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Abstract
In this manuscript, we investigate some appropriate conditions which ensure the
existence of at least one solution to a class of fractional order differential equations
(FDEs) provided by

{
–CDqz(t) = θ (t, z(t)); t ∈ J = [0, 1],q ∈ (1, 2],

z(t)|t=0 = φ(z), z(1) = δCDpz(η), p,η ∈ (0, 1).

The nonlinear function θ : J× R → R is continuous. Further, δ ∈ (0, 1) and φ ∈ C(J,R)
is a non-local function. We establish some adequate conditions for the existence of at
least one solution to the considered problem by using Grönwall’s inequality and a
priori estimate tools called the topological degree method. We provide two examples
to verify the obtained results.

MSC: 34A08; 35R11

Keywords: fractional order differential equations; Caputo derivative; condensing
operator; Grönwall’s inequality; topological degree method

1 Introduction
The applications of non-integer order differential equations are increasing day by day in
various areas of research. These applications can be traced out in many disciplines of sci-
ence including technology and engineering. To see the recent applications of the men-
tioned area in various fields like physics, mechanics, chemical science, biological dynam-
ics, material engineering, theory of control, signal and image propagation, communication
and transform, economical problems and optimization theory, etc.; the reader is referred
to [–]. Non-integer order differential equations provide a strong tool for the description
of memory and hereditary properties of various materials and processes; see []. One of
the key reasons of taking interest in fractional differential equations by the researchers is
the presence of greater degree of freedom of fractional differential operator. In fact the
fractional derivative is a global operator instead of classical derivative which is local in
nature; see []. In the last few decades, various aspects of fractional differential equa-
tions have been investigated like existence theory, stability and numerical analysis, etc.
One of the attractive areas of research is the existence theory of solutions for FDEs. In
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the last few decades, the aforesaid area has been extensively investigated by using various
techniques of classical analysis, for further explanations, we refer the reader to [–]. It
is well known that the standard Riemann-Liouville fractional derivative fails to provide
the required physical interpretation for boundary value problems (BVPs) and initial value
problems (IVPs) in most of the cases. However, these requirements of interpreting the ini-
tial and boundary conditions can better be fulfilled by the use of Caputo non-integer order
derivatives. Existence theory of solutions or positive solutions to multi-points boundary
value problems using different types of fixed point theorems like as Banach theorem of
contraction type, Schaefer and Leray-Schauder theorem of fixed point is studied in detail
[–]. Moreover, the existence of solutions to FDEs using coincidence degree theory
for a contraction operator is studied in [–]. Recently the existence of a center stable
manifold for planar fractional damped equations has been investigated. For the required
solution, the authors in [] constructed a suitable Lyapunov-Perron operator by giving
the asymptotic behavior of the Mittag-Leffler function. Then they obtained an interesting
center stable manifold result to prove center stable manifold theorem for planar fractional
damped equations involving two Caputo fractional derivatives. In a similar manner, the
authors of [], studied finite time stability and existence theory of delay type differen-
tial equations of fractional order by using classical analysis. Wang et al. [] investigated
the existence theory and proved some conditions for uniqueness and derived some data
dependency results of solutions using topological degree technique by considering some
classes of non-local Cauchy problems including BVPs and impulsive Cauchy problems
(ICPs) to FDEs. Chen et al. [], obtained the existence results by coincidence degree the-
ory to the following BVP involving a p-Laplacian operator:

⎧⎨
⎩

CDq
+φp

(CDp
+z(t)

)
= θ

(
t, z(t), CDp

+z(t)
)
,

CDp
+z(t)|t= = CDp

+z() = ,

where CDq
+ and CDp

+ represent non-integer order derivatives in the Caputo sense, p, q ∈
(, ], p + q ∈ (, ]. Tang et al. [] applied the aforesaid degree theory and established
results for the following two point BVP of non-integer order p-Laplace DEs:

⎧⎨
⎩

CDq
+φp

(CDp
+z(t)

)
= θ

(
t, z(t), CDp

+z(t)
)
,

z(t)
∣∣
t== , CDp

+z(t)
∣∣
t= = CDp

+z(),

where CDq
+ and CDp

+ are non-integer order derivatives of Caputo type, p, q ∈ (, ], p+q ∈
(, ]. The mentioned theory of degree type has been studied recently in many papers; see
[–].

