caputo sense (ABC) is defined as
follows [24]:

ABC
0 D

γ
t { f (t)} = B(γ)

n− γ

∫ t

0
f n(θ)Eγ

[
− γ

n− γ
(t− θ)γ

]
dθ, n− 1 < γ ≤ n, (7)

where B(γ) = B(0) = B(1) = 1 is a normalization function and Eγ is the Mittag-Leffler function.
The Laplace transform of Equation (7) is defined as follows:

L
{

ABC
0 D

γ
t f (t)

}
(s) =

B(γ)
1− γ

L
[ ∫ t

a ḟ (θ)Eγ

[
− γ

(t− θ)γ

1− γ

]
dθ
]
(s)

=
B(γ)
1− γ

sγL [ f (t)](s)− sγ−1 f (0)

sγ +
γ

1− γ

.
(8)

The Sumudu transform (ST) of Equation (7) is defined as

ST
{

ABC
0 D

γ
t f (t)

}
(s) =

B(γ)
1− γ

(
γΓ(γ + 1)Eγ

(
− 1

1− γ
uγ
))
× [ST( f (t))− f (0)]. (9)

The Atangana-Baleanu fractional integral of order γ of a function f (t) is defined as

AB
0 Iγ

t f (t) =
1− γ

B(γ)
f (t) +

γ

B(γ)Γ(γ)

∫ t

0
f (s)(t− s)γ−1ds. (10)

3. Cancer Model

In this section, we obtain alternative representations of the cancer model considering the
Caputo-Fabrizio-Caputo and Atangana-Baleanu-Caputo fractional derivatives, special solution are
obtained using Laplace transform method and Sumudu transform method.

3.1. Cancer Model with Exponential Decay Law

Considering Equation (2), the modified cancer model with exponential law kernel is given as

CFC
0 D

γ
t x1(t) = x1(t)(1− x1(t))− Ax1(t)x2(t)− Bx1(t)x3(t),

CFC
0 D

γ
t x2(t) = Cx2(t)(1− x2(t))− Dx1(t)x2(t),

CFC
0 D

γ
t x3(t) = E

x1(t)x3(t)
x1(t) + F

− Gx1(t)x3(t)− Hx3(t),

(11)

where CFC
0 D

γ
t , represents the fractional derivative of type Caputo-Fabrizio-Caputo, 0 < γ ≤ 1 is the

fractional order. The model is subject to initial conditions
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x1(0)(t) = x1(0); x2(0)(t) = x2(0); x3(0)(t) = x3(0). (12)

By using the fixed-point theorem, we define the existence of the solution. First, transform
Equation (11) into an integral equation as follows:

x1(t)− x1(0) =CF
0 Iγ

t [x1(t)(1− x1(t))− Ax1(t)x2(t)− Bx1(t)x3(t)],

x2(t)− x2(0) =CF
0 Iγ

t [Cx2(t)(1− x2(t))− Dx1(t)x2(t)],

x3(t)− x3(0) =CF
0 Iγ

t

[
E

x1(t)x3(t)
x1(t) + F

− Gx1(t)x3(t)− Hx3(t)
]
,

(13)

considering the fractional integral of order γ given by Equation (5), we get

x1(t) = x1(0) +
2(1− γ)

(2− γ)M(γ)

[
x1(t)(1− x1(t))− Ax1(t)x2(t)− Bx1(t)x3(t)

]
t+

2γ

(2− γ)M(γ)

∫ t
0

[
x1(s)(1− x1(s))− Ax1(s)x2(s)− Bx1(s)x3(s)

]
ds,

x2(t) = x2(0) +
2(1− γ)

(2− γ)M(γ)

[
Cx2(t)(1− x2(t))− Dx1(t)x2(t)

]
+

2γ

(2− γ)M(γ)

∫ t
0

[
Cx2(s)(1− x2(s))− Dx1(s)x2(s)

]
ds,

x3(t) = x3(0) +
2(1− γ)

(2− γ)M(γ)

[
E

x1(t)x3(t)
x1(t) + F

− Gx1(t)x3(t)− Hx3(t)
]

+
2γ

(2− γ)M(γ)

∫ t
0

[
E

x1(s)x3(s)
x1(s) + F

− Gx1(s)x3(s)− Hx3(s)
]
ds.

(14)

Now, we consider the following kernels

τ(t, x1(t)) = x1(t)(1− x1(t))− Ax1(t)x2(t)− Bx1(t)x3(t),

υ(t, x2(t)) = Cx2(t)(1− x2(t))− Dx1(t)x2(t),

φ(t, x3(t)) = E
x1(t)x3(t)
x1(t) + F

− Gx1(t)x3(t)− Hx3(t).
(15)

Theorem 1. We prove that the kernels τ, υ and φ satisfy the Lipschitz condition.

