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Abstract
In this study, a mathematical model of the generalized biological population model (GBPM) gets a new exact solution with

a conformable derivative operator (CDO). The new exact solution of this model will be obtained by a new approximate analytic
technique named three dimensional conformable reduced differential transform method (TCRDTM). By using this technique, it
is possible to find new exact solution as well as closed analytical approximate solution of a partial differential equations (PDEs).
Three numerical applications of GBPM are given to check the accuracy, effectiveness, and convergence of the TCRDTM. In
these applications, obtained new exact solutions in conformable sense are compared with the exact solutions in Caputo sense in
literature. The comparisons are illustrated in 3D graphics. The results show that when α→ 1, the exact solutions in conformable
and Caputo sense converge to each other. In other cases, exact solutions different from each other are obtained. c©2017 All rights
reserved.
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partial differential equations.
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1. Introduction

Linear and non-linear fractional and non-fractional problems of differential equations play a major
role in various fields such as biology, physics, chemistry, mathematics, astronomy, fluids mechanics,
mathematics, and engineering. It is not always possible to find analytical solutions to these problems
[1, 2, 4–19, 24, 25, 28, 34, 35, 37, 38, 40, 42, 48–54]. Therefore, it is very important to handle these problems
appropriately and solve them or develop solutions. Recently, a new derivative called CDO was introduced
and also by the help of this newly defined derivative, the behaviors of many problems have been studied
and some solutions techniques have been developed [1, 3, 6, 7, 12, 14, 20, 21, 23, 29–31, 47]. In 2016, Acan et
al. [6] introduced two dimensional conformable reduced differential transform method (CRDTM) based
on RDTM and CDO for the PDEs. It is shown that CRDTM is an easy applicable analytical method
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and gives the exact solution for PDEs. We will extend this method, which is called TCRDTM, to three
dimensions. This method is used to find new exact solution of the GBPM in conformable sense as
described below.

Scientists in biology believe that migration or scattering is very important in regulating species pop-
ulations. In a region Ω, the diffusion of species is defined by the three position parameters ~ξ = (x,y)
and time t that are population density (PD) ρ(~ξ, t), the population supply ψ(~ξ, t), and diffusion velocity
(DV) υ(~ξ, t) [27]. The ρ(~ξ, t) gives the individual number per unit volume at time t and position ~ξ; over
any sub-region G of Ω, the integral ρ(~ξ, t) gives all population of the region G at time t. ψ(~ξ, t) presents
the rate at which individuals are supplied, per unit volume, at position ~ξ by births and deaths. The DV
υ(~ξ, t) shows the average velocity belonging to the individuals who occupy the position ~ξ at time t, and
it reports the population flow from point to point. The entities ρ(~ξ, t), υ(~ξ, t), and ψ(~ξ, t) must obey the
following population balance law, for any regular sub-region G of Ω and for any time t

dα

dtα

∫
G

ρdV+

∫
∂G

ρ~υ · m̂dA =

∫
G

ψdV , (1.1)

where m̂ is the outward unit normal to the boundary ∂G of G. In (1.1), the derivative has been taken in
the conformable derivative sense. By the assumptions [33]

ψ = ψ (ρ) and υ = −µ (ρ)∇ρ,

where ∇ is the Laplace operator and µ (ρ) > 0 for ρ > 0, two-dimensional non-linear degenerate parabolic
PDEs for the PD ρ can be obtained as

∂α

∂tα
ρ (x,y, t) =

∂2

∂x2ω (ρ) +
∂2

∂y2ω (ρ) +ψ (ρ) , x,y ∈ R, t ∈ [0,∞) , 0 < α 6 1. (1.2)

The statement (1.2) is BPM. Gurney and Nisbet [26] employed a method, for a special case for the model-
ing of the animals’ population. Model (1.2) with ω (ρ) = ρ2, is the following equation

∂α

∂tα
ρ (x,y, t) =

∂2

∂x2ρ
2 +

∂2

∂y2ρ
2 +ψ (ρ) , x,y ∈ R, t ∈ [0,∞) , 0 < α 6 1, (1.3)

subject to the initial condition (IC) ρ (x,y, 0). For α = 1, (1.3) reduces to the standard biological population
model

∂

∂t
ρ (x,y, t) =

∂2

∂x2ρ
2 +

∂2

∂y2ρ
2 +ψ (ρ) , x,y ∈ R, t ∈ [0,∞) .