The current manuscript is inspired from the aforesaid work. Our aim is to investigate
the existence and uniqueness of at least one solution by applying the coincidence degree
theory for a condensing mapping to the three-points BVP supplied as

⎧⎨
⎩–CDqz(t) = θ

(
t, z(t)

)
; t ∈ J, q ∈ (, ],

z(t)|t= = φ(z), z() = δCDpz(η).
()

The manuscript is organize as explained below.
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Section  is concerned with some background material and lemmas required for the
main results. In Section , the problem under consideration of FDEs is transformed to its
equivalent Fredholm integral equation. Then the required theory devoted to the aims of
this paper is developed via using coincidence degree of condensing maps and using the
standard singular Grönwall inequality. At the end, an example is provided for justification
of the established results.

2 Background material
This section contains basics materials and preliminaries related to of non-integer order
calculus and degree theory of topological type. For further details, we refer to [–, –
].

The space consisting of all continuous functions J→ R is a Banach space endowed with
a norm ‖z‖Z = sup{|z(t)| : t ∈ J}. For simplicity, we denote the defined space by Z = C(J , R).

Definition . Let z ∈ C(R+, R) be a function. Then the non-integer order integral of or-
der q ∈ R+ of the function z(t) is defined as

Iq
a+z(t) =


�(q)

∫ t

a

z(τ )
(t – τ )q– dτ ,

provided that integral on the right is pointwise defined on (,∞).

Definition . The Caputo type non-integer order derivative of a function z : R+ → R is
defined by

CDq
a+z(t) =


�(m – q)

∫ t

a
(t – τ )m–q–z(m)(τ ) dτ ,

where m = [q] +  and [q] represents the integer part of q.

For further details on fractional derivatives and integrals; see [–].

Lemma . ([]) The unique solution of FDE of order q > 

CDqz(t) = , q ∈ (m – , m],

is given as

z(t) = e + et + et + · · · + em–tm–, where ei ∈ R, i = , , , . . . , m – .

Theorem . ([]) The given FDE

CDqz(t) = δ(t), q ∈ (m – , m],

has a solution given by

z(t) = Iqδ(t) + e + et + et + · · · + em–tm–,

for arbitrary ei ∈ R, i = , , , . . . , m – .
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Next, we present some important definitions, propositions and theorems from []. For
the Banach space Z, with C ∈ P(Z) represents the collection of all bounded sets.

Definition . The measure with non-compactness of Kuratowski type β : C → R+ as
given by

β(B) = min{d > },

where B ∈ C inserts a finite cover with a sets of diameter ≤ d.

Proposition . The measure of Kuratowski type denoted by β satisfies the following prop-
erties:

(i) the set B is relatively compact if and only if B ∈ C has Kuratowski measure zero;
(ii) β is a seminorm, because it satisfies β(λB) = |λ|β(B), λ ∈ R and

β(B + B) ≤ β(B) + β(B);
(iii) β(B) ≤ β(B) for B ⊂ B and β(B ∪ B) = sup{β(B),β(B)};
(iv) β(conv B) = β(B);
(v) β(B̄) = β(B).

Definition . Assume that the function F : 
 → Z is a continuous and bounded map-
ping for 
 ⊂ Z. Then F is β-Lipschitz if there exists K ≥  such that

β
(
F (B)

) ≤Kβ(B), for all B ⊂ 
 bounded.

Also if K < , then F is said to be a strict β-contraction.

Definition . The function F is β-condensing if

β
(
F (B)

)
< β(B), for every B ⊂ 
 bounded with β(B) > .

In other words, β(F (B)) ≥ β(B) implies β(B) = .