Proof of Theorem 1. We prove this condition for each kernel proposed. Let x1 and X1, for the kernel 1,
x2 and X2, for the kernel 2, and x3 and X3, for the kernel 3, be two functions; then, we assess
the following:

||τ(t, x1(t))− τ(t, X1(t))|| = ||(x1(t)− X1(t))[1− (x1(t)− X1(t))]

−A(x1(t)− X1(t))x2(t)− B(x1(t)− X1(t))x3(t)||,
||υ(t, x2(t))− υ(t, X2(t))|| = C||(x2(t)− X2(t))[1− (x2(t)− X2(t))]

−Dx1(t)(x2(t)− X2(t))||,

||φ(t, x3(t))− φ(t, X3(t))|| = E
∣∣∣∣∣∣ x1(t)(x3(t)− X3(t))

x1(t) + F

−Gx1(t)(x3(t)− X3(t))− H(x3(t)− X3(t))
∣∣∣∣∣∣.

(16)

Using Cauchy’s inequality in Equation (16), we get
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||τ(t, x1(t))− τ(t, X1(t))|| ≤ ||(x1(t)− X1(t))[1− (x1(t)− X1(t))]

−A(x1(t)− X1(t))x2(t)− B(x1(t)− X1(t))x3(t)||,
||υ(t, x2(t))− υ(t, X2(t))|| ≤ C||(x2(t)− X2(t))[1− (x2(t)− X2(t))]

−Dx1(t)(x2(t)− X2(t))||,

||φ(t, x3(t))− φ(t, X3(t))|| ≤ E
∣∣∣∣∣∣ x1(t)(x3(t)− X3(t))

x1(t) + F

−Gx1(t)(x3(t)− X3(t))− H(x3(t)− X3(t))
∣∣∣∣∣∣;

(17)

considering the following recursive formula, we have

x1(t) =
2(1− γ)

(2− γ)M(γ)
τ(t, x1(n−1)) +

2γ

(2− γ)M(γ)

∫ t

0
τ(s, x1(n−1))ds,

x2(t) =
2(1− γ)

(2− γ)M(γ)
υ(t, x2(n−1)) +

2γ

(2− γ)M(γ)

∫ t

0
υ(s, x2(n−1))ds, (18)

x3(t) =
2(1− γ)

(2− γ)M(γ)
φ(t, x3(n−1)) +

2γ

(2− γ)M(γ)

∫ t

0
φ(s, x3(n−1))ds.

Now, we present the difference between the successive terms, applying the norm and the
triangular inequality, we get

||Υn(t)|| = ||x1(n)(t)− X1(n−1)(t)|| ≤
2(1−γ)

(2−γ)M(γ)
||τ(t, x1(n−1)(t))− τ(t, X1(n−2)(t))||

+ 2γ
(2−γ)M(γ)

∣∣∣∣∣∣ ∫ t
0

[
τ(s, x1(n−1)(s))− τ(s, X1(n−2)(s))

]∣∣∣∣∣∣ds,

||Φn(t)|| = ||x2(n)(t)− X2(n−1)(t)|| ≤
2(1−γ)

(2−γ)M(γ)
||υ(t, x2(n−1)(t))− υ(t, X2(n−2)(t))||

+ 2γ
(2−γ)M(γ)

∣∣∣∣∣∣ ∫ t
0

[
υ(s, x2(n−1)(s))− υ(s, X2(n−2)(s))

]∣∣∣∣∣∣ds,

||Ψn(t)|| = ||x3(n)(t)− X3(n−1)(t)|| ≤
2(1−γ)

(2−γ)M(γ)
||φ(t, x3(n−1)(t))− φ(t, X3(n−2)(t))||

+ 2γ
(2−γ)M(γ)

∣∣∣∣∣∣ ∫ t
0

[
φ(s, x3(n−1)(s))− φ(s, X3(n−2)(s))

]∣∣∣∣∣∣ds,

(19)

where

x1(n)(t) =
∞

∑
m=0

Υm(t); x2(n)(t) =
∞

∑
m=0

Φm(t); x3(n)(t) =
∞

∑
m=0

Ψm(t). (20)

Since the kernels τ, υ and φ satisfy the Lipschitz condition, we have

||Υn(t)|| = ||x1(n)(t)− X1(n−1)(t)|| ≤
2(1− γ)

(2− γ)M(γ)
∆1||x1(n−1)(t)− X1(n−2)(t)||

+
2γ

(2− γ)M(γ)
∆2
∫ t

0 ||x1(n−1)(s)− X1(n−2)(s)||ds,

||Φn(t)|| = ||x2(n)(t)− X2(n−1)(t)|| ≤
2(1− γ)

(2− γ)M(γ)
∆3||x2(n−1)(t)− X2(n−2)(t)||

+
2γ

(2− γ)M(γ)
∆4
∫ t

0 ||x2(n−1)(s)− X2(n−2)(s)||ds,

||Ψn(t)|| = ||x3(n)(t)− X3(n−1)(t)|| ≤
2(1− γ)

(2− γ)M(γ)
∆5||x3(n−1)(t)− X3(n−2)(t)||

+
2γ

(2− γ)M(γ)
∆6
∫ t

0 ||x3(n−1)(s)− X3(n−2)(s)||ds,

(21)

and this completes the proof of Theorem 1.