Some properties of (1.3) such as holder estimates and its solutions have been studied in [33]. The consti-
tutive equations for ψ (ρ) can be given as

(i) ψ (ρ) = kρ, k constant, Malthusian law [27];
(ii) ψ (ρ) = k1ρ− k2ρ

2, k1,k2 positive constants, Verhulst law [33];
(iii) ψ (ρ) = kργ, (k > 0, 0 < γ 6 1), Porous media [36].

Let us deal with a more general form of ψ (ρ) as ψ (ρ) = hρη (1 − µρτ) so that (1.3) becomes

∂α

∂tα
ρ (x,y, t) =

∂2

∂x2ρ
2 +

∂2

∂y2ρ
2 + hρη (1 − µρτ) , x,y ∈ R, t ∈ [0,∞) , 0 < α 6 1, (1.4)

where h, η, τ, µ ∈ R. If h = k, η = 1, µ = 0 and h = k1, η = τ = 1, µ = k2
k1

, then (1.4) leads to Malthusian
law and Verhulst law, respectively. The above mentioned models have been a research topic for many
researchers and scientists. Different methods and derivative definitions have been used to explore these
models [13, 22, 26, 27, 32, 33, 36, 39, 41, 43–46].



O. Acan, M. M. Al Qurashi, D. Baleanu, J. Nonlinear Sci. Appl., 10 (2017), 3916–3929 3918

In this study, we propose a new exact solution for GBPM. TCRDTM, based on CDO and RDTM, is
used to obtain this new solution. The obtained new exact solutions in conformable sense are compared
with the exact solutions [46] in Caputo sense for some α values. The comparisons of these exact solutions
are illustrated in 3D graphics. For this, in Section 2, we give basic definitions and important properties of
CDO. In Section 3, two dimensions CRDTM has been extended to three dimensions CRDTM (TCRDTM).
For this new method some definitions and theorems are given. In Section 4, some applications for GBPM
are given. And in the final section, we give the conclusion.

2. On the conformable derivative operator

Definition 2.1 ([1, 12, 30]). Given a function f : [0,∞) → R, then the conformable derivative (CD) of f of
order α is defined by:

(Tαf)(t) =
dα

dtα
f(t) = lim

ε→0

f(t+ εt1−α) − f(t)

ε

for all t > 0, α ∈ (0, 1].

Lemma 2.2 ([1, 12, 30]). Let f,g be α-differentiable at a point t > 0 for α. Then

(i) Tα(af+ bg) = a(Tαf) + b(Tαg) for all a,b ∈ R and α ∈ (0, 1];
(ii) Tα(f(t)) = 0 for constant function f(t) = λ, α ∈ (0, 1];

(iii) Tα(fg) = f(Tαg) + g(Tαf), α ∈ (0, 1];

(iv) Tα(f/g) =
g(Tαf) − f(Tαg)

g2 , α ∈ (0, 1];

(v) if f is n times differentiable at t, then Tα(f(t)) = tdαe−αf(dαe)(t), α ∈ (n,n+ 1], where dαe is the smallest
integer greater than or equal to α.

Lemma 2.3 ([1]). Suppose that f is infinitely α-differentiable function for α ∈ (0, 1] at a neighborhood of a point
t0. Then f has the conformable power series expansion

f (t) =

∞∑
k=0

(
T
(k)
α f

)
(t0) (t− t0)

αk

αkk!
, t0 < t < t0 + R

1/α ,R > 0.