Here, we represent the family of all strict β-contraction mappings F : 
 → Z by
�Cβ (
). Further, denoting the family of all β-condensing mappings F : 
 → Z by Cβ (
).

Remark  Each F ∈ Cβ (
) is β-Lipschitz with constant K = , where �Cβ (
) ⊂ Cβ (
).

Moreover, if there exists K > , then F : 
 → Z is said to be Lipschitz if and only if

∥∥F (z) – F (z̄)
∥∥ ≤K|z – z̄|, for every z, z̄ ∈ 
.

Also F is strict contraction if and only if K < .
The provided propositions are necessarily required for our analysis throughout this pa-

per.

Proposition . Consider F ,G : 
 → Z to be β-Lipschitz operators and there exist two
constants K and K′, respectively, then their sum F + G : 
 → Z is also β-Lipschitz with
constant K̂ = K + K′.
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Proposition . The operator F is β-Lipschitz with constant K = . Then the same oper-
ator F : 
 → Z is compact.

Proposition . If an operator F : 
 → Z is Lipschitz with constant K. Then the same
operator F will also be β-Lipschitz with the same constant K.

Theorem . We recall some basic properties of proposed degree theory from Isaia [].
Let for the family of admissible triplets given by

� =
{

(I – F ,
, z) : 
 ⊂ Z be an open and bounded set,F ∈ Cβ
¯(
),

z ∈ Z \ (I – F )(∂
)
}

,

there exists a function deg : �→ Z of one degree which has the following properties.
(D) Normalization: deg(I,
, z) =  at each z ∈ 
;
(D) additivity on domain: For each pair of disjoint open sets 
,
 ⊂ 
 and each

z /∈ (I – F )( ¯(
) \ (
 ∪ 
)), we have

deg(I – F ,
, z) = deg(I – F
,
, z) + deg(I – F ,
, z);

(D) invariance property under homoptopy: deg(I – H(t, z),
, z) is independent of t ∈ J

for each continuous and bounded mapping H : J× 
̄ → Z which satisfies

β
(
H(J× B)

)
< β(B), for all B ⊂ 
̄ with β(B) > 

and every continuous function z : J → Z which satisfies

z �= z – H(t, z), for all t ∈ J, for every z ∈ ∂
;

(D) existence: deg(I – F ,
, z) �=  yields

z ∈ (I – F )(
);

(D) excision: deg(I – F ,
, z) = deg(I – F ,
, z) for each open set 
 ⊂ 
 and for all
z /∈ (I – F )(
̄ \ 
).

Theorem . Assume that F : Z → Z is a β-condensing operator and

� = {z ∈ Z : there exists λ ∈ J with z = λFz} ⊂ Z

is a bounded set and there exists a real number r >  with � ⊂ Br(). Then

deg
(
I – λF , Br(), 

)
= , for all λ ∈ J.

Therefore, the operator F has at least one fixed point and the set of fixed points of F lies
in Br().
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Theorem . ([]) Let z ∈ Z satisfies the following inequality:

∣∣z(t)
∣∣ ≤ â + b̂

∫ t


(t – τ )q–∣∣z(s)

∣∣λ dτ + ĉ
∫ t


(T – τ )q–∣∣z(τ )

∣∣λ dτ , q ∈ (, ]. ()

Here  < λ <  – 
r for some r ∈ (, 

–q ) and â, b̂, ĉ ∈ (,∞) are constants. Then we have

∣∣z(t)
∣∣ ≤ (â + )eMT .

3 Existence of at least one solution to BVP (1)
The purpose of this section is concerning to establish the required theory for existence of
at least one solutions to the BVP ().