Theorem 2. The system given by Equation (11) has a unique solution.
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Proof of Theorem 2. Considering Equation (21) bounded, we have proven that the kernels τ, υ and
φ satisfy the Lipschitz condition. Considering the results obtained in Equation (21) and using the
recursive technique, we get the following relation:

||Υn(t)|| ≤ ||x1(0)||+
{{ 2(1− γ)

(2− γ)M(γ)
∆1

}n
+
{ 2γ

(2− γ)M(γ)
∆2t
}n}

,

||Φn(t)|| ≤ ||x2(0)||+
{{ 2(1− γ)

(2− γ)M(γ)
∆3

}n
+
{ 2γ

(2− γ)M(γ)
∆4t
}n}

, (22)

||Ψn(t)|| ≤ ||x3(0)||+
{{ 2(1− γ)

(2− γ)M(γ)
∆5

}n
+
{ 2γ

(2− γ)M(γ)
∆6t
}n}

.

Therefore, Equation (22) exists and is smooth. Nonetheless, to show that the above functions are a
system of solutions of Equation (11), we assume

x1(t) = x1(n)(t)−Θ1(n)(t); x2(t) = x2(n)(t)−Θ2(n)(t); x3(t) = x3(n)(t)−Θ3(n)(t), (23)

where Θ1(n), Θ2(n) and Θ3(n) are reminder terms of series solution. Thus,

x1(t)− X1(n)(t) =
2(1−γ)

(2−γ)M(γ)
τ(t, x1 −Θ1(n)(t)) +

2γ
(2−γ)M(γ)

∫ t
0 τ(s, x1 −Θ1(n)(s))ds,

x2(t)− X2(n)(t) =
2(1−γ)

(2−γ)M(γ)
υ(t, x2 −Θ2(n)(t)) +

2γ
(2−γ)M(γ)

∫ t
0 υ(s, x2 −Θ2(n)(s))ds, (24)

x3(t)− X3(n)(t) =
2(1−γ)

(2−γ)M(γ)
φ(t, x3 −Θ3(n)(t)) +

2γ
(2−γ)M(γ)

∫ t
0 τ(s, x3 −Θ3(n)(s))ds.

Applying the norm on both sides and using the Lipschitz condition, we get∣∣∣∣∣∣x1(t)−
2(1− γ)

(2− γ)M(γ)
τ(t, x1)− x1(0)−

2γ

(2− γ)M(γ)

∫ t
0 τ(s, x1(s))ds

∣∣∣∣∣∣
≤ ||Θ1(n)(t)) +

{ 2(1− γ)

(2− γ)M(γ)
∆1 +

2γ

(2− γ)M(γ)
∆2t
}
||Θ1(n)(t)||,∣∣∣∣∣∣x2(t)−

2(1− γ)

(2− γ)M(γ)
υ(t, x2)− x2(0)−

2γ

(2− γ)M(γ)

∫ t
0 υ(s, x2(s))ds

∣∣∣∣∣∣
≤ ||Θ2(n)(t)) +

{ 2(1− γ)

(2− γ)M(γ)
∆3 +

2γ

(2− γ)M(γ)
∆4t
}
||Θ2(n)(t)||,∣∣∣∣∣∣x3(t)−

2(1− γ)

(2− γ)M(γ)
φ(t, x3)− x3(0)−

2γ

(2− γ)M(γ)

∫ t
0 φ(s, x3(s))ds

∣∣∣∣∣∣
≤ ||Θ3(n)(t)) +

{ 2(1− γ)

(2− γ)M(γ)
∆5 +

2γ

(2− γ)M(γ)
∆6t
}
||Θ3(n)(t)||.

(25)

On taking the limit n→ ∞ of Equation (25), we get

x1(t) =
2(1− γ)

(2− γ)M(γ)
τ(t, x1(t)) + x1(0) +

2γ

(2− γ)M(γ)

∫ t

0
τ(s, x1(s))ds,

x2(t) =
2(1− γ)

(2− γ)M(γ)
υ(t, x2(t)) + x2(0) +

2γ

(2− γ)M(γ)

∫ t

0
υ(s, x2(s))ds, (26)

x3(t) =
2(1− γ)

(2− γ)M(γ)
φ(t, x3(t)) + x3(0) +

2γ

(2− γ)M(γ)

∫ t

0
τ(s, x3(s))ds.

Equation (26) is the solution of Equation (11); therefore, we can say that a solution exists.

Theorem 3. We prove that the system given by Equation (11) has a unique solution.
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Proof of Theorem 3. To prove this, we can get other solutions for Equation (11), say x1(t), x2(t) and
x3(t); then,

x1(t)− X1(t) =
2(1− γ)

(2− γ)M(γ)

[
τ(t, x1(t))− τ(t, X1(t))

]
+

2γ

(2− γ)M(γ)

∫ t
0

[
τ(s, x1(s))− τ(s, X1(s))

]
ds,

x2(t)− X2(t) =
2(1−γ)

(2−γ)M(γ)

[
υ(t, x2(t))− υ(t, X2(t))

]
+

2γ

(2− γ)M(γ)

∫ t
0

[
υ(s, x2(s))− υ(s, X2(s))

]
ds,

x3(t)− X3(t) =
2(1− γ)

(2− γ)M(γ)

[
φ(t, x3(t))− φ(t, X3(t))

]
+

2γ

(2− γ)M(γ)

∫ t
0

[
φ(s, x3(s))− φ(s, X3(s))

]
ds.