Here
(
T
(k)
α f

)
(t0) denotes the application of the CD for k times.

3. Three dimensional conformable reduced differential transform method

In 2016, Acan et al. [6] introduced the two dimensional CRDTM. In this section, we will extend
this method to three dimensions. Throughout this study, the lowercase u (x,y, t) represents the original
function while the uppercase Uαk (x,y) stands for three dimensional conformable reduced differential
transformed (TCRDT) function. The basic definitions of TCRDTM are presented as follows.

Definition 3.1. Assume that u (x,y, t) is analytic and differentiated continuously with respect to three
variables x, y, t in its domain. The TCFRDT of u (x,y, t) is defined as

Uαk (x,y) =
1

αkk!

[(
T
(k)
α u

)]
t=t0

,

where 0 < α 6 1, α is a parameter describing the order of conformable derivative,

T
(k)
α u = (TαTα · · · Tα)︸ ︷︷ ︸

k times

u (x,y, t)

and the t dimensional spectrum function Uαk (x,y) is the TCRDT function.
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Definition 3.2. Let Uαk (x,y) be the TCRDT of u (x,y, t). Inverse TCRDT of Uαk (x,y) is defined as

u (x1, x2, . . . , xn, t) =
∞∑
k=0

Uαk (x,y) (t− t0)
αk =

∞∑
k=0

1
αkk!

[
T
(k)
α u

]
t=t0

(t− t0)
αk.

TCRDT of initial conditions for integer order derivatives are defined as

Uαk (x,y) =

{
1

(αk)!

[
∂αk

∂tαk
u (x,y, t)

]
t=t0

, if αk ∈ Z+,

0, if αk /∈ Z+,
for k = 0, 1, 2, . . . ,

(m
α

− 1
)

,

where m is the order of conformable PDE.

Theorem 3.3. Let a and b be constants. If u (x,y, t) = av (x,y, t)± bw (x,y, t), then Uαk (x,y) = aVαk (x,y)±
bWα

k (x,y).

Proof. CFRDT of v (x,y, t) and w (x,y, t) can be written as

Vαk (x,y) =
1

αkk!

[
T
(k)
α v

]
t=t0

, Wα
k (x,y) =

1
αkk!

[
T
(k)
α w

]
t=t0

.

Because of Lemma 2.2 (i),

Uαk (x,y) =
1

αkk!

[
T
(k)
α (av± bw)

]
t=t0

=
a

αkk!

[
T
(k)
α v

]
t=t0
± b

αkk!

[
T
(k)
α w

]
t=t0

= aVαk (x,y)± bWα
k (x,y) .

The proof is completed.

Theorem 3.4. If u (x,y, t) = v (x,y, t)w (x,y, t), then Uαk (x,y) =
k∑
s=0

Vαs (x,y)Wα
k−s (x,y).

Proof. By the help of Definition 3.2, v (x,y, t) and w (x,y, t) can be written as

v (x,y, t) =
∞∑
k=0

Vαk (x,y) (t− t0)
αk, w (x,y, t) =

∞∑
k=0

Wα
k (x,y) (t− t0)

αk.

Then, u (x, t) is obtained as

Uαk (x,y) =
∞∑
k=0

Vαk (x,y) (t− t0)
αk

∞∑
k=0

Wα
k (x,y) (t− t0)

αk

=
(
Vα0 (x,y) + Vα1 (x,y) (t− t0)

α + Vα2 (x,y) (t− t0)
2α + · · ·+ Vαn (x,y) (t− t0)

nα + · · ·
)

×
(
Wα

0 (x,y) +Wα
1 (x,y) (t− t0)

α +Wα
2 (x,y) (t− t0)

2α + · · ·+Wα
n (x,y) (t− t0)

nα + · · ·
)

= Vα0 (x,y)Wα
0 (x,y) + (Vα0 (x,y)Wα

1 (x,y) + Vα1 (x,y)Wα
0 (x,y)) (t− t0)

α

+ (Vα0 (x,y)Wα
2 (x,y) + Vα1 (x,y)Wα

1 (x,y) + Vα2 (x,y)Wα
0 (x,y)) (t− t0)

2α + · · ·

=

∞∑
k=0

k∑
s=0

Vαs (x,y)Wα
k−s (x,y)(t− t0)

kα.