Lemma .
For ω ∈ L(J, R), the solution of the linear BVP of FDEs

CDqz(t) + ω(t) = ; t ∈ J, q ∈ (, ],

u(t)|t= = φ(z), z() = δCDpz(η),
()

is given as

z(t) = φ(z)( – td) +
∫ 


H(t, τ )ω(τ ) dτ ,

where H(t, s) is the Green’s function given by

H(t, τ ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

td(–τ )q–

�(q) – (t–τ )q–

�(q) – δtd(η–τ )q–p–

�(q–p) ;  ≤ τ ≤ t ≤ η ≤ ,
td(–τ )q–

�(q) – δtd(η–τ )q–p–

�(q–p) ;  ≤ t ≤ τ ≤ η ≤ ,
td(–τ )q–

�(q) – (t–τ )q–

�(q) ;  ≤ η ≤ τ ≤ t ≤ ,
td(–τ )q–

�(q) ;  ≤ η ≤ t ≤ τ ≤ .

()

Proof Consider equation () with the associated given boundary conditions; applying Iq

on –CDqz(t) = ω(t) and thanks to Theorem ., we have

z(t) = –Iq(t) + e + et ()

for some e, e ∈ R. From the non-local condition z(t)t= = φ(z) implies that e = φ(z) and
z() = δCDpu(η) yields e = d[Iqω()–δIq–pω(η)–φ(z)], where d = �(–p)

�(–p)–δη–p > . It implies
that

z(t) = –Iqω(t) + tdIqω() – δtdIq–pω(η) + ( – td)φ(z). ()

Thus we get a solution z in the form

z(t) = φ(z)( – td) +
∫ 


H(t, τ )ω(τ ) dτ ,

where the kernel H(t, τ ) is the Green’s function and is given as (). �
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Lemma . A function z ∈ Z will be the solution of the fractional integral equation () if
and only if z is a solution of ().

Proof The proof is obvious. �

To derive formally the required results as regards the data dependence and existence of
at least one of solutions to the proposed BVP (), we state the following hypotheses:

(A) For arbitrary u, v ∈ Z and if there exists a constant Kφ ∈ [, ), then one has

∣∣φ(z) – φ(z̄)
∣∣ ≤Kφ‖z – z̄‖Z;

(A) for constants Cφ , q ∈ [, ) and Mφ > , we have the following growth condition:

∣∣φ(z)
∣∣ ≤ Cφ‖z‖q

Z + Mφ , for each z ∈ Z;

(A) in the same fashion, for constants Cθ , q ∈ [, ) and Mθ > , we have the following
growth condition:

∣∣θ (t, z(t))
∣∣ ≤ Cθ‖z‖q

Z + Mθ .

To show that equation () has at least one solution z ∈ Z based on assumptions (A)-(A),
we define the operators by

F : Z → Z

as follows:

(Fz)(t) = ( – td)φ(z), d > 

and G : Z → Z is defined by

(Gz)(t) =
td

�(q)

∫ 


( – s)q–θ

(
τ , z(τ )

)
dτ –


�(q)

∫ t


(t – τ )q–θ

(
τ , z(τ )

)
dτ

–


�(q – p)

∫ η


(η – τ )q–p–θ

(
τ , z(τ )

)
dτ ,

T : Z → Z, Tz = Fz + Gz.

Obviously, the operator T is well defined because the function θ is continuous. So, we can
write () as an operator equation given by

z = Tz = Fz + Gz. ()

Here by the existence of a solution to equation (), we mean the existence of a fixed point
for operator T as defined afore and satisfying equation ().
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Lemma . The operator F : Z → Z is Lipschitz and consequently β-Lipschitz with con-
stant KF < . Moreover, the operator F satisfies the following growth condition:

‖Fz‖ ≤Q‖z‖q
Z + Mφ , for every z ∈ Z. ()

Proof For F to be Lipschitz, we consider |Fz(t) –F z̄(t)|, and apply assumptions (A) and
(A), we have

∣∣Fz(t) – F z̄(t)
∣∣ =

∣∣( – td)
(
φ
(
z(t)

)
– φ

(
z̄(t)

))∣∣
=

∣∣( – td)
∣∣∣∣(φ(

z(t)
)

– φ
(
z̄(t)

))∣∣
≤ ∣∣( – td)

∣∣Kφ‖z – z̄‖Z

≤ KF‖z – z̄‖Z, where KF =
∣∣( – td)

∣∣Kφ < .