(27)

Applying the norm to both sides of Equation (27), we have

||x1(t)− X1(t)|| ≤
2(1− γ)

(2− γ)M(γ)

[∣∣∣∣∣∣τ(t, x1(t))− τ(t, X1(t))
∣∣∣∣∣∣]

+
2γ

(2− γ)M(γ)

∫ t
0

[∣∣∣∣∣∣τ(s, x1(s))− τ(s, X1(s))
∣∣∣∣∣∣]ds,

||x2(t)− X2(t)|| ≤
2(1− γ)

(2− γ)M(γ)

[∣∣∣∣∣∣υ(t, x2(t))− υ(t, X2(t))
∣∣∣∣∣∣]

+
2γ

(2− γ)M(γ)

∫ t
0

[∣∣∣∣∣∣υ(s, x2(s))− υ(s, X2(s))
∣∣∣∣∣∣]ds,

||x3(t)− X3(t)|| ≤
2(1− γ)

(2− γ)M(γ)

[∣∣∣∣∣∣φ(t, x3(t))− φ(t, X3(t))
]

+
2γ

(2− γ)M(γ)

∫ t
0

[∣∣∣∣∣∣φ(s, x3(s))− φ(s, X3(s))
∣∣∣∣∣∣]ds.

(28)

Considering the Lipschitz condition, having the fact in mind that the solution is bounded, we get

||x1(t)− X1(t)|| ≤
2(1− γ)

(2− γ)M(γ)
∆1W1 +

{ 2γ

(2− γ)M(γ)
∆2W2t

}n
,

||x2(t)− X2(t)|| ≤
2(1− γ)

(2− γ)M(γ)
∆3W3 +

{ 2γ

(2− γ)M(γ)
∆4W4t

}n
, (29)

||x3(t)− X3(t)|| ≤
2(1− γ)

(2− γ)M(γ)
∆5W5 +

{ 2γ

(2− γ)M(γ)
∆6W6t

}n
.

This is true for any n; hence,

x1(t) = X1(t); x2(t) = X2(t); x3(t) = X3(t). (30)

Hence, it shows the uniqueness of the solution of Equation (11).

Now, we derive the approximate solution of the system given by Equation (11) using the Laplace
transform operator given by Equation (3). Applying it on both sides of Equation (11), we obtain

sL [x1(t)]−x1(0)
s+γ(1−s) = L [x1(t)(1− x1(t))− Ax1(t)x2(t)− Bx1(t)x3(t)](s),

sL [x2(t)]−x2(0)
s+γ(1−s) = L [Cx2(t)(1− x2(t))− Dx1(t)x2(t)](s),

sL [x3(t)]−x3(0)
s+γ(1−s) = L

[
E x1(t)x3(t)

x1(t)+F − Gx1(t)x3(t)− Hx3(t)
]
(s).

(31)
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By application of inverse Laplace transform on Equation (31), we get

x1(t) = x1(0) +L −1
{

s+γ(1−s)
s L [x1(t)(1− x1(t))− Ax1(t)x2(t)− Bx1(t)x3(t)](s)

}
(t),

x2(t) = x2(0) +L −1
{

s+γ(1−s)
s L [Cx2(t)(1− x2(t))− Dx1(t)x2(t)](s)

}
(t), (32)

x3(t) = x3(0) +L −1
{

s+γ(1−s)
s L

[
E x1(t)x3(t)

x1(t)+F − Gx1(t)x3(t)− Hx3(t)
]
(s)
}
(t).

The following recursive formula is then proposed

x1(n)(t) = L −1
{

s+γ(1−s)
s L [x1(n−1)(t)(1− x1(n−1)(t))− Ax1(n−1)(t)x2(n−1)(t)

−Bx1(n−1)(t)x3(n−1)(t)](s)
}
(t),

x2(n)(t) = L −1
{

s+γ(1−s)
s L [Cx2(n−1)(t)(1− x2(n−1)(t))− Dx1(n−1)(t)x2(n−1)(t)](s)

}
(t), (33)

x3(n)(t) = L −1
{

s+γ(1−s)
s L

[
E

x1(n−1)(t)x3(n−1)(t)
x1(n−1)(t)+F − Gx1(n−1)(t)x3(n−1)(t)

− Hx3(n−1)(t)
]
(s)
}
(t),

where
x1(0)(t) = x1(0); x2(0)(t) = x2(0); x3(0)(t) = x3(0). (34)

The approximate solution is assumed to be obtain as a limit when n tend to infinity

x1(t) = lim
n→∞

x1(n)(t); x2(t) = lim
n→∞

x2(n)(t); x3(t) = lim
n→∞

x3(n)(t). (35)

The prove of stability analysis of the iteration method given by Equation (35) is obtained similarly
to the previous case.

