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Abstract: In this work, the study of the fractional behavior of the Bateman–Feshbach–Tikochinsky
and Caldirola–Kanai oscillators by using different fractional derivatives is presented. We obtained
the Euler–Lagrange and the Hamiltonian formalisms in order to represent the dynamic models based
on the Liouville–Caputo, Caputo–Fabrizio–Caputo and the new fractional derivative based on the
Mittag–Leffler kernel with arbitrary order α. Simulation results are presented in order to show the
fractional behavior of the oscillators, and the classical behavior is recovered when α is equal to 1.
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1. Introduction

Several phenomenological models of dissipative systems have been proposed, such as the
Bateman–Feshbach–Tikochinsky (BFT) or Caldirola–Kanai (CK) oscillators, the first model consists
of a damped and an amplified oscillator, and this one-dimensional system exhibits an exponentially
increasing mass with a Lagrangian given by Bateman [1–5]. Both quantum damped oscillators
have been studied as a model to understand dissipation in quantum theory [6]. Bateman suggested
the time-dependent Hamiltonian [2] and Caldirola the time dependent Hamiltonian to describe
damped oscillations [4]. The Caldirola–Kanai oscillator is an open system whose parameters such
as mass and frequency are all time dependent, while the Bateman–Feshbach–Tikochinsky oscillator
is a closed system whose total energy is conserved and the dissipated energy from the damped
oscillator is transferred to amplified one [7,8]. The fractional Hamiltonians are non-local and they are
associated with dissipative systems [8]. There are few definitions of operators with fractional order,
the Liouville–Caputo fractional derivative involving a kernel with singularity, and this definition
is based on the power law and present singularity at the origin [9]. Recently, in order to solve the
problem of singularity at the origin, Caputo and Fabrizio used the exponential decay law to construct
a derivative with no singularity; however, the used kernel was local [10–18]. Thus, Atangana and
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Baleanu used the generalized Mittag–Leffler function to construct a derivative with no-singular
and non-local kernel [19–22]. In this paper, we obtain alternative representations of the BFT and
CK oscillators by using the Liouville–Caputo, Caputo–Fabrizio–Caputo and the new fractional
derivative based in Mittag–Leffler kernel with arbitrary order α. Numerical solutions are based
in a Crank–Nicholson scheme.

2. Fractional Operators

The Adams method is a multi-step method, and this method uses the information of all the
previous values, yi, yi−1, yi−m+1, in order to calculate yi+1. This is the difference between the Adams
method and the single-step methods, such as the Heun, Taylor and Runge–Kutta numerical schemes,
which use only the last value to calculate the next one. There are two types of Adams methods,
the Adams–Bashforth and the Adams–Moulton. The combination of these methods results in the
predictor–corrector Adams–Bashforth–Moulton Method [23–26].

The generalization of this method for any order of derivative is called the fractional
Adams–Bashforth Method [23]

C
0 Dα

t f (t) = g(t, f (t)), f w(0) = f w
0 , w = 0, 1, ..., n− 1, (1)

where α > 0 and C
0 Dα

t is the Liouville–Caputo operator

C
0 Dα

t f (t) =
1

Γ(n− α)

∫ t

0

f (n)(η)
(t− η)α−n+1 dη. (2)

Equation (1) satisfies the following Volterra integral equation

f (t) =
n−1

∑
w=0

f (w)
0

tw

w!
+

1
Γ(α)

t∫
0

(t− κ)α−1g(κ, f (κ))dκκ, t < T. (3)

The fractional Adams method to solve (1) has been studied firstly by Diethelm, Ford and Freed [24],
and this solution scheme is derived as follows:

f P
w+1 =

n−1
∑

j=0

tj
w+1
j!

f (j)
0 +

1
Γ(α)

w
∑

j=0
bj,w+1g(tj, f j),

fw+1 =
n−1
∑

j=0

tj
w+1
j!

f (j)
0 +

1
Γ(α)

(
w
∑

j=0
aj,w+1g(tj, f j) + aw+1,w+1g(tw+1, f P

k+1)

)
.