Hence, we get

‖Fz – F z̄‖Z ≤KF‖z – z̄‖Z, for every z ∈ Z.

Thanks to proposition ., F is also β-Lipschitz with the same coefficient KF .
To derive the growth condition, we consider (Fz)(t) = (– td)φ(z), and applying assump-

tion (A), we get

‖Fz‖ ≤Q‖z‖q
Z + Mφ , for every z ∈ Z,

where Q = |d|Cφ . �

Lemma . The operator G : Z → Z is continuous. Moreover, it also satisfies the growth
condition as

‖Gz‖Z ≤ d + 
�(q – p + )

(
Cθ‖z‖q

Z + Mθ

)
, ()

for every z ∈ Z.

Proof Let {zm} be a sequence in the bounded set B̄ = {‖z‖Z ≤ κ : z ∈ Z} such that zm → z
as m → ∞ in B̄. We need to show that ‖Gzm –Gz‖Z →  as m → ∞. Since θ is continuous
and zm → z, therefore, θ (τ , zm(τ )) → θ (τ , z(τ )) as m → . Now consider

∣∣(Gzm)(t) – (Gz)(t)
∣∣

≤ td
�(q)

∫ 


( – τ )q–∣∣θ(

τ , zm(τ )
)

– θ
(
τ , z(τ )

)∣∣dτ

+
tδd

�(q – p)

∫ η


(η – τ )q–p–∣∣θ(

τ , zm(τ )
)

– θ
(
τ , z(τ )

)∣∣dτ

+


�(q)

∫ t


(t – τ )q–∣∣θ(

τ , zm(τ )
)

– θ
(
τ , z(τ )

)∣∣dτ .
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In view of assumption (A) and thanks to the Lebesgue dominated convergence theorem,
one has

∥∥(Gzm)(t) – (Gz)(t)
∥∥

Z →  as m → ∞,

which shows that G is continuous. To obtain the growth condition for the nonlinear op-
erator G , consider

∣∣(Gz)(t)
∣∣ =

∣∣∣∣ td
�(q)

∫ 


( – τ )q–θ

(
τ , z(τ )

)
dτ

–
tδd

�(q – p)

∫ η


(η – τ )q–p–θ

(
τ , z(τ )

)
dτ

–


�(q)

∫ t


(t – τ )q–θ

(
τ , z(τ )

)
dτ

∣∣∣∣
≤ d + 

�(q – p + )
(‖z‖q

Z + Mθ

)
.

Applying assumption (A), we obtain the condition (). �

Lemma . The operator G : Z → Z is compact. Consequently, G is β-Lipschitz with zero
constant.

Proof To prove the required result, we take a bounded set D ⊂ B̄ ⊆ Z. Let {zm} be a se-
quence on D ⊂ B̄, then from () for every zm ∈ D, we have

‖Gzm‖Z ≤ d + 
�(q – p + )

(
Cθ‖zm‖q

Z + Mθ

)
,

which implies thatG(D) is bounded in Z. Next, we will show that {Gzm} is equi-continuous.
For this purpose, let t < t ∈ (, ), and using these relations δηq–p < , 

�(q+) < 
�(q–p+) , we

have

∣∣(Gzm)(t) – (Gz)(t)
∣∣ ≤ (t – t)d

�(q)

∫ 


( – τ )q–∣∣θ(

τ , z(τ )
)∣∣dτ

+
(t – t)δd
�(q – p)

∫ η


(η – τ )q–p–∣∣θ(

τ , z(τ )
)∣∣dτ

+


�(q)

∫ t



(
(t – τ )q– – (t – τ )q–)∣∣θ(

τ , z(τ )
)∣∣dτ

–
∫ t

t

(t – τ )q–∣∣θ(
τ , z(τ )

)∣∣dτ ,

which on simplification takes the form

∣∣(Gzm)(t) – (Gz)(t)
∣∣ ≤ (Cθκ

q + Mθ )
�(q – p + )

[
(t – t)d +

(
tq
 – tq


)

– (t – t)q]. ()

The right hand side of the inequality () goes to zero as t → t. Thus, {Gzm} is equi-
continuous and also G(D) is relatively compact in Z by using the Arzelá-Ascoli theorem.
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Furthermore, in view of Proposition ., the nonlinear operator G is β-Lipschitz with con-
stant zero. �

From now on, we will prove our main results.