Example 1. We present numerical simulations of the special solutions of our model using the
Caputo-Fabrizio-Caputo fractional order derivative. For these simulations, we consider A = 1, B = 2.5,
C = 0.6, D = 1.5, E = 4.5, F = 1, G = 0.2, and H = 0.5, with initial conditions, x1(0) = 0.1, x2(0) = 0.1
and x3(0) = 0.1. The simulation time is 500 s and the step size used in evaluating the approximate solutions
was h = 0.005. The numerical results given in Figures 1a and 2d show numerical simulations of the special
solutions of our model as a function of time.
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Figure 1. Numerical simulation for cancer model via Caputo-Fabrizio-Caputo fractional operator.
In (a), classical case; in (b–d), projected onto x1(t) − x2(t), x2(t) − x3(t) and x1(t) − x3(t) planes,
respectively; the commensurate order of the fractional cancer system is γ = 2.7.
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Figure 2. Numerical simulation for cancer model via Caputo-Fabrizio-Caputo fractional operator.
In (a), classical case; in (b–d), projected onto x1(t) − x2(t), x2(t) − x3(t) and x1(t) − x3(t) planes,
respectively; the commensurate order of the fractional cancer system is γ = 2.4.
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3.2. Cancer Model with Mittag-Leffler Kernel

Considering Equation (7), the modified cancer model with Mittag-Leffler kernel is given as

ABC
0 D

γ
t x1(t) = x1(t)(1− x1(t))− Ax1(t)x2(t)− Bx1(t)x3(t),

ABC
0 D

γ
t x2(t) = Cx2(t)(1− x2(t))− Dx1(t)x2(t), (36)

ABC
0 D

γ
t x3(t) = E

x1(t)x3(t)
x1(t) + F

− Gx1(t)x3(t)− Hx3(t),

where ABC
0 D

γ
t , represents the fractional derivative of type Atangana-Baleanu-Caputo, and 0 < γ ≤ 1 is

the fractional order. The model is subject to initial conditions:

x1(0)(t) = x1(0); x2(0)(t) = x2(0); x3(0)(t) = x3(0). (37)

We derive the approximate solution of the system given by Equation (36) using the Sumudu
transform operator given by Equation (9). Applying it on both sides of Equation (36), we obtain

B(γ)γΓ(γ + 1)
1− γ

Eγ

(
− 1

1− γ
uγ
)

ST[x1(t)]− x1(0)

= ST[x1(t)(1− x1(t))− Ax1(t)x2(t)− Bx1(t)x3(t)],

B(γ)γΓ(γ + 1)
1− γ

Eγ

(
− 1

1− γ
uγ
)

ST[x2(t)]− x2(0)

= ST[Cx2(t)(1− x2(t))− Dx1(t)x2(t)],

B(γ)γΓ(γ + 1)
1− γ

Eγ

(
− 1

1− γ
uγ
)

ST[x3(t)]− x3(0)

= ST
[

E
x1(t)x3(t)
x1(t) + F

− Gx1(t)x3(t)− Hx3(t)
]
.

(38)

Rearranging Equation (38), we obtain

ST[x1(t)] = x1(0) +
1− γ

B(γ)γΓ(γ + 1)Eγ

(
− 1

1− γ
uγ
) ·

ST[x1(t)(1− x1(t))− Ax1(t)x2(t)− Bx1(t)x3(t)],

ST[x2(t)] = x2(0) +
1− γ

B(γ)γΓ(γ + 1)Eγ

(
− 1

1− γ
uγ
) ·

ST[Cx2(t)(1− x2(t))− Dx1(t)x2(t)],

ST[x3(t)] = x3(0) +
1− γ

B(γ)γΓ(γ + 1)Eγ

(
− 1

1− γ
uγ
) ·

ST
[

E
x1(t)x3(t)
x1(t) + F

− Gx1(t)x3(t)− Hx3(t)
]
.

(39)

Applying the inverse Sumudu transform on both sides of Equation (39), we obtain
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x1(t) = x1(0) + ST−1

{
1− γ

B(γ)γΓ(γ + 1)Eγ

(
− 1

1− γ
uγ
) ·

ST[x1(t)(1− x1(t))− Ax1(t)x2(t)− Bx1(t)x3(t)]

}
,

x2(t) = x2(0) + ST−1

{
1− γ

B(γ)γΓ(γ + 1)Eγ

(
− 1

1− γ
uγ
) ·

ST[Cx2(t)(1− x2(t))− Dx1(t)x2(t)]

}
,

x3(t) = x3(0) + ST−1

{
1− γ

B(γ)γΓ(γ + 1)Eγ

(
− 1

1− γ
uγ
) ·

ST
[

E
x1(t)x3(t)
x1(t) + F

− Gx1(t)x3(t)− Hx3(t)
]}

.

(40)

Now, we obtain

x1(n+1)(t) = x1(n)(0) + ST−1

{
1− γ

B(γ)γΓ(γ + 1)Eγ

(
− 1

1− γ
uγ
) ·

ST[x1(n)(t)(1− x1(n)(t))− Ax1(n)(t)x2(n)(t)− Bx1(n)(t)x3(n)(t)]

}
,

x2(n+1)(t) = x1(n)(0) + ST−1

{
1− γ

B(γ)γΓ(γ + 1)Eγ

(
− 1

1− γ
uγ
) ·

ST[Cx2(n)(t)(1− x2(n)(t))− Dx1(n)(t)x2(n)(t)]

}
,

x3(n+1)(t) = x3(n)(0) + ST−1

{
1− γ

B(γ)γΓ(γ + 1)Eγ

(
− 1

1− γ
uγ
) ·

ST
[

E
x1(n)(t)x3(n)(t)

x1(n)(t) + F
− Gx1(n)(t)x3(n)(t)− Hx3(n)(t)

]}
,

(41)

and the solution of Equation (41) is provided by

x1(t) = lim
n→∞

x1(n)(t); x2(t) = lim
n→∞

x2(n)(t); x3(t) = lim
n→∞

x3(n)(t). (42)

Now, we provide the stability analysis of this method [47]. Let (X, | · |) be a Banach space and H
a self-map of X. Let zn+1 = g(H, zn) be particular recursive procedure. The following conditions must
be satisfied for zn+1 = Hzn.