Hence, Uαk (x,y) is found as



O. Acan, M. M. Al Qurashi, D. Baleanu, J. Nonlinear Sci. Appl., 10 (2017), 3916–3929 3920

Uαk (x,y) =
k∑
s=0

Vαs (x,y)Wα
k−s (x,y).

The proof is completed.

Theorem 3.5. If u (x,y, t) = Tαv (x,y, t), then Uαk (x,y) = α (k+ 1)Vαk+1 (x,y).

Proof. TCRDT of v (x,y, t) can be written as

Vαk (x,y) =
1

αkk!

[
T
(k)
α v

]
t=t0

for u (x,y, t) = Tαv (x,y, t),

Uαk (x,y) =
1

αkk!

[
T
(k)
α (Tαv)

]
t=t0

=
1

αkk!

[
T
(k+1)
α v

]
t=t0

= α (k+ 1)
1

αk+1 (k+ 1)!

[
T
(k+1)
α v

]
t=t0

= α (k+ 1)Vαk (x,y) .

The proof is completed.

Theorem 3.6. If u (x,y, t) = xpyq(t− t0)
m, then Uαk (x,y) = xpyqδ

(
k− m

α

)
, where δ (k) =

{
1, if k = 0,
0, if k 6= 0.

Proof. TCRDT of u (x,y, t) = xpyq(t− t0)
m is

Uαk (x,y) =
1

αkk!

[
T
(k)
α (xpyq(t− t0)

m)
]
t=t0

.

If the conformable derivative of u (x,y, t) = xpyq(t− t0)
m, with respect to t, is calculated for k times,

where α ∈ (0, 1], then

Uαk (x,y) =
1

αkk!

[
xpyq

(
m (m−α) · · · (m− (k− 1)α) (t− t0)

m−kα
)]
t=t0

is obtained. If k = m
α , then

Uαk (x,y) =
1

α
m
α

(
m
α

)
!
xpyq

(
m (m−α) · · ·

(
m−

(m
α

− 1
)
α
)
(t− t0)

m−kα
)

=
1

α
m
α

(
m
α

)
!
xpyq (m (m−α) · · · (α)) = α

m
α

α
m
α

(
m
α

)
!
xpyq

(m
α

(m
α

− 1
)
· · · (1)

)
= xpyq.

Otherwise, for t = t0,
Uαk (x,y) = 0,

hence
Uαk (x,y) = xpyqδ

(
k−

m

α

)
is obtained. The proof is completed.

4. Numerical applications

Three applications are considered in this section. All of the results are calculated by MAPLE program.
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Example 4.1. First, we consider the following non-linear BPM [46]:

∂α

∂tα
ρ(x,y, t) =

∂2

∂x2ρ
2 +

∂2

∂y2ρ
2 + hρ, 0 < α 6 1 (4.1)

subject to the IC
ρ(x,y, 0) =

√
xy. (4.2)

The exact solution in Caputo sense of the non-linear BPM (4.1) is given as [46]:

ρ(x,y, t) =
√
xyEα (htα) , (4.3)

where Eα (htα) is the Mittag-Leffler function, defined as Eα (ζ) =
∞∑
k=0

ζk

Γ(1+kα) .