Theorem . Under the hypotheses (A)-(A) equation () has at least one solution u ∈ Z.
Also, the set of solutions for () is bounded in Z.

Proof Thank to Proposition ., the operator T is a strict β-contraction with constant Kφ .
Consider the set

S =
{

z ∈ Z : there exists λ ∈ [, ] such that z = λTz
}

.

We need to show that S ⊂ Z is bounded. For this purpose, consider

|z| = |λTz| = λ|Tz| ≤ λ
(‖Fz‖Z + ‖Gz‖Z

)
,

using () and (), we have

|z| ≤ λ

[
Q‖z‖q

Z + Mφ +
d + 

�(q – p + )
(‖z‖q

Z + Mθ

)]
,

which implies using λ <  that

‖z‖Z ≤
[
Q‖z‖q

Z + Mφ +
d + 

�(q – p + )
(‖z‖q

Z + Mθ

)]
. ()

Hence, () and q, q ∈ (, ) shows that S is bounded in Z. If it is not bounded then
assume that ‖z‖Z = ρ and consider that ρ → ∞. Then from (), we have

 ≤ [Q‖z‖q
Z + Mφ + d+

�(q–p+) (‖z‖q
Z + Mθ )]

ρ
, ()

where due to assumption

ρ → ∞ yields  ≤ .

This is impossible, so we take S to be bounded.
Therefore, we conclude that the operator T has at least one fixed point and the set of

fixed points is bounded in Z. �

We make the following assumption for discussion of data dependence of solutions:

(A) There exist constants Lθ > , λ ∈ [,  – 
r ] for some r ∈ (,  – 

–q ) such that

∣∣θ (t, z) – θ (t, z̄)
∣∣ ≤Lθ |z – z̄|λ, for each t ∈ J, and for all z, z̄ ∈ R.
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Theorem . Assuming that (A)-(A) hold, let z(t)z̄(t) be the solutions of (FDE) () with
associated boundary conditions. Then there exists a constant M∗ >  such that

∣∣z(t) – z̄(t)
∣∣ ≤M∗

(


(p( – q) + )

) 
p

.

Proof Consider |z(t) – z̄(t)|, and thanks to (A), (A), and (A), we get

∣∣z(t) – z̄(t)
∣∣ ≤ Kφ

∣∣z(t) – z̄(t)
∣∣ +

Lθ

�(q)

∫ t


(t – τ )q–∣∣z(τ ) – z̄(τ )

∣∣λ dτ

+
dLθ

�(q)

∫ 


( – τ )q–∣∣z(τ ) – z̄(τ )

∣∣λ dτ

+
δLθ d

�(q – p)

∫ η


(η – τ )q–p–∣∣z(τ ) – z̄(τ )

∣∣λ dτ .

Upon further simplification and using (), we get

∣∣z(t) – z̄(t)
∣∣ ≤ 

 – Kφ

[ Lθ

�(q)

∫ t


(t – τ )q–∣∣z(τ ) – z̄(τ )

∣∣λ dτ

]

+


 – Kφ

[
dLθ

�(q)

∫ 


( – τ )q–∣∣z(τ ) – z̄(τ )

∣∣λ dτ

+
δLθ d

�(q – p)

∫ η


(η – τ )q–p–∣∣z(τ ) – z̄(τ )

∣∣λ dτ

]
.