1. The fixed point set of H has at least one element.
2. zn converges to a point P ∈ F(H).
3. limn→∞ xn(t) = P.
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Theorem 4. Let (X, | · |) be a Banach space and H a self-map of X satisfying

||Hx − Hz|| ≤ η||X− Hx||+ η||x− z||, (43)

for all x, z ∈ X, where 0 ≤ η, 0 ≤ η < 1. Suppose that H is Picard H-stable.
Let us take into account Equation (41), and we have

1− γ

B(γ)γΓ(γ + 1)Eγ

(
− 1

1−γ uγ
) , (44)

where the above equation corresponds to the fractional Lagrange multiplier.

Theorem 5. Let K be a self-map defined as

K[x1(n+1)(t)] = x1(n+1)(t) = x1(n)(t) + ST−1

{
1− γ

B(γ)γΓ(γ + 1)Eγ

(
− 1

1− γ
uγ
) ·

ST[x1(n)(t)(1− x1(n)(t))− Ax1(n)(t)x2(n)(t)− Bx1(n)(t)x3(n)(t)]

}
,

K[x2(n+1)(t)] = x2(n+1)(t) = x2(n)(t) + ST−1

{
1− γ

B(γ)γΓ(γ + 1)Eγ

(
− 1

1− γ
uγ
) ·

ST[Cx2(n)(t)(1− x2(n)(t))− Dx1(n)(t)x2(n)(t)]

}
,

K[x3(n+1)(t)] = x3(n+1)(t) = x3(n)(t) + ST−1

{
1− γ

B(γ)γΓ(γ + 1)Eγ

(
− 1

1− γ
uγ
) ·

ST
[

E
x1(n)(t)x3(n)(t)

x1(n)(t) + F
− Gx1(n)(t)x3(n)(t)− Hx3(n)(t)

]}
.

(45)

Using the properties of the norm and considering the triangular inequality, we have

||K[x1(n)(t)]− K[X1(m)(t)]|| ≤ ||x1(n)(t)− X1(m)(t)||

+ ST−1

{
1− γ

B(γ)γΓ(γ + 1)Eγ

(
− 1

1−γ uγ
) ·

ST
[
(x1(n)(t)− X1(m)(t))(1− (x1(n)(t)− X1(m)(t)))

+ A[(x1(n)(t))(x2(n)(t))− (x1(m)(t))(x2(m)(t))]

+ B[(x1(n)(t))(x3(n)(t))− (x1(m)(t))(x3(m)(t))]
]}

,

||K[x2(n)(t)]− K[X2(m)(t)]|| ≤ ||x2(n)(t)− X2(m)(t)||

+ ST−1

{
1− γ

B(γ)γΓ(γ + 1)Eγ

(
− 1

1−γ uγ
) · (46)

ST
[
C(x2(n)(t)− X2(m)(t))(1− (x2(n)(t)− X2(m)(t)))
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+ D[(x1(n)(t))(x2(n)(t))− (x1(m)(t))(x2(m)(t))]
]}

,

||K[x3(n)(t)]− K[X3(m)(t)]|| ≤ ||x3(n)(t)− X3(m)(t)||

+ ST−1

{
1− γ

B(γ)γΓ(γ + 1)Eγ

(
− 1

1−γ uγ
) ·

ST
[

E
(x1(n)(t)x3(n)(t))− (x1(m)(t)x3(m)(t)))

(x1(n)(t)− x1(m)(t)) + F

+G[(x1(n)(t)x3(n)(t))− (x1(m)(t)x3(m)(t))] + H[x3(n)(t)− x3(m)(t)]
]}

.

K satisfies the conditions in Theorem 4 when

η(0, 0, 0), η =



||x1(n)(t)− X1(m)(t)||×|| − (x1(n)(t) + X1(m)(t))||+ ||x1(n)(t)− X1(m)(t)||
×||1− (x1(n)(t)− X1(m)(t))|| − A||x1(n)(t)x2(n)(t)− X1(m)(t)X2(m)(t)||
−B||x1(n)(t)x3(n)(t)− X1(m)(t)X3(m)(t)|| × ||x2(n)(t)− X2(m)(t)||×
|| − (x2(n)(t) + X2(m)(t))||+ C[||x2(n)(t)− X2(m)(t)||]
[||1− (x2(n)(t)− X2(m)(t))||]− D[||x1(n)(t)x2(n)(t)− X1(m)(t)X2(m)(t)||]×
||x3(n)(t)− X3(m)(t)|| × || − (x3(n)(t) + X3(m)(t))||+
E
[∣∣∣∣∣∣ x1(n)(t)x3(n)(t)−X1(m)(t)X3(m)(t)

x1(n)(t)−X1(m)(t)+F

∣∣∣∣∣∣]
−G[||x1(n)(t)x3(n)(t) + X1(m)(t)X3(n)(t)||]− H[||x3(n)(t)− X3(n)(t)||],

and we conclude that K is Picard K-stable.