Now solve this problem by using TCRDTM. By taking the TCRDT of (4.1), it can be obtained that

α (k+ 1)Pαk+1 (x,y) =
∂2

∂x2

[
k∑
s=0

Pαs (x,y)Pαk−s (x,y)

]
+
∂2

∂y2

[
k∑
s=0

Pαs (x,y)Pαk−s (x,y)

]
+ hPαk (x,y) , (4.4)

where Pαk (x,y) is the TCRDT function. From IC (4.2) we write

Pα0 (x,y) =
√
xy. (4.5)

From (4.4) and (4.5), we can obtain the following Pαk (x,y) values

Pα1 (x,y) =
√
xy
h

α
, Pα2 (x,y) =

√
xy

h2

2!α2 , · · · ,Pαm (x,y) =
√
xy

hm

m!αm
, · · · . (4.6)

Then, from (4.6), the set of values
{
Pαk (x)

}m
k=0 gives us the following approximate result

ρ̃m(x,y, t) =
m∑
k=0

Pαk (x,y) tkα =

m∑
k=0

√
xy

hk

k!αk
tkα. (4.7)

From (4.7) we obtain

ρ(x,y, t) = lim
m→∞ ρ̃m(x,y, t) =

√
xyeh

tα

α . (4.8)

The obtained analytical approximate solution given in (4.8) is a new exact solution in conformable sense
for the non-linear BPM in (4.1).

Remark 4.2. If we take α = 1, then Example 4.1 is reduced to standard biological population model

∂

∂t
ρ(x,y, t) =

∂2

∂x2ρ
2 +

∂2

∂y2ρ
2 + hρ

with IC
ρ(x,y, 0) =

√
xy.

Our new exact solution (4.8) in conformable sense and the exact solution (4.3) in Caputo sense imply

ρ(x,y, t) =
√
xyeht.

This result is the exact solution of the standard problem in the literature.
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Now, we can compare the new exact solution in conformable sense and the exact solution [46] in
Caputo sense for the non-linear BPM (4.1). For some α values, the comparison of exact solutions in
conformable and Caputo sense are illustrated by 3D graphics in Figs. 1 and 2. The MAPLE codes for
graph drawings are given in Table 1.

Table 1: The MAPLE codes for graphics.
restart:
with(plots):
Sol-Con:=P1(x,y,z): #The solution of conformable sense (Enter P1(x,y,z).)
Sol-Cap:=P2(x,y,z): #The solution of Caputo sense (Enter P2(x,y,z).)
alpha:=m: #Order of fractional derivative (Enter a number for m.)
y:=n: #Enter a number for n.
h:=1: #If it is required for the solution, please use.
mu:=1: #If it is required for the solution, please use.
G1:=plot3d(Sol-Con,x=0..1,t=0..1,color=blue,style=point,linestyle=solid,
symbol=circle,axes=box):
G2:=plot3d(Sol-Cap,x=0..1,t=0..1,color=red,style=line,linestyle=spacedash,
symbol=cross,axes=box):
display(G1,G2);

Figure 1: The plots show the comparison of exact solutions of (4.1) in conformable and Caputo sense [46] for y = 10, h = 1, and
some α values.

Example 4.3. Second, let us consider the following non-linear BPM [46]

∂α

∂tα
ρ(x,y, t) =

∂2

∂x2ρ
2 +

∂2

∂y2ρ
2 + ρ, 0 < α 6 1 (4.9)

subject to the IC
ρ(x,y, 0) =

√
sin x sinhy. (4.10)

The exact solution in Caputo sense of non-linear BPM (4.9) is given as [46]

ρ(x,y, t) =
√

sin x sinhyEα (tα) , (4.11)

where Eα (tα) is the Mittag-Leffler function, defined as Eα (ζ) =
∞∑
k=0

ζk

Γ(1+kα) .
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Figure 2: The plots show the comparison of exact solutions of (4.1) in conformable and Caputo sense [46] for y = 10, h = 1, and
some α values.