(4)

The fractional operator proposed by Caputo and Fabrizio in Liouville–Caputo sense (CFC) is
expressed as follows [10]:

CFC
0 Dα

t f (t) =
(2− α)B(α)

2(1− α)

t∫
0

exp
( −α

1− α
(t− ς)

)
f (n)(ς)dς, (5)

where B(α) = B(0) = B(1) = 1 (is a normalization function). In this sense, the Laplace transform is
given by

L
[

CFC
0 D(n+α)

t f (t)
]
(s) =

sn+1L [ f (t)]− sn f (0)− sn−1 f ′ (0) . . .− f (n) (0)
s + α (1− s)

. (6)
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The fractional derivative based in Mittag–Leffler kernel (Atangana–Baleanu fractional operator in
Liouville–Caputo sense, ABC) is given as

ABC
0 Dα

t f (t) =
B(α)
1− α

∫ t

0
ḟ (θ)Eα

[
− α

(t− θ)α

1− α

]
dθ, (7)

where Eα is a Mittag–Leffler function [19]. The fractional integral is defined as

AB
a Iα

t f (t) =
1− α

B(α)
f (t) +

α

B(α)Γ(α)

∫ t

0
f (ς)(t− ς)α−1dς. (8)

The Laplace transform of (7) produces

L [ABC
0 Dα

t f (t)](s) =
B(α)
1− α

sαL [ f (t)](s)− sα−1 f (0)
sα + α

1−α

. (9)

3. Applications

3.1. Bateman–Feshbach–Tikochinsky Oscillator

The classical Lagrangian of the BFT oscillator is given by

L = mq̇1q̇2 + ρ(q1q̇2 − q̇1q2)− Kq1q2, (10)

where q1 is the damped harmonic oscillator coordinate and q2 corresponds to the time-reversed
counterpart, and the parameters m, ρ, K are time independent.

The fractional Lagrangian (10) is given by

LF = maDα
t q1 aDα

t q2 + ρ(q1 aDα
t q2 − aDt

αq1q2)− Kq1q2, (11)

and the Lagrange model of fractional order is

maDα
t aDα

t q1 + ρaDα
t q1 + Kq1 = 0,

maDα
t aDα

t q2 − ρaDα
t q2 + Kq2 = 0.

(12)

Now, we can get the generalized momentum as follows:

pi =
∂LF

∂aDα
t qi

, (13)

where LF is the Lagrangian of fractional order and i = 1, 2.
The two generalized momentums are given by

p1 =
∂LF

∂aDα
t q1

= maDα
t q2 −

ρ

2
q2,

p2 =
∂LF

∂aDα
t q2

= maDα
t q1 +

ρ

2
q1.

(14)

Applying the Legendre transformation, we obtain the Hamiltonian of fractional order

HF(t, qi, pi) = ∑
i

pi aDα
t qi(qi, pi)− L(t, qi,a Dα

t qi(qi, pi)). (15)

Using the Equation (15), we have

HF = (K− ρ2

4m
)q1q2 +

ρ

2m
(q2 p2 − q1 p1) +

p1 p2

m
. (16)
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We define ω =

√
K− ρ2

4m and the Hamiltonian takes the form

HF = ω2q1q2 +
ρ

2m
(q2 p2 − q1 p1) +

p1 p2

m
. (17)

The fractional Hamilton model of the BFT oscillator is given by

aDα
t q1 = −ρq1

2m
+

p2

m
,

aDα
t q2 =

ρq2

2m
+

p1

m
,

aDα
t p1 =

ρ2q2

4m
+

ρp1

2m
− Kq2,

aDα
t p2 =

ρ2q1

4m
− ρp2

2m
− Kq1.

(18)

Now, we consider the fractional operators of Liouville–Caputo, Caputo–Fabrizio–Caputo and the
fractional derivative based in the Mittag–Leffler kernel.

• First case. In the Liouville–Caputo sense, we have

q1(t) =
n−1
∑

i=0
q1(0)(i)

ti

i!
+

1
Γ(α)

t∫
0
(t− κ)α−1

(
− χq1(κ)

2m
+

p2(κ)

m

)
dκ,

q2(t) =
n−1
∑

i=0
q2(0)(i)

ti

i!
+

1
Γ(α)

t∫
0
(t− κ)α−1

(
χq2(κ)

2m
+

p1(κ)

m

)
dκ, t < T,

p1(t) =
n−1
∑

i=0
p1(0)(i)

ti

i!
+

1
Γ(α)

t∫
0
(t− κ)α−1

(
χ2q2(κ)

4m
+

χp1(κ)

2m
− Kq2(κ)

)
dκ,

p2(t) =
n−1
∑

i=0
p2(0)(i)

ti

i!
+

1
Γ(α)

t∫
0
(t− κ)α−1

(
χ2q1(κ)

4m
− χp2(κ)

2m
− Kq1(κ)

)
dκ.

(19)

The numerical approximation of (19) is obtained using the algorithm (4).