Theorem 6. We show that the special solution of Equation (36) using the iteration method is unique.

Proof of Theorem 6. Consider the following Hilbert space H = L2((a, b)× (0, k))

v : (a, b)× [0, T]→ R,
∫ ∫

uvdudv < ∞. (47)

We now consider the following operator

η(0, 0), η =


x1(t)(1− x1(t))− Ax1(t)x2(t)− Bx1(t)x3(t),

Cx2(t)(1− x2(t))− Dx1(t)x2(t),

E x1(t)x3(t)
x1(t)+F − Gx1(t)x3(t)− Hx3(t).

We prove that the inner product of

(T(x11(t)− x12(t), x21(t)− x22(t), x31(t)− x32(t), (ω1, ω2, ω3)), (48)

where (x11(t)− x12(t), x21(t)− x22(t), x31(t)− x32(t)), are special solutions of the system.

Considering the norm and the inner function, we obtain
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(
(x11(t)− x12(t))(1− (x11(t)− x12(t)))− A(x11(t)− x12(t))(x21(t)− x22(t))−

−B(x11(t)− x12(t))(x21(t)− x32(t)), ω1

)
≤

||x11(t)− x12(t)||||1− (x11(t)− x12(t))||||ω1||+ A||x12(t)− x11(t)||||x22(t)− x21(t)||||ω1||+
+B||x12(t)− x11(t)||||x32(t)− x31(t)||||ω1||,(

C(x21(t)− x22(t))(1− (x21(t)− x22(t)))− D(x11(t)− x12(t))(x21(t)− x22(t)), ω2

)
≤

C||x21(t)− x22(t)||||1− (x21(t)− x22(t))||||ω2||+ D||x12(t)− x11(t)||||x22(t)− x21(t)||||ω2||,(
E

[
(x11(t)− x12(t))(x31(t)− x32(t))

(x11(t)− x12(t)) + F

]
− G(x11(t)− x12(t))(x31(t)− x32(t))−

−H(x31(t)− x32(t)), ω3

)
≤ E

[
||x31(t)− x32(t)||2

||(x31(t)− x32(t)) + F||

]
||ω3||+

+G||x12(t)− x11(t)||||x32(t)− x31(t)||||ω3||+ H||x32(t)− x31(t)||||ω3||.

(49)

For large number m, n and k, both solutions converge to the exact solution. Using the topology
concept, we can find three very small positive parameters (λm, λn and λk):

||x1(t)− x11(t)||, ||x1(t)− x12(t)|| <
λm

v
,

||x2(t)− x21(t)||, ||x2(t)− x22(t)|| <
λn

ξ
,

(50)

and
||x3(t)− x31(t)||, ||x2(t)− x32(t)|| <

λk
κ

,

where
v = 3(||(x11(t)− x22(t))(1− (x11(t)− x22(t)))||+

+A||(x11(t)− x22(t))(x21(t)− x22(t))||+ B||(x11(t)− x22(t))(x31(t)− x32(t))||)||ω1||,

ξ = 3(C||(x21(t)− x22(t))(1− (x21(t)− x22(t)))||+ D||(x11(t)− x21(t))(x21(t)− x22(t))||)||ω2|| (51)

v = 3
(

E
∣∣∣∣∣∣ x31(t)−x32(t)

(x31(t)−x32(t))+F

∣∣∣∣∣∣+ G||(x11(t)− x22(t))(x31(t)− x32(t))||+

+H||x31(t)− x32(t)||
)
||ω3||,

where
(||(x11(t)− x22(t))(1− (x11(t)− x22(t)))||+ A||(x11(t)− x22(t))(x21(t)− x22(t))||

+B||(x11(t)− x22(t))(x31(t)− x32(t))||) 6= 0,

(C||(x21(t)− x22(t))(1− (x21(t)− x22(t)))||+ D||(x11(t)− x21(t))(x21(t)− x22(t))||) 6= 0, (52)(
E
∣∣∣∣∣∣ x31(t)−x32(t)

(x31(t)−x32(t))+F

∣∣∣∣∣∣+ G||(x11(t)− x22(t))(x31(t)− x32(t))||

+H||x31(t)− x32(t)||
)
6= 0,

where ||ω1||, ||ω2||, ||ω3|| 6= 0; ||x12(t) − x11(t)|| = ||x22(t) − x21(t)|| = ||x31(t) − x32(t)|| = 0;
x11(t) = x12(t), x21(t) = x22(t) and x31(t) = x32(t).

This completes the proof of uniqueness.