Now solve this problem by using TCRDTM. By taking the TCRDT of (4.9), it can be obtained that

α (k+ 1)Pαk+1 (x,y) =
∂2

∂x2

[
k∑
s=0

Pαs (x,y)Pαk−s (x,y)

]
+
∂2

∂y2

[
k∑
s=0

Pαs (x,y)Pαk−s (x,y)

]
+ Pαk (x,y) , (4.12)

where Pαk (x,y) is the TCRDT function. From IC (4.10) we write

Pα0 (x,y) =
√

sin x sinhy. (4.13)

From (4.12) and (4.13), we can obtain the following Pαk (x,y) values

Pα1 (x,y) =
√

sin x sinhy
1
α

,

Pα2 (x,y) =
√

sin x sinhy
1

2!α2 ,

Pα3 (x,y) =
√

sin x sinhy
1

3!α3 ,

...

Pαm (x,y) =
√

sin x sinhy
1

m!αm
, · · · .

(4.14)

Then, from (4.14), the set of values
{
Pαk (x)

}m
k=0 gives us the following approximate result

ρ̃m(x,y, t) =
m∑
k=0

Pαk (x,y) tkα =

m∑
k=0

√
sin x sinhy

1
k!αk

tkα. (4.15)

From (4.15) we obtain

ρ(x,y, t) = lim
m→∞ ρ̃m(x,y, t) =

√
sin x sinhye

tα

α . (4.16)

The obtained analytical approximate solution given in (4.16) is a new exact solution in conformable sense
for the non-linear BPM in (4.9).

Remark 4.4. If we take α = 1, then Example 4.3 is reduced to standard biological population model

∂

∂t
ρ(x,y, t) =

∂2

∂x2ρ
2 +

∂2

∂y2ρ
2 + ρ
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with IC
ρ(x,y, 0) =

√
sin x sinhy.

Our new exact solution (4.16) in conformable sense and the exact solution (4.11) in Caputo sense imply

ρ(x,y, t) =
√

sin x sinhyet.

This result is the exact solution of the standard problem in the literature.

Now, we can compare the new exact solution in conformable sense and the exact solution [46] in
Caputo sense for the non-linear BPM (4.9). For some α values, the comparison of exact solutions in
conformable and Caputo sense are illustrated by 3D graphics in Figs. 3 and 4. The MAPLE codes for
graph drawings are given in Table 1.

Figure 3: The plots show the comparison of exact solutions of (4.9) in conformable and Caputo sense [46] for y = 1 and some α
values.

Figure 4: The plots show the comparison of exact solutions of (4.9) in conformable and Caputo sense [46] for y = 1 and some α
values.

Example 4.5. In the final, we discuss the following non-linear GBPM [46]:

∂α

∂tα
ρ(x,y, t) =

∂2

∂x2ρ+
∂2

∂y2ρ− µρ
2 + ρ, 0 < α 6 1 (4.17)
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subject to the IC

ρ(x,y, 0) = e
√
µ

2
√

2
(x+y). (4.18)

The exact solution in Caputo sense of non-linear GBPM (4.17) is given as [46]:

ρ(x,y, t) = e
√
µ

2
√

2
(x+y)

Eα (tα) , (4.19)

where Eα (tα) is the Mittag-Leffler function, defined as Eα (ζ) =
∞∑
k=0

ζk

Γ(1+kα) .

Now solve this problem by using TCRDTM. By taking the TCRDT of (4.17), it can be obtained that

α (k+ 1)Pαk+1 (x,y) =
∂2

∂x2

[
k∑
s=0

Pαs (x,y)Pαk−s (x,y)

]
+
∂2

∂y2

[
k∑
s=0

Pαs (x,y)Pαk−s (x,y)

]

− µ

[
k∑
s=0

Pαs (x,y)Pαk−s (x,y)

]
+ Pαk (x,y) ,

(4.20)

where Pαk (x,y) is the TCRDT function. From the IC (4.18) we write

Pα0 (x,y) = e
√
µ

2
√

2
(x+y). (4.21)

From (4.20) and (4.21), we can obtain the following Pαk (x,y) values

Pα1 (x,y) = e
√
µ

2
√

2
(x+y) 1

α
,

Pα2 (x,y) = e
√
µ

2
√

2
(x+y) 1

2!α2 ,

Pα3 (x,y) = e
√
µ

2
√

2
(x+y) 1

3!α3 ,

...