• Second case. In the Caputo–Fabrizio–Caputo sense,

q1(l+1)(t) = q(1)(t) +

{
1− α

B(α)

[
−
( ρ

2m

)
q1(l+1)(t) +

( 1
m

)
p2(l+1)(t)

]}
+

+
α

B(α)

∞

∑
z=0

ε1,z,l ·
[
−
( ρ

2m

)
q1(l)(t) +

( 1
m

)
p2(l)(t)

]
,

q2(l+1)(t) = q(2)(t) +

{
1− α

B(α)

[( ρ

2m

)
q2(l+1)(t) +

( 1
m

)
p1(l+1)(t)

]}
+

+
α

B(α)

∞

∑
z=0

ε2,z,l ·
[( ρ

2m

)
q2(l)(t) +

( 1
m

)
p1(l)(t)

]
,

p1(l+1)(t) = p(1)(t) +

{
1− α

B(α)

[( ρ2

4m

)
q2(l+1)(t) +

( ρ

2m

)
p1(l+1)(t)− Zq2(l+1)(t)

]}
+
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+
α

B(α)

∞

∑
z=0

ε3,z,l ·
[( ρ2

4m

)
q2(l)(t) +

( ρ

2m

)
p1(l)(t)− Zq2(l)(t)

]
,

p2(l+1)(t) = p(2)(t) +

{
1− α

B(α)

[( ρ2

4m

)
q1(l+1)(t)−

( ρ

2m

)
p2(l+1)(t)− Zq1(l+1)(t)

]}
+

+
α

B(α)

∞

∑
z=0

ε4,z,l ·
[( ρ2

4m

)
q1(l)(t)−

( ρ

2m

)
p2(l)(t)− Zq1(l)(t)

]
, (20)

where

ε(1,2,3,4),z,l+1

{
lα − (l − α)(l + 1)α, z = 0,
(l − z + 2)α+1 + (l − z)α+1 − 2(l − z + 1)α+1, 0 ≤ z ≤ l.

• Third case. For the fractional derivative based on the Mittag–Leffler kernel, we used the numerical
approximation scheme developed in [20]

AB
0 Iα

t [ f (tl+1)] =
1− α

B(α)

[ f (tl+1)− f (tl)

2

]
+

α

Γ(α)

∞

∑
z=0

[ f (tz+1)− f (tz)

2

]
bα

z , (21)

where
bα

z = (z + 1)1−α − (z)1−α, (22)

and the system (18) is represented by

q1(l+1)(t)− q1(l)(t) = ql
(1)(t) +

{
1− α

B(α)

[
−
( χ

2m

)( q1(l+1)(t)− q1(l)(t)
2

)
+

+
( 1

m

)( p2(l+1)(t)− p2(l)(t)
2

)]}
+

α

B(α)

∞

∑
z=0

bα
z ·
[
−
( ρ

2m

)( q1(z+1)(t)− q1(z)(t)
2

)
+

+
( 1

m

)( p2(z+1)(t)− p2(z)(t)
2

)]
,

q2(l+1)(t)− q2(l)(t) = ql
(2)(t) +

{
1− α

B(α)

[( ρ

2m

)( q2(l+1)(t)− q2(l)(t)
2

)
+

+
( 1

m

)( p1(l+1)(t)− p1(l)(t)
2

)]}
+

α

B(α)

∞

∑
z=0

bα
z ·
[( ρ

2m

)( q2(z+1)(t)− q2(z)(t)
2

)
+

+
( 1

m

)( p1(z+1)(t)− p1(z)(t)
2

)]
,

p1(l+1)(t)− p1(l)(t) = pl
(1)(t) +

{
1− α

B(α)

[( ρ

2m

)( q2(l+1)(t)− q2(l)(t)
2

)
+

+
( 1

m

)( p1(l+1)(t)− p1(l)(t)
2

)
− Z

( q2(l+1)(t)− q2(l)(t)
2

)]}
+

+
α

B(α)

∞

∑
z=0

bα
z ·
[( ρ

2m

)( q2(z+1)(t)− q2(z)(t)
2

)
+
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+
( 1

m

)( p1(z+1)(t)− p1(z)(t)
2

)
− Z

( q2(z+1)(t)− q2(z)(t)
2

)]
,

p2(l+1)(t)− p2(l)(t) = pl
(2)(t) +

{
1− α

B(α)

[( ρ

2m

)( q1(l+1)(t)− q1(l)(t)
2

)
−

−
( ρ

m

)( p2(l+1)(t)− p2(l)(t)
2

)
− Z

( q1(l+1)(t)− q1(l)(t)
2

)]}
+

+
α

B(α)