Hence using () and Theorem ., we obtain

|z – z̄| ≤M∗,

where M∗ = eM and

M =


 – Kφ

[ Lθ

�(q)

∫ t


(t – τ )q–∣∣z(τ ) – z̄(τ )

∣∣λ dτ

]

+


 – Kφ

[
dLθ

�(q)

∫ 


( – τ )q–∣∣z(τ ) – z̄(τ )

∣∣λ dτ

+
δLθ d

�(q – p)

∫ η


(η – τ )q–p–∣∣z(τ ) – z̄(τ )

∣∣λ dτ

]
. �

Now, re-write assumption (A) as follows.

(A) For a Lθ > , the following relation holds:

∣∣θ (t, z) – θ (t, z̄)
∣∣ ≤Lθ |z – z̄|, for each t ∈ J, and for each z, z̄ ∈ R.

Theorem . Assume that the hypotheses (A)-(A) hold, then FDE () has a unique solu-
tion z ∈ Z if M∗

–Kφ
< .

Proof As we investigated in Theorem . z(t) ∈ Z is a solution of (). Let z(t) be another
solution of (). Then, repeating the same procedure as in Theorem . and using assump-
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tions (A), (A) and (A), we obtain

∣∣Tz(t) – Tz̄(t)
∣∣ ≤ 

 – Kφ

[
Kφ‖z – z̄‖Z +

Lθ

�(q)

∫ t


(t – τ )q–∣∣z(τ ) – z̄(τ )

∣∣λ dτ

]

+


 – Kφ

[Lθ td
�q

∫ 


( – τ )q–∣∣z(τ ) – z(τ )

∣∣λ dτ

+
δdLθ

�(q – p)

∫ η


(η – s)q–p–∣∣z(τ ) – z̄(τ )

∣∣λ dτ

]
,

using the inequality in Theorem ., we get

‖Tz – Tz̄‖Z ≤ M∗

 – Kφ

‖z – z̄‖Z, t ∈ J,

which produces the uniqueness of z. �

4 Illustrative example
Example  Take the following FDE subject to the multi-points boundary conditions:

CDqz(t) = –
cos(t)

 + t|z(t)| , t ∈ J,

z(t)|t= = φ(z) =
∑

j=




∣∣z(ηj)
∣∣, z() =




CD

 z

(



)
.

()

Here, we take q = 
 and δ = η = 

 , Kφ = 
 , ηj = 

j , j = , , , . r =  ∈ (, ), λ = 
 ∈ [, ],

Lθ = Cθ = 
 , Cφ = 

 , p = 
 , Mφ = Mθ = .

By simple computation, d = ., Q = dCφ = . × 
 = .. For the consid-

ered problem () all the data dependence results (A)-(A) are satisfied. It is also obvious
that the solution z

‖z‖Z ≤ .,

is bounded. Thus due to Theorem . there exists at least one solution for () which is
bounded. Along the same line, one can derive the assumptions of Theorem . and ..

Example  Consider the following boundary value problem of FDEs:

CD

 z(t) = –

sin |z(t)|
 + exp(t)

, t ∈ J,

z(t)|t= = φ(z) =



cos |z|, z() =




CD

 z

(



)
.

()

From the given problem (), we see that q = 
 and we take δ = η = 

 , Kφ = 
 . r =  ∈ (, ),

λ = 
 ∈ [, ], Lθ = Cθ = 

 , Cφ = 
 , p = 

 , Mφ = Mθ = .
Upon computation, we get d = ., Q = dCφ = .. Thus for the given bound-

ary value problem () of FDEs, all the data dependence results (A)-(A) hold.
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Further, it is easy to show by using Theorem . that there exists at least one solution
for () which is bounded. Also, one can easily derive the assumptions of Theorems .
and ..

5 Concluding remarks
In this paper, we have successfully applied an a priori estimate method known as topolog-
ical degree method rather than Schauder and Brouwer degree theory. Highly interesting
results for the existence of at least one solution have been derived. In the future, we can
extend the concerned theory to highly applicable nonlinear problems of applied analysis
to investigate them for solutions.
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