Pαm (x,y) = e
√
µ

2
√

2
(x+y) 1

m!αm
, · · · .

(4.22)

Then, from (4.22), the set of values
{
Pαk (x)

}m
k=0 gives us the following approximate result

ρ̃m(x,y, t) =
m∑
k=0

Pαk (x,y) tkα =

m∑
k=0

e

√
µ

2
√

2
(x+y) 1

k!αk
tkα. (4.23)

From (4.23) we obtain

ρ(x,y, t) = lim
m→∞ ρ̃m(x,y, t) = e

√
µ

2
√

2
(x+y)+ tα

α . (4.24)

The obtained analytical approximate solution given in (4.24) is a new exact solution in conformable sense
for non-linear GBPM in (4.17).

Remark 4.6. If we take α = 1, then Example 4.5 is reduced to generalized standard biological population
model

∂

∂t
ρ(x,y, t) =

∂2

∂x2ρ+
∂2

∂y2ρ− µρ
2 + ρ

with IC
ρ(x,y, 0) = e

√
µ

2
√

2
(x+y).
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Our new exact solution (4.24) in conformable sense and the exact solution (4.19) in Caputo sense imply

ρ(x,y, t) = e
√
µ

2
√

2
(x+y)+t.

This result is the exact solution of the standard problem in the literature.

Now, we can compare the new exact solution in conformable sense and the exact solution [46] in
Caputo sense for the non-linear GBPM (4.17). For some α values, the comparison of exact solutions in
conformable and Caputo sense are illustrated by 3D graphics in Figs. 5 and 6. The MAPLE codes for
graph drawings are given in Table 1.

Figure 5: The plots show the comparison of exact solutions of (4.17) in conformable and Caputo sense [46] for y = 1, µ = 2, and
some α values.

Figure 6: The plots show the comparison of exact solutions of (4.17) in conformable and Caputo sense [46] for y = 1, µ = 2, and
some α values.

5. Conclusion

In this paper, the TCRDTM is implemented in degenerate parabolic PDEs arising in the spatial dif-
fusion biological populations. The solution obtained by the TCRDTM is an infinite power series for the
appropriate IC which finds the solution without any discretization, perturbation, transformation or re-
strictive conditions. Three numerical examples are also illustrated considering the situations of non-linear
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phenomenon of GBPM to study the effectiveness and accurateness of the method. For each of the appli-
cations, new exact solutions with conformable sense are obtained. These new exact solutions obtained
in conformable sense is compared with the exact solutions [46] in Caputo sense. For some values of α,
these comparisons are illustrated in 3D graphics. As a result of these processes, the following points on
solutions can be noted as

(i) the conformable derivative produces exponential functions, while the Caputo derivative gives the
Mittag Leffler functions;

(ii) when α = 1, Mittag Leffler and exponential functions in the solutions are equal to each other. When
α 6= 1, the solutions are different from each other.

Hence, when α → 1, the exact solutions in conformable and Caputo sense converge to the exact results
of the problems in classical sense. In other cases, the solutions exhibit similar behavior, but they are
not equal to each other. As it offers new conformable solutions different from Caputo solutions for these
models, we hope that it gives new solutions to many problems in the branches of sciences such as physics,
chemistry, biology, mathematics, and engineering.
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[31] A. Kurt, Y. Çenesiz, O. Tasbozan, On the solution of Burgers equation with the new fractional derivative, Open Phys.,

13 (2015), 355–360. 1
[32] Y.-Q. Liu, Z.-L. Li, Y.-Y. Zhang, Homotopy perturbation method to fractional biological population equation, Fract. Differ.

Calc., 1 (2011), 117–124. 1
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