∞

∑
z=0

bα
z ·
[( ρ

2m

)( q1(z+1)(t)− q1(z)(t)
2

)
−

−
( ρ

m

)( p2(z+1)(t)− p2(z)(t)
2

)
− Z

( q1(z+1)(t)− q1(z)(t)
2

)]
. (23)

Numerical Simulations

Figures 1–3 shows the position q1 = x2(t), q2 = x1(t), aDα
t x1(t) = x3(t) and aDα

t x2(t) = x4(t)
for systems (19), (20) and (23), respectively. For the simulation, the following values were considered:
m = 5, ρ = 2, K = 0.1 and different values of α, the total simulation time considered is 5 s, and the
computational step 1× 10−3. The initial conditions x1(0) = 1, x2(0) = 0.1, x3(0) = 1 and x4(0) = 0.5
were considered. The results show that by keeping the parameters constant and by varying α, we
obtain different results. The reported results illustrate that the fractional approach is more suitable to
describe the complex dynamics of the investigated model.

x1(t)

x2(t)

x3(t)

x4(t)

1 2 3 4 5
Time

-1.0

-0.5

0.0

0.5

1.0

x1,2,3,4 (t)

(a)

x1(t)

x2(t)

x3(t)

x4(t)

1 2 3 4 5
Time

-1.0

-0.5

0.0

0.5

1.0

x1,2,3,4 (t)

(b)

x1(t)

x2(t)

x3(t)

x4(t)

1 2 3 4 5
Time

-1.0

-0.5

0.0

0.5

1.0

x1,2,3,4 (t)

(c)

x1(t)

x2(t)

x3(t)

x4(t)

1 2 3 4 5
Time

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

x1,2,3,4 (t)

(d)

Figure 1. Numerical evaluation of (19), in (a) α = 1; in (b) α = 0.95; in (c) α = 0.90; and (d) α = 0.85.
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Figure 2. Numerical evaluation of (20), in (a) α = 1; in (b) α = 0.95; in (c) α = 0.90; and (d) α = 0.85.
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Figure 3. Numerical evaluation of (23), in (a) α = 1; in (b) α = 0.95; in (c) α = 0.90; and (d) α = 0.85.



Entropy 2017, 19, 55 8 of 13

3.2. Caldirola–Kanai Oscillator

We consider a harmonic CK oscillator whose mass depends on time such that
m(t) = m exp(sin βγt), in this case, the Lagrangian is given by

L = exp(sin βγt)[
1
2

mq̇2 − 1
2

mω2(t)q2], (24)

where m depends explicitly on time, and β and γ are variable parameter and damping factors.
The fractional Lagrangian (24) is given by

LF = Eα,1(sin βγt)[
1
2

m(aDα
t q2)− 1

2
mω2(t)q2], (25)

and
aDα

t (Eα,1(sin βγt)aDα
t q)− Eα,1(sin βγt)ω2(t)q = 0. (26)

The generalized momentum is

pi =
∂LF

∂aDα
t qi

, (27)

p =
∂LF

∂aDα
t q

= Eα,1(sin βγt)[m(aDα
t q)], (28)

where LF is the Lagrangian of fractional order of (24) with i = 1, q1 = q and p1 = p.
The Hamiltonian of fractional order is obtained using the Legendre transformation

HF(t, qi, pi) = ∑
i

pi aDα
t qi(qi, pi)−L (t, qi,a Dα

t qi(qi, pi)), (29)

where

H F =
p2

2m
Eα,1(− sin βγt) +

m
2

ω2(t)q2Eα,1(sin βγt). (30)

The fractional Hamilton model of the CK oscillator is given by

aDα
t q =

p
m

Eα,1(− sin βγt),

aDα
t p = mqω2(t)Eα,1(sin βγt).

(31)

Now, we consider the fractional operators of Liouville–Caputo, Caputo–Fabrizio–Caputo and the
fractional derivative based on the Mittag–Leffler kernel.

• First case. In the Liouville–Caputo sense, we have

q(t) =
n−1
∑

i=0
q(0)(i)

ti

i!
+

1
Γ(α)

t∫
0
(t− κ)α−1(

p(κ)
m

Eα,1(− sin βγκ))dκ,

p(t) =
n−1
∑

i=0
p(0)(i)

ti

i!
+

1
Γ(α)

t∫
0
(t− κ)α−1(mq(κ)ω2(κ)Eα,1(sin βγκ))dκ, t < T.