The Adams-Moulton rule for the Atangana-Baleanu fractional integral (10) [27] is given by

AB
0 I

γ
t [ f (tn+1)] =

1− γ

B(γ)

[ f (tn+1)− f (tn)

2

]
+

γ

Γ(γ)

∞

∑
k=0

[ f (tk+1)− f (tk)

2

]
bγ

k , (53)
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where
bγ

k = (k + 1)1−γ − (k)1−γ. (54)

For our system, we have

x1(n+1)(t)− x1(n)(t) = xn
0(1)(t) +

{
1− γ

B(γ)

[( x1(n+1)(t)− x1(n)(t)
2

)(
1−

x1(n+1)(t)− x1(n)(t)
2

)
−A

( x1(n+1)(t)− x1(n)(t)
2

)( x2(n+1)(t)− x2(n)(t)
2

)
−B
( x1(n+1)(t)− x1(n)(t)

2

)( x3(n+1)(t)− x3(n)(t)
2

)]}

+
γ

B(γ) ∑∞
k=0 bγ

k

[( x1(k+1)(t)− x1(k)(t)
2

)(
1−

x1(k+1)(t)− x1(k)(t)
2

)
−A

( x1(k+1)(t)− x1(k)(t)
2

)( x2(k+1)(t)− x2(k)(t)
2

)
−B
( x1(k+1)(t)− x1(k)(t)

2

)( x3(k+1)(t)− x3(k)(t)
2

)]
,

x2(n+1)(t)− x2(n)(t) = xn
0(2)(t) +

{
1− γ

B(γ)

[
C
( x2(n+1)(t)− x2(n)(t)

2

)(
1−

x2(n+1)(t)− x2(n)(t)
2

)
−D

( x1(n+1)(t)− x1(n)(t)
2

)( x2(n+1)(t)− x2(n)(t)
2

)]}

+
γ

B(γ) ∑∞
k=0 bγ

k

[
C
( x2(k+1)(t)− x2(k)(t)

2

)(
1−

x2(k+1)(t)− x2(k)(t)
2

)
−D

( x1(k+1)(t)− x1(k)(t)
2

)( x2(k+1)(t)− x2(k)(t)
2

)]
,

(55)

and

x3(n+1)(t)− x3(n)(t) = xn
0(3)(t) +

{
1−γ
B(γ)

{
E

[( x1(n+1)(t)−x1(n)(t)
2

)(
x3(n+1)(t)−x3(n)(t)

2

)
x1(n+1)(t)−x1(n)(t)

2 +F

]

− G
( x1(n+1)(t)− x1(n)(t)

2

)( x3(n+1)(t)− x3(n)(t)
2

)
− H

( x3(n+1)(t)− x3(n)(t)
2

)}}

+
γ

B(γ)

∞

∑
k=0

bγ
k

{
E

[( x1(k+1)(t)−x1(k)(t)
2

)( x3(k+1)(t)−x3(k)(t)
2

)
x1(k+1)(t)−x1(k)(t)

2 + F

]

− G
( x1(k+1)(t)− x1(k)(t)

2

)( x3(k+1)(t)− x3(k)(t)
2

)
− H

( x3(k+1)(t)− x3(k)(t)
2

)}
.
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Example 2. We present numerical simulations of the special solutions of our model using the
Atangana-Baleanu-Caputo fractional order derivative. For these simulations, we consider, A = 1, B = 2.5,
C = 0.6, D = 1.5, E = 4.5, F = 1, G = 0.2, H = 0.5, with initial conditions, x1(0) = 0.1, x2(0) = 0.1
and x3(0) = 0.1. The simulation time is 500 s and the step size used in evaluating the approximate solutions
was h = 0.005. The numerical results given in Figures 3a and 4d show numerical simulations of the special
solutions of our model as a function of time.
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Figure 3. Numerical simulation for cancer model via Atangana-Baleanu-Caputo fractional operator.
In (a), classical case; in (b–d), projected onto x1(t) − x2(t), x2(t) − x3(t) and x1(t) − x3(t) planes,
respectively; the commensurate order of the fractional cancer system is γ = 2.7.
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Figure 4. Numerical simulation for cancer model via Atangana-Baleanu-Caputo fractional operator.
In (a), classical case; in (b–d), projected onto x1(t) − x2(t), x2(t) − x3(t) and x1(t) − x3(t) planes,
respectively; the commensurate order of the fractional cancer system is γ = 2.4.

4. Conclusions

In this paper, we have analyzed a three-dimensional fractional order dynamical model for the
evolution of cancer growth, which includes the interactions between healthy tissue cells, tumour cells,
and activated immune system cells. This model was considered via the Caputo-Fabrizio-Caputo and
Atangana-Baleanu-Caputo fractional order derivatives. The solution of the alternative models were
obtained using an iterative scheme—for the Caputo-Fabrizio-Caputo fractional order derivative based
in the Laplace transform and for the Atangana-Baleanu-Caputo fractional order derivative based in
the Sumudu transform. Furthermore, the stability analysis of the iterative methods and the uniqueness
of the special solutions were presented in detail.

Considering these fractional derivatives, the numerical simulations showed that the fractional
commensurate order cancer system with total order less than three exhibits chaos. In our model,
with the variation in the choice of the fractional order γ, a great variety of novel chaotic attractors
can be formed. In this sense, we showed that the concept of fractional differentiation is a powerful
mathematical tool to express the non-locality of a given dynamical system.

In the next papers, we shall study other cancer models—for instance, glioma growth, breast
tumours—as well as metastasising tumours and comparing them against experimental data obtained
from the literature.
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