(32)

The numerical approximation of (32) is obtained using algorithm (4).
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• Second case. In the Caputo–Fabrizio–Caputo sense, the Adams–Moulton rule for system (31) is
given by

q1(l+1)(t) = q(1)(t) +

{
1− α

B(α)

[( 1
m

)
p1(l+1)(t)Eα,1(− sin βγt)

]}
+

+
α

B(α)

∞

∑
z=0

ε1,z,l ·
[( 1

m

)
p1(l)(t)Eα,1(− sin βγt)

]
,

p1(l+1)(t) = p(1)(t) +

{
1− α

B(α)

[
(mω2(t))q1(l+1)(t)Eα,1(sin βγt)

]}
+

+
α

B(α)

∞

∑
z=0

ε2,z,l ·
[
(mω2(t))q1(l)(t)Eα,1(sin βγt)

]
, (33)

where

ε(1,2),z,l+1

{
lα − (l − α)(l + 1)α, z = 0,
(l − z + 2)α+1 + (l − z)α+1 − 2(l − z + 1)α+1, 0 ≤ z ≤ l.

• Third case. For the fractional derivative based on the Mittag–Leffler kernel, we have

q1(l+1)(t)− q1(l)(t) = ql
(1)(t) +

{
1− α

B(α)

[( 1
m

)( p1(l+1)(t)− p1(l)(t)
2

)
· (− sin βγt)

]}
+

+
α

B(α)

∞

∑
z=0

bα
z ·
[( 1

m

)( p1(z+1)(t)− p1(z)(t)
2

)
· Eα,1(− sin βγt)

]
,

p1(l+1)(t)− p1(l)(t) = pl
(1)(t) +

{
1− α

B(α)

[
(mω2(t))

( p1(l+1)(t)− p1(l)(t)
2

)
· (sin βγt)

]}
+

+
α

B(α)

∞

∑
z=0

bα
z ·
[
(mω2(t))

( p1(z+1)(t)− p1(z)(t)
2

)
· Eα,1(sin βγt)

]
. (34)

Numerical Simulations

Figures 4–6 depicted the numerical evaluation of (32)–(34) in Liouville–Caputo,
Caputo–Fabrizio–Caputo and the fractional derivative based on the Mittag–Leffler kernel,
respectively, considering different values of ω(t) and fractional order γ, for all cases a = 0 and b = 1,
and the total simulation time considered is one second and computational step 1× 10−5. It is clear
from the figures that the behaviors of the fractional equations strongly depend on the order α of the
fractional derivatives, in addition to the form of the function w(t).
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Figure 4. Numerical evaluation of (32), in (a) ω(t) = 3t; in (b) ω(t) = 2t + 1; in (c) ω(t) = 3t + 2; and
(d) ω(t) = t− 1.
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Figure 5. Numerical evaluation of (33), in (a) ω(t) = 3t; in (b) ω(t) = 2t + 1; in (c) ω(t) = 3t + 2; and
(d) ω(t) = t− 1.
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Classical case
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Figure 6. Numerical evaluation of (34), in (a) ω(t) = 3t; in (b) ω(t) = 2t + 1; in (c) ω(t) = 3t + 2; and
(d) ω(t) = t− 1.

4. Conclusions

Alternative representations of the Bateman–Feshbach–Tikochinsky and Caldirola–Kanai
oscillators were studied using fractional operators of Liouville–Caputo type. We derive new solutions
of these models using an iterative scheme and via a Crank–Nicholson scheme. The Liouville–Caputo
fractional derivative involves a kernel with singularity, and this definition is based on the power law
and present singularity at the origin. Recently, Caputo and Fabrizio solved the problem of singularity
at the origin and used the exponential decay law to construct a derivative with no singularity; however,
the used kernel is local. This derivative therefore has an advantage over the Liouville–Caputo
derivative because the full effect of the memory can be portrayed. Atangana and Baleanu suggested
two fractional derivatives based on the generalized Mittag–Leffler function. These derivatives with
fractional order in Liouville–Caputo and Riemann–Liouville sense have non-singular and non-local kernel
and preserve the benefits of the Riemann–Liouville, Liouville–Caputo and Caputo–Fabrizio operators.

Using these fractional operators, the results show that, by keeping the parameters constant and
by varying α, we obtain different behaviors. The reported results illustrate that the fractional approach
is more suitable to describe the complex dynamics of the investigated models. Finally, we observe
novel behaviors that cannot be obtained with standard models and using local derivatives